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ABSTRACT. Based on the definition of Lie rotated vector fields in the plane, this paper gives
the property of homoclinic orbit as parameter is changed and the singular points are fixed
on Lie rotated vector fields. It gives the conditions of yielding limit cycles as well.
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1. Introduction. The rotated vector fields have been considered as a very important
tool which is efficient in the study of the numbers of limit cycles and the distribution of
homoclinic orbits. In this paper, we continue with the investigation of the Lie rotated
vector fields [6]. Based on the definition of Lie rotated vector fields [6], we give the
property of homoclinic orbit as parameter is changed and the singular points are fixed
on Lie rotated vector fields. As application of Lie rotated vector fields, we prove that
the definition of Lie rotated vector has nothing to do with the change of coordinate.
Afterwards, we require the singular points of X (u) not to be moved as parameter u is
changed. We study the motion of homoclinic orbits that pass through saddle points
on Lie rotated vector fields and the change of a family of periodic orbits that are in
the inner neighborhood of homoclinic orbit. Of course, we give some examples to
illustrate the concept and notion of Lie rotated vector fields.

2. Topological properties of Lie rotated vector fields. Let X(u) be a Lie rotated
vector field. In this section, we require the singular points of X (u) not to be moved as
parameter u is changed, i.e., the singular points are kept immovable.

THEOREM 2.1. The Lie rotated vector field is a Lie rotated vector field under the C?
differential topological transform.

PROOF. Let ¢ be a C? differential topological transform on R?, and let that ¢ €
C2(R%,R?), p(x):x — ¥y = p(x), x = (x1,x2), ¥ = (¥1,¥2) € R%. Let X(u) be a Lie
rotated vector field, then Y is a corresponding vector field which satisfies formula

L(0) & X(0) A {X},(0) +[X(0),Y]} >0 (<0), 2.1)

where X}, (0) is the derivative of the vector field X (u) at y = 0. Under the transform
¢, X (1) = X(x,u) becomes

X () € (2 X) (v,10) = Dp (b () - X (b (), 1) (2.2)
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use the same method, under the transform ¢, Y becomes

Y ($.Y) () =Db(d71 () - X (b7 (). 2.3)

For X (u) and the corresponding Y, and Vy = ¢(x) € R?, we only need to prove the
condition to set up

L( ):X(O)/\{X",(O)+[X(O),Y]}>O(< 0), (2.4)

where [ , ] is Lie bracket, which expresses the action to the variable y. Since

X(0) A[X(0),Y]=Dg(x) - X(x,0) A[X(x,0),Y(x)], (2.5)
X(0) /\X",(O) =D¢(x) - X(x,0) A X,(x,0), (2.6)

where x = ¢p~1(y). From formulae (2.5) and (2.6), we can find that
L(0) = D¢ (x)-L(0), (2.7)

where x = ¢~1(y). But ¢ is the C? differential topological transform, D¢ (x) # 0, and
L(0) > 0 (or < 0), it follows that L(0) > 0 (or < 0). O

Theorem 2.1 illustrates that Lie rotated vector fields have nothing to do with the
choice of coordinates, and the symbol of L(0) in formula (2.4) is decided by the symbol
of L(0) and the formula of Jacobi on the transform ¢.

THEOREM 2.2. Let X(u) be a Lie rotated vector field, X(0)|p,, = 0.

(1) If the index Jo(po) of singular point po of X(0) is not equals to zero, then Y |,, = 0.

(2) If the index Jo(po) of singular point py of X (0) is changed as u is changed, then
Yy, # 0.

PROOF. (1) Using reduction to absurdity, we let Y|,, # 0. From [6, Lemma 2.1],
we know that @k X (1) gu(p,) = 0 (4 # 0), the proof is similar to [6, part (2) of Theo-
rem 3.2]. For Ve > 0, such that ¢*(po) ¢ S:(po), lul <& < 8, § is given by [6, Theo-
rem 3.2]. Since L,UfiX(u)lpo # 0, it is noted that J,, (po) =0 (¢ # 0) to 3Ss(po) about
whX (), but Jo(po) # 0 to S (po) about X(0). From [6, Lemma 2.3], we know that
this is a contradiction, thus Y|,, = 0.

(2) The proof'is similar to (1). In fact, we might as well let Y|,, = 0, then whX(u) lpo =
0. Let Jo(po) = ¥o about X(0), but J,(po) = vy (¥y # o, 4 # 0) about X (u). From [6,
Lemma 2.2], we know that J, (po) = 7. Again from [6, Lemma 2.3], when |u| < <5,
Jo(po) = J«, (po) = 19, i.e,, ¥o = 7, and by the supposition 7 # 1, this is a contradic-
tion, thus Y|,, # 0. O

COROLLARY 2.3. Let X(u) be a Lie rotated vector field, if po1,Po2,-..,Pom are m
elementary singular points of X(0), then the corresponding vector field Y, certainly
set up

Yip, =0 (1=j=m). (2.8)
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3. The motion of homoclinic orbit. From the theory of structural stability on two-
dimensional mainfolds, we know that the systems which have homoclinic orbit pass-
ing through the saddle points are structurally unstable, this orbit which links saddle
points can extremely be burst under trouble, thus can change the topological structure
of the orbit. When X (u) is Lie rotated vector field, and if u = 0, X(0) has homoclinic
orbit passing through saddle points, we consider the change of topological structure
of the orbit of X (u) when u # 0.

THEOREM 3.1. Let X(u) be Lie rotated vector field, Ty = {q(t), t € R} Upo is ho-
moclinic orbit passing through the hyperbolic saddle point py on limited region. If
0o = divX(0)lp, # O, then when u is changed toward suitable direction, Iy disappears,
but it will produce unique limit cycle of X (u) in the neighborhood of Ty, and the limit
cycle is stable or unstable; but when u is changed towards other direction, Iy disappears,
and it will not produce any limit cycle of X (u) in the neighborhood of Tj.

PROOF. We might as well let I positively oriented, oy < 0. From [5, Theorem 1],
we know that I} is inner stable. Since py is a hyperbolic saddle point of X(0), from
Corollary 2.3, we know that it certainly has Y|,, = 0, thusithas WphX () [po =0 (1 #0).
wh X (u) has homoclinic orbit I passing through a hyperbolic saddle point py when
u = 0. By [6, Lemma 2.3], when 0 < |u| < &, Iy is burst in ¢4X(u) (u £ 0), yet
from the topological equivalence of orbital structure of X (u) and orbital structure
of whX(u), we know that Iy of X(u) is burst when u # 0, i.e., when 0 < u < 8, the
homoclinic orbit I passing through hyperbolic saddle point pq is burst into stable
manifold S, and unstable manifold U,. Since Iy is inner stable, by continuous de-
pendence of solution to the parameter y and using the Poincaré-Bendixson annu-
lar regional theorem, we prove that there is a limit cycle in the neighborhood of I
when u > 0, yet by 0y < 0, we know that there is only a unique stable limit cycle
in the neighborhood of Iy. But when u < 0, |u| < &, let there be a limit cycle in the
neighborhood of Iy, this is the same discussion as above, we know that it is sure to
have semi-stable limit cycle or unstable limit cycle, this is contradiction with oy < 0.

O

Using Theorems 2.2 and 3.1, we can easily prove the following corollary.

COROLLARY 3.2. Let X(u) be a Lie rotated vector field, Ty = {q(t), t € R}Upo is
homoclinic orbit passing through the saddle point py of X(0) on the limited region,
00 =divX(0)|p, # 0.If Jo(po) # 0 (or Jo(po) = 0, but Y|,, = 0), then when u is changed
towards a suitable direction, Ty disappears, but it will produce a unique limit cycle of
X (u) in the neighborhood of Ty, and the limit cycle is stable or unstable; but when u is
changed towards the other direction, Ty disappears, and it will not produce any limit
cycle of X (u) in the neighborhood of Tj.

Using [1, Theorems 45 and 49], [4, Theorem 1.2], and Theorem 2.2 of this paper, we
have the following corollary.

COROLLARY 3.3. Let X(u) be a Lie rotated vector field, Ty = {q(t), v € R}Upo is
homoclinic orbit passing through saddle point po of X(0) on the limited region, o, =
divX(p)lp, =0 (lul < 1 and || < 3), Ip = [, oodt # 0. If Jo(po) # 0 (or Jo(po) =0,



190 J. WANG AND C. CHEN

butY|,, = 0), then when p is changed towards a suitable direction, Iy disappears, but it
will produce a unique limit cycle of X (u) in the neighborhood of Ty, and the limit cycle
is stable or unstable; but when u is changed towards other direction, Iy disappears, and
it will not produce any limit cycle of X (u) in the neighborhood of Tj.

EXAMPLE 3.4. Let X(u) = (2x2,2x1 — 3x} — x2(x3 —x? + x3) + ux3), when p = 0,

po = (0,0), p1 = (2/3,0) are elementary singular points of X(0), where py is saddle
point, p; is an unstable focal point. Since Iy : x} — x? + x3 = 0 is homoclinic orbit
passing through the hyperbolic saddle point py of X (0) (this example is shown in [5]).
By Corollary 2.3, we can take Y = (0,8(2x; —3x?)), where B € R. For, Ve > 0, ¢ is
taken small enough, we make open neighborhoods S:(po) and S:(p1) of po and p;,
respectively, then there is a limited region D C R2, T, € D, order 8 = &3 > 0, at the
ordinary point of X(0) of D\ {S:(po) US:(p1)}, we have

L(0) = 2B(2x1 —3x2+x3)* +2B(4x3 (1 -3x1) —x8) + 2x% > 0, (3.1)

i.e,, X(u) constitutes Lie rotated vector field on D. Take |u| < 1 and |u| < §, note o, =
divX(u)lp, = 0, again from [5], we can know that Iy = fro opdt < 0. By Corollary 3.3,
when u < 0, T disappears, but it will produce a unique stable limit cycle of X(u) in
the neighborhood of Ijy; but when u > 0, Iy disappears, and it will not produce any
limit cycle in the neighborhood of Tj.

Theorem 3.1 and Corollary 3.2 require oy # 0, Corollary 3.3 requires o, = 0 (0 <
|ul < 6 and |u| <« 1), using [3, Lemmas 8 and 9] and the proven method of Theorem 3.1
in this paper, we have the following corollary.

COROLLARY 3.5. Let X(u) be a Lie rotated vector field, Ty = {q(t), t € R}Upo is
homoclinic orbit passing through the saddle point po of X(0) on the limited region, Ty
is stable (unstable). If Jo(po) # 0 (or Jo(po) =0, but Y|,, = 0), then when  is changed
towards a suitable direction (towards the other direction), Iy disappears, but it at least
produces a limit cycle in the neighborhood of Ty, the limit cycle is stable (unstable); when
u is changed towards the other direction (towards a suitable direction), Iy disappears,
but it will not produce any limit cycle in the neighborhood of Tj.

EXAMPLE 3.6. Let X (u) = (2x2,2x1 —3x% —x2(x} —x? +x3) + ux,), when u = 0, the
state of X(0) is same as Example 3.4, we yet take Y = (0, (2x1 — Sxf)). For, Ve > 0,
¢ is sufficiently small, order B = € > 0, then there is a region D C R?, I, ¢ D, at the
ordinary point of X(0), we have

L(0) = 2B(2x1 —3x2+x3)* +2B(4x2(1-3x1) —x8) +2x2 > 0, (3.2)

i.e., X(u) constitutes a Lie rotated vector field on D. Take |u| < 1, |u| < 8, by 0y =
divX(0)lp, =0, 0y = divX () lp, = (u #0), and Iy = fro oodt < 0, we know that I} is
inner stable, Jo(po) = —1 # 0. From Corollary 3.5, when u < 0, in the neighborhood of
Ty, at least produces a limit cycle; when p > 0, in the neighborhood of I, it does not
produce any limit cycle.

Now we consider that X(u) is a Lie rotated vector field. If u = 0, Iy is homoclinic
orbit passing through saddle point py of X(0) on the limited region, and the inner
neighborhood of I is imbued a family of periodic orbits, where oy = Iy = 0.
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LEMMA 3.7. Let X be a C! vector field, the limited region A; C R? is imbued a family
of periodic orbits Ly, for X, h € (a,b) C R, then for all C! vector fields Y, we have

Ag(h) = L (XA[X, Y] -exp{—J(Ot diVth}dt =0, (3.3)
h

where h € (a,b).
PROOF. Using the formula of Theorem 2.3 of Chapter 3 in §2 of [2], we have

XAX,Y]=(X,V(XAY)) = (XAY)-divX. (3.4)

Both sides of (3.4) are multiplied by the factor exp { — J¢ divXdt}, and both sides
are integrated along the circuit of Ly, let the period of Ly, be w(h), using [7, formula
(2.16)], we have

(XALX, Y] -exp{—J;didet}dt

Ly
t t
=J (X,V(X,Y))-exp{—J didet}dH (XAY)-i{exp(—J didet)}dt
Ln 0 Ly dt 0
t d t
= J (X,V(X,Y)) -eXp{—J diVth}dt— — (X AY) -exp{—J diVth}dt
Ln 0 L, dt 0
t w(h)
+[(XAY)-exp{—J didet}] =0.
0 0
(3.5)
This proof is completed. O

THEOREM 3.8. Let X(u) be a Lie rotated vector field, Ty = {q(t), t € R}Upo is a
homoclinic orbit passing through the saddle point po of X(0) on limited region. If the
inner neighborhood A C R? of Ty is imbued a family of periodic orbits Ly, h € (a,b) C R,
then when u # 0, the inner neighborhood A of Ty will not produce any closed orbit
of X(u).

PROOF. By [7, Theorem 4.10], when u # 0, on the undisappeared Ly,, we have

t
A (ho) = J (X(0) A X, (0)) - exp SL - JO diVX(O)dt}dt =0, (3.6)

Lh(}

where hg € (a,b). But from Lemma 3.7, we have
t
Ar(ho) = Ay (ho) + Ao (ho) = j L(0) -exp{—J divX(O)dt}dt 0. 3.7
LhO 0

It follows that the proof is completed. O

EXAMPLE 3.9. Let X (i) = (2x2,2x1 —3x3 + pux2), when p = 0, po = (0,0) is hyper-
bolic saddle point of X(0), p; = (2/3,0) is the center of X(0), Iy : x3 —x¥ + x5 =0 is
homoclinic orbit passing through py of X(0), yet take Y = (0, k (2x; —3x?)). When k
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is taken arbitrary sufficient small, 0 < k < 1, then there is region D ¢ R%, T, ¢ D, at
all ordinary points of X(0) on D, we have

L(0) = 2x2(1 +4k(1-3x1)) + 2k (2x1 - 3x2)* > 0, (3.8)

i.e., X(u) constitutes a Lie rotated vector field on D. From Theorem 3.8, we can know
that there is not any closed orbit in the inner neighborhood of Iy when u # 0.
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