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ABSTRACT. This paper gives the definition of Lie rotated vector fields in the plane and
the conditions of movement of singular points on Lie rotated vector fields with variable
parameters.

Keywords and phrases. Lie rotated vector fields, Lie bracket, one parameter group, singu-
lar points.

2000 Mathematics Subject Classification. Primary 34CO05.

1. Introduction. Many engineering problems are usually run into a class of non-
linear equations that contain variable parameters. In order to study whole orbits or
whole phase diagrams of vector fields that contain parameters, it is a complicated and
interesting problem how the whole orbit or whole phase diagram change as param-
eter is changed. It is extremely complicated for general containing parameter vector
fields to change in the plane, but for some special containing parameter rotated vector
fields, their change has regular rule as parameter is changed. These are many results
in this respects [3, 4, 5, 6, 7].

In Section 2, we present the basic definitions of Lie rotated vector fields. We define
Lie rotated vector fields using one parameter group approach. In accordance with
the strict definition of rotated vector field, the singular points of X () must be kept
fixed, but in this paper, the singular points of X(u) can be moved as parameter u is
changed. In Section 3, we discuss the motion of singular points on Lie rotated vector
fields. In the section, we require the singular points of X(u) to be strictly moved
as parameter u is changed, and permit the moved singular points to disappear or
decompose, which do not coincide with the singular points of original vector field. We
give some conditions and properties corresponding to the vector field Y. In this paper,
we give some examples to illustrate the concept and notion of Lie rotated vector fields.

2. Lie rotated vector fields. We consider vector fields on the plane x = (x1,x2)
e R?,

X=(X1(x),X2(x)), Y= (Y1(x),Ya(x)). (2.1)
For the vector fields (2.1), we define
XANY =X1Yo-XoY, (X,Y)=X1Y1+X2Y2. (2.2)

If X and Y are vector fields, then [X,Y] is a vector field which is operated by Lie
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bracket, i.e.,
[X,Y]=(Z1,22), (2.3)
where Z; and Z; are expressed as,
Z1 =(X,VY1)—-({Y,VXy), Zr =(X,VY2) (Y, VX>), (2.4)

respectively, where V is gradient operator.
Let the plane vector fields X (u) = (X1 (x,u),X2(x,u)) be defined by the following
differential equations:
Xm dXZ

W:XI(qu)! W:XZ(qu)! (2-5)

where X; and X, are functions of x and parameter u € I C R, and the singular points
are isolated.

DEFINITION 2.1. Let the plane vector field X(u) be determined by (2.5), where
X1,X, € C3(R?2x1,R), I={u||u| <5} is areal interval, § is a given positive number.
If vector field Y exists which is defined by the following differential equations:

dx, dx;

HZYI(X)’ HZYZ(X)’ (2.6)

where Y, and Y» € C3(R?,R). At all ordinary points of X(0), such that the following
relation holds

def

L(0) = X(0) A {X,(0)+[X(0),Y]} >0 (<0), (2.7)

where X} (0) is the derivative of the vector field X (u) at u = 0, then X(u), p €I, is
called Lie rotated vector fields.

REMARK 2.2. If the vector field X (u) is defined on D x I, where D C R?, such that
X (0) satisfies relation (2.7) at all ordinary points of X(0) on D, then X(u), u €1, is
called Lie rotated vector fields on D.

LEMMA 2.3. Let @ be a one parameter transform group which is produced by C!
vector field Y, s € R, and let X be C! vector field. If s is fixed, and @, (t) is an integral
curve of X through the point p, @, (0) = p, then @* o @, (t) is an integral curve of Y3 X
through the point @* (p). If X|, = 0, then (Y. X)|ysp) = 0.

PROOF. The proof follows from [1] and [2]. In fact, if @, (t) is an integral curve of
X through the point p, then

(Yo@p() g =¥ (p) (2.8)

and

s d s d
(Wio@p(t)),, - (E’t) = Wiy °Pr)x (E ’t)

= Wi Xop) = (W X) gsoqp)-

(2.9)
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It follows that * o @, (t) is an integral curve of @3 X through the point ¢*(p).
Next, due to

WiXlg =Dy (@) -X(y~*(q)), 4q€<R. (2.10)

Set g = ¢*(p), note that we already suppose X[, = 0, again note that ¢° is a one
parameter transform which is produced by Y, then

YiXlysp) =Dy’ (p)-X(p) =Dy (p)-X|p =0, (2.11)

i.e.,, ¢*(p) is a singular point of Y3 X. O

LEMMA 2.4. Let @* be a one parameter transform group which is produced by C!
vector field Y, s € R, fix s, then the index of isolated singularity of C! vector field X is
not changed under the @’ transform.

PROOF. Infact, by the condition of the lemma, it is known that ¢ is a differentiable
homeomorphism, then the lemma follows from [8, Theorem 4.2].

Next, if X(u) is a Lie rotated vector field, then Y is a corresponding vector field
which satisfies (2.7), and * is a one parameter transform group which is produced
byY,seR. O

LEMMA 2.5. Let X(u) be a Lie rotated vector field, for all € > 0, there exist 6 = 6(¢),
such that when |u| < 8, @5 X (u) constitutes a rotated vector field.

PROOF. Let the singular points of @$X(u), u # 0, on the plane R? be Puis-- Py
and the singular points of X(0) on the plane R? are p1,...,pm, V> 0,0 < & < 1, let
Se(py,) or Se(pj) (1 <i<k, 1< j=<m)be open neighborhood p,, (1 <i <k) and
p; (1 <j<m),andradius ¢, such that S;(p) NS (q) = @, where p and q € {p,, } U{p;}
(1<i<k,1=<j<m),p+q.Let ¢* be a one parameter transform group which is
produced by C?! vector field Y, s € R. By the limit definition of Lie bracket, we have

X0 = WO X s d S x s d? S x
YR X(u) =gy (“)+FE 5:0(’[}* (“)J"gﬁ S:Ow* (H) +--- 2.12)
) .
= X () + 3 IX (0, YT+ 5 (X (W), YY)+
Next, we notice that X (u) can be unfolded as
u e
X(u)=X(O)+ﬂX",(O)+iX",’(O)+---, (2.13)
since
u u?
[X (1), Y] = [X(0), Y]+ 5 [X;(0), Y] + 5 [X (0), Y] - - (2.14)
Let s = u, it follows from (2.12), (2.13), and (2.14) that
WEX () = X(0) +p{X}(0) +[X(0),Y]}
(2.15)

+%u2{xlg’(0)+2[x‘;(0),y] +[[X(0), YL, Y]} +---
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At the ordinary points of [RZ\{U’i‘:ng(pui)}U{U;"zlsg(pj)}, for given £ > 0, we
sooner or later can find 6; = §;(¢) > 0, such that when |u| < d1, we have

WEX(40) A S WEX (] = X(0) A X,(0) +[X(0), Y]]

+pX(0) A{X,(0) +2[X,(0),Y]+[[X(0),Y], Y]} +---

=L(0)+0(u)>0(<0)
(2.16)

and let 9(u) be the crossing angle of whX(u) and the x; axis, for given € > 0, we
sooner or later can find 6, = 62(¢), such that when |u| < 82, at the ordinary points of
R2\ { UK, Se(py)} U{UJL Se(p))} (WX (u) is X(0) when p = 0, $(0) is the crossing
angle of X(0) and the x; axis), so

0<|9(u)—90)] <. 2.17)

Take § = min{d,5>}, then when |u| < &, ¢4 X (u) constitutes a rotated vector field.
O

REMARK 2.6. In accordance with the strict definition of rotated vector field, the
singular points must be kept fixed, but the singular points of ¢ X (u) in Lemma 2.5
can be moved as parameter u is changed. In the unmistakable circumstance, when
lul < 8, we call ¢4 X (u) arotated vector.

In the above lemma, § needs not be a quite small positive number, i.e.,, 0 < § < 1
need not be set up. For the sake of distinctness, we cite an example to illustrate this
equation.

EXAMPLE 2.7. Let X(u) = (x2,—x1 + uxy), if we take Y = (—x,/2,0), then at all the
ordinary points of X(0), we have

1

X(0)=———-5->0, 2.18
TPy *18)

that is, X (u) is a Lie rotated vector field.

Now we consider the range of u, because
H 1 1 2 1
PiX(u) = FHX1+ 1—511 X2, = X1+ 5 HX2 (2.19)
o)
u 0 u 1. oy 1 155

PEX () A@{w*x(“)} = E(Xl +X5) — G HX1X2 + G Hox. (2.20)

Formula (2.16) is compared with formula (2.20), we can find that O(u) in formula
(2.16) is replaced by O (u) in formula (2.20),

1

gH2x3 (2.21)

1
o) = —SHX1X2 +
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yet go a step further calculating, we have

0 1 1
WAX() A 5 AWEX () = %5 + 5 (e = 2x1)” (2.22)

which is larger than zero at the ordinary points of X(0) and w4X(u) for all u € R,
but the range of u that satisfies formula (2.17) is |u| < 4, thus we take 6 = 4, when
lul < 8 =4, PX(u) constitutes rotated vector field.

3. The motion of singular points. Let X (u) be a Lie rotated vector field, we require
the singular points of X (u) to be strictly moved as parameter u is changed, and permit
the singular points that have been moved disappear or decompose, but require the
singular points that have been decomposed to be at most limited in number, which
do not coincide with the singular points of the original vector field.

If p is a singular point of X (u), we name J, (p) for index of singular point p of X (u),
under the same circumstances, Jo(po) for index of singular point po of X (u), J, (q)
for index of singular point g of WX (u) (u # 0).

THEOREM 3.1. Let X(u) be a Lie rotated vector field, X(0)|,, = 0, and letY|,, = 0. If
the singular point py of X(0) disappears or decomposes as p; (1 <i<k) in X(u) (u +
0), then Jo(po) =0, and J,(p;) =0 (u#0, L <i<k).

PROOF. Firstof all, we prove that Jo(po) = 0.In fact, because of X (u)|,, # 0 (u # 0),
utilize Lemma 2.3 and condition Y|,, = 0, we know that ¢4 X (1)1, # 0 (1 # 0), it fol-
lows from Lemma 2.5, for given & > 0, when |u| < §, w4 X(u) constitutes a rotated
vector field. Take n > 0 as quite small positive number, such that S,(po) does not
contain the singular points of %X (u) (u # 0), and only contains the isolate singu-
lar point po of X(0). It is easy to know that J,, (po) = 0 about 9S,(po). By (2.17)
of Lemma 2.5, it follows that Jo(po) = 0 when |u| < 6.

Using the same method, we prove Jy, (y¥(p;)) =0 (u # 0, 1 <i < k) and by
Lemma 2.4, we find J,(pi) =0 (u#0, 1 <i<k). O

COROLLARY 3.2. Let X(u) be a Lie rotated vector field, X(0)|,, = 0, if Ylp, # O,
and moved the singular points p; + Y H(po) (U # 0, 1 <i < k), then Jo(po) = 0 and
Ju(pi) =0 (u+#0,1<i=<k).

PROOF. Since X(0)|,, = 0, let the singular point of X(u) (u # 0) disappears or
decomposes into pi,...,px points which do not coincide with singular point po of
X(0), i.e., X(1)lp, =0 (1 <i < k), yet because of X(u)lp, # 0 (u # 0) and Y|,, # 0.
By Lemma 2.3, we have ¢5X (1) |yu(py) # 0 and @ X (1) |yu(p,) = 0, but by condition
YH(pi) + po, we know that (p‘,iX(u)I,g0 # 0, as in the proof of Theorem 3.1, we can
prove that Jo(po) =0 and Ju(p;) =0 (u#0, 1 <i<k). O

COROLLARY 3.3. Let X(u) be a Lie rotated vector field, X(0)|p, = 0, if Y|y, # O,
but for some iy (1 < iy < k), set up Y*(piy) = po (U # 0), then Jo(po) = ju(piy),
Jupi) =0 (u#0, 1 <i<kandi#ip).

EXAMPLE 3.4. Let X(u) = (x2,—x; +u), and let
Y = (3x1 — &xx2,2x2) (3.1)
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when |u| < 8, we take & > 0 and & < 1, on the range of D = {(x1,x2) | x2 < &~} C R?,
at all ordinary points € D of X(0), set up

L(0) = ax? + x5 — ox5 > 0, (3.2)

thatis, X (u) constitutes a Lie rotated vector field on D, the singular points of X (u) are
strictly moved as parameter u is changed. We note that Y|,, = 0, po = (0, 0) is singular
point of X(0), by Theorem 3.1, we can find that Jo(po) = 0 and J,(p;i) =0 (u # 0),
where p; = (u,0).

THEOREM 3.5. Let X (u) be a Lie rotated vector field, X(0)|,, = 0, po is elementary.

(1) If Y|y, = O, then po cannot be moved as parameter u is changed.

(2) If Y1y, # 0, then py can be moved as parameter u is changed, and the moved point
is the singular point Y=+ (po) of X (u) (u # 0).

PROOF. (1) We note Jy(po) = =1 # 0, it is proved immediately from Theorem 3.1.
(2) First of all, we prove that po is indeed moved as u is changed, suppose that
it is not real, i.e., po is not moved as u is changed, then that X(u)l,, = 0 (u # 0),
by Lemma 2.3, we know that @5 X (i) |yt (py) = 0. Because py is isolate singular point
of X(0), we take § > 0 and ample small n > 0, it follows that ¢*(po) ¢ S, (po). When
0 < |ul <6 < &, then for 3S,(po), we have J,, (po) = 0 (since ¢k X(u)|,, # 0), where
u # 0. But Jo(po) = =1 # 0, this is a contradiction from Lemma 2.5. Thus we have
proved py is indeed moved as u is changed, and by Corollaries 3.2 and 3.3, it follows
that po is moved as the singular point ¢~#(pg) of X(u) (u # 0) when u is changed.
O

LEMMA 3.6. Let X(u) be a Lie rotated vector field, X(0)|,, = 0, and there is an elliptic
region at the singular point py.

(1) If Y|p, = 0, then the singular point po cannot be moved when parameter u + 0.

(2) If Ylp, # 0, then when parameter u + 0, singular point po is moved, and po be
moved as singular point ¢y~ (po) of X ().

PROOF. (1) We already know that Y|,,, suppose the original equation is not real,
then when u # 0, singular point py is moved, thus we let po moved as the singu-
lar point p, of X(u), X(u)lp, = 0, py # po, 4 # 0. From Lemma 2.3, we know that
WEX () [y (p,) = 0, and by Y|, = 0, we know that H(p,) # po (1 # 0). Let Q be an
elliptic region at the singular point py of X(0), for arbitrary fixed u (0 < |u| < §), it
is sure to have some elliptic trajectory » of X(0), which does not contain the point
of y*(p,) on ¥ and in . Since » has single direction, and there is no singular point
of Y5 X(u) on 7 and in v. By Lemma 2.5, we can know that positive half trajectory or
negative half trajectory of w4 X (1) which pass through the point p will wander about
without a home to go to, where p is any point which passes the inner region of v, this
is a contradiction.

(2) Now we know Y|,, # 0, yet use reduction to absurdity. Suppose, when u # 0, sin-
gular point pg is notmoved, i.e., establish X (1) | ,, = 0, namely we have whX(u) lyh (p) =
0, and @*(po) # po. The method of the proof is completely alike as part (1), we can
prove it is a contradiction. Thus let u # 0, singular point p, is moved as singular
point p, (po # pu) of X(w), ie, YAX(W)lyr (py =0 (1 # 0). If YH(py) # po, the



SINGULAR POINTS AND LIE ROTATED VECTOR FIELDS 185

method of the proof is alike as in part (1), yet it is a contradiction, thus only establish
YH(pu) = po, or py =Y H(po). O

LEMMA 3.7. Let X(u) be a Lie rotated vector field, X(0)l,, = 0, and when pu # 0, po
is moved as the singular point p, (pu # po) of X(u) as p is changed. If Y |,,, = 0, then
for singular point p,, (or po), at least there are a positive half trajectory and a negative
half trajectory of X(u) (or X(0)) to get into it.

PROOF. We only prove the circumstance of point p,, (the proof is completely alike
as the circumstance of point py).

From Lemma 3.6, we know that there is no elliptic region which links with the singu-
lar point py of X (0), the same do the singular point p,, of X(u), and from Theorem 3.1,
we know that the index of p, of X(u) is zero. Take p, as circular center, make the
circumference of a circle [ with radius rather small, and let that hyperbolic region of
point p, which intersects with the circumference of a circle [ has h. By the Bendixson’s
formula in §6 of Chapter 3 of [8], we can immediately find h = 2. O

From Lemmas 3.6 and 3.7, we have the following theorem.

THEOREM 3.8. Let X(u) be a Lie rotated vector field, X(0)|,, =0, and let Y|, =0,
then some singulars while can be moved as parameter u is changed in X (1) only contain
two hyperbolic regions and their index is zero.
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