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ABSTRACT. For any nonzero complex number z we define a sequence a;(z) = z, a>(z) =
zM @) ani(z) = 222 n e N. We attempt to describe the set of these z for which
the sequence {an,(z)} is convergent. While it is almost impossible to characterize this
convergence set in the complex plane ¢, we achieved it for positive reals. We also discussed
some connection to the Euler’s functional equation.
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1. Introduction. In this paper, for any z € 6\{0}, we consider the sequence
a1 (z2) =2z, ax(z)=zZ=zM9 an.(z)=z"(z), n=12,.... (1.1)

We wish to characterize the convergence set L:= {z € €\{0} : {a,(z)} is convergent}.
Since 1 € L, this set is nonempty. For a complex value of z, the mapping z — a,(z) isa
multivalued operation and a,, (z) usually represents an infinite set. If we agree to use
the main branch of the complex logarithm (as it is done, e.g., in MATLAB), the above
exponentiation becomes a single-valued operation. For arbitrary z, it is very easy to
run out of accuracy of any available computational software in a few iterations. Thus,
it is practically impossible to describe the convergence set L. Also, one can show that
the sequence {a,(z)} cannot be obtained as a functional iteration, i.e., there exists
no function f : € — € such that a,(z) = f"1(z) = fofo---0f(z) (n-times). This
sequence has nasty numerical features. Nevertheless, the situation is not hopeless
when it comes to considering real values of a, (z).

2. Main result. Our main goal is to demonstrate the following.
THEOREM 2.1. We have LR, = [e~¢,el/].
Before we proceed with the proof of Theorem 2.1, the following lemma is in order.

LEMMA 2.2. For the function f(t) = In(t)/t defined on R, = (0,+), the following
hold true:
(@) range (f) = (-oo,1/e],
(b) for any 0 < ¢ < 1/e, the equation f(t) = c has exactly two solutions, while for
c = 1/e exactly one, namely t* = e.

PROOF. The first derivative of the function f(t) is f’(¢t) = (1 —In(t))/t2, so that
f'(t) =0if and only if t = e, f is increasing on (0, e] and decreasing on [e, +). Since
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lim; .o+ f(t) = —c0 and lim; ., f(t) = 0, we obtain statement (a). Since t* = e is the
only maximizer of f(t) in (0,+), (b) follows from the intermediate value theorem
and the fact that lim;_ . f(t) = 0. The proof is complete. O
AN F(t)
04F
1/e

0.3

0.2 :
01F | :
o . >
e e+ = £ t
—0.1F
FIGURE 2.1.

Note that if tél) and t% denote two distinct solutions of the equation f(t) = c,
then t{ — 1+ and t{* — +0 as ¢ — 0*. This remark follows from the piecewise
monotonicity of the function f(t) and the fact that lim;_; f(t) = 0 and lim;_ ., f(t) =
0. By putting ¢ = In(x) in Lemma 2.2, we get the following.

COROLLARY 2.3. For any given x € (1,e'/¢) there exist exactly two solutions of the
equation x® = «, while for x = el/¢, exactly one.

LEMMA 2.4. Let K(x):={0 <t <1:hy(t) =0}, where hy(t) = x*' —t and x > 0.
The following statements hold true:
(a) For x € (0,e7¢), K(x) consists of three distinct elements.
(b) For x € [e %,1), K(x) is a singleton.

PROOF. Instead of giving a rigorous analytic proof similar to Bomberger [1], we
rather illustrate our point with an aid of appropriate graphs.

CASE 1 (x € (0,e79)). See Figure 2.2.

CASE 2 (x = e~¢). See Figure 2.3.

In fact, h) (t) = xtxx! (In(x))2-1, so h, .(1/e) =0.Also, he-<(1/e) =0.

CASE 3 (x > e™°). See Figure 2.4.

This completes our proof. O

PROOF OF THEOREM 2.1
CASE 1 (0 <x <e™ ). By Lemma 2.4 (see Figure 2.2), there exist numbers 0 < o1 <
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o2 < &3 < 1 such that

i

x*'=n; fori=1,2,3. 2.1)

While «» is the fixed point of the function g, (t) = x!, &7 and «3 are points of period
2 (x™ = x3 and x® = 7).

Generating the sequence {a,(x)} by putting a;(x) := x = gx(1) and a,.1(x) =
Jx(an(x)) for n > 1, as illustrated by Figure 2.5, we get

ar(x) <asz(x) <---<azp-1(x) 7 g, ax(x) >asg(x) > - >am(x) N oz, (2.2)

Thus, {a, (x)} diverges but consists of two complementary convergent subsequences.

CASE 2 (x = e7%). In this case, {a,(x)} is convergent and the limit is 1/e. Indeed,
the sequence {a, (x)} consists of two complementary subsequences and each of them
is convergent to a point of period 2. But in this case, &; = &» = &3 = 1/e, and the
two points of period 2 collapse to the fixed point of the function g.-.(t). Hence,
{an(x)} converges to 1/e. However its convergence is very slow (e.g., a1,000,000 (€~¢) =
0.36697888108297 and |a,000,000(e ¢) —1/e| = 0.00180).

CASE 3 (e ®* <x <1). For x <1 we reason the same way as in Case 2, so the se-
quence {a,(x)} converges to a unique fixed point of the function g, (t). For x =1,
the statement is trivial.

CASE4 (1 <x <el/e). If {an(x)} is convergent to a limit &, {a,1(x)} also con-
verges to «, moreover, a1 (x) = x*®) converges to x*. Consequently, x* = «. By
Corollary 2.3, there are exactly two fixed points «; and o2 (x; < ) of the function
Jx(t). Obviously, 1 < x; < e < oxp. Since gy (t) is increasing, 1 < x < &1, and we check
by the math induction that a,(x) < a»(x) < --- < an(x) < a1, so the limit of the
sequence {a,(x)} exists and is just a fixed point ;.
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CASE 5 (x = el/¢). Asbefore, 1 < x <e and {a,(x)} is increasing and bounded by
e, thus convergent to the only fixed point of g,/ (t), namely e itself.

CASE 6 (x > el/¢). By Corollary 2.3, no fixed point of g (t) exists, so the sequence
{an(x)} does not converge. Now, the proof is complete. O

We note that in Case 4 of the above proof, «; is an attracting fixed point, while
o is repelling fixed point for gy (t). In the limiting Case 5, the point « = e is left
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attracting and right repelling. Our Corollary 2.3 and Lemma 2.4 have some interesting
relations to certain functional equations, one of them considered already by Euler (see
Sierpinski [2]):

(a) 0 < x < e °. As we have already noticed, there exist exactly three zeros of the
function h,(t), say, &1 < o < 3, so that xX* = o for i = 1,2,3, see (2.1); o
and «3 are points of period 2 of the function gy (t), i.e., x* = x3 and x®3 = «;
(2 is just the fixed point of the function g (t)). Thus,

o = () = (x7) = o, @3)

In other words, «; and «3 satisfy the functional equation u* = vV. For a detailed
account on solving this equation we refer to Bomberger [1]. Observe that all «;’s are
in (0,1).

(b) 1 < x < el/e. As we noted after Lemma 2.2, there exist two distinct fixed points
o and o2 of gy (t), and when x — 1%, oy — 1%, and o — +o0. Since x%! = ; and
X% = o, we get

o = (x%)% = (x%)" = o, @4

thus, o; and oy are related by the equation u¥ = v* (u,v > 0), called the Euler
equation.

(c) e7® < x < 1. Now, «; and «3 considered in (a) collapse to the same point and
both types of equations considered in (a) and (b) are automatically satisfied.
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For the sake of completeness of this exposition we describe the set of solutions of
the Euler equation.

PROPOSITION 2.5. The set of solutions of the Euler equation u’ = v%, where u
v, u,v > 0 is given by a parametrized family {(u,v) = (a!/ (=D */(x=D): o > 1},

PROOF. We note thatif 0 < u <v <1, then u < u¥ < u%* < v*%, and a pair (u,v)
cannot be a solution. Similarly, when 0 < u <1 < v. Observe that In(u)/u =In(v) /v,
and if this common value is less than 1/e, by Lemma 2.2 there exist exactly two solu-
tions u and v of this equation and 1 < u < e < v. We postulate a solution in the form
u=tand v =t% where t > 1 and & > 0 are parameters. Thus,

£t = (tNt = ot (2.5)

so t% = ot and, in consequence, t = &!/(®~1_ Hence, (u,v) = (/@D x/(@=1)) For
any 1 # o> 0, /(=1 > 1, 50 in order to keep u < v, &« must be greater than 1. We
check that the pair (u,v) actually solves the equation:

uv - (al/(a—l))““/(‘x*” _ (Xl/(a_l)atx/(txfl) _ o(l/(a_l)ukrl/(a—l) _ (o(a/(a—l))ﬁ(w""“ _

(2.6)

Now, we show that this parametrized family exhausts all possible solutions of the
Euler equation such that u < v.Infact,if & — 1*, &!/©®=1 — ¢ and &®/(*-D — ¢;if x —
+o00, ot/(@=D 1 and a®/(@-1) _, 4. The result now follows from the intermediate
value theorem. O
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