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ABSTRACT. In archimedean analysis Tauberian operators and operators having property
N were defined by Kalton and Wilansky (1976). We give several characterizations of p-adic
Tauberian operators and operators having property N in terms of basic sequences. And,
as its applications, we give some equivalent relations between these operators and p-adic
semi-Fredholm operators.
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1. Introduction. Throughout this paper, K is a non-archimedean non-trivially val-
ued complete field with a valuation | |. Let E and F be infinite-dimensional Banach
spaces over K. Let L(E,F) stand for the set of all continuous linear operators from E
into F.

In this paper, we say that T € L(E,F) is semi-Fredholm if its range space, R(T),
is closed in F and its kernel, N(T), is finite-dimensional. Further we recall that T €
L(E,F) is Tauberian if x”" € E", T""x" € E imply x”" € E. And T € L(E,F) has a prop-
erty N if x” € E”, T"x" = 0 imply x” € E. If K is spherically complete, then E is
a strongly polar (of course a polar) space, so the natural map Jg : E — E” is a linear
homeomorphism into E” (see [14]). Let A be a subset of E. If E is a polar space and if
A is bounded and closed in E, then A is also bounded and closed in E”’, respectively.
We denote the closure of A in E or E” by A, the weak closure of A in E by A¥ and
the weak* closure A in E” by A¥*. If B is a subset of E’, then we denote the weak*
closure of B by B¥™.

A subset X = {x1,X2,...,Xn,...} of E is said to be a basis for E if every x € E has a
unique representation in the form x = >;;_; ¢t xn (%, € K). And the subset X of E
is said to be t-orthogonal if there exists a real number t, 0 < t = 1, such that for any
integer n and for any o; €K (i =1,2,...,n),

n

Z AiXi

i=1

z tmax {lloax1l,..., | nxnll}. (1.1)

It is known that if X is a basis for E, then there exists a real number £, 0 <t =1, such
that X is t-orthogonal (see [16, page 62]).

A sequence {x,},21 in E is said to be a basic sequence if {x,},=>1 is a basis for its
closed linear span [{x;:i=1,2,...,1,...}]. And a basic sequence {x,},=1 is said to
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be of type I if it is bounded and there exist a real number € > 0 and x’ € E’ such that
|x"(xn)| 2 € for all n.

A point x in E is said to be a weak (weak*) limit point of a sequence {x, },=1 if every
weak (weak*) neighborhood of x contains an element of {x,},=>; different from x. Of
course a weak (weak*) limit point of the sequence is in the weak (weak*) closure of
{x;:i=1,2,...,mn,...}.

Let 7 denote an arbitrary fixed element of K with 0 < || < 1. Other terms and
symbols will be used in [16].

In archimedean analysis, many characterizations of Tauberian, semi-Fredholm op-
erators and operators having the property N are given (e.g., [3, 4, 9]). Some of them
are presented in terms of sequences. In this paper, we give the analogous results
to them. Further, as applications of them, we give that equivalent relations among
those operators.

2. Basic sequences. In this section, we give some results on basic sequences. Before
proceeding our discussions, we first recall the following two theorems.

THEOREM 2.1 (see [8]). If K is spherically complete, then every weakly convergent
sequence in E is norm-convergent.

THEOREM 2.2 (see [19]). Let K be locally compact. If A is a bounded subset of E”',
then A = A¥" and A¥" is weak* compact in E"".

Now we need the following proposition.

PROPOSITION 2.3. Let {x,}n=1 be a sequence in E such that for each n|m| =
Ixn|l = 1. Then {xy,}n21 is a basic sequence if and only if there exists a constant ¢ = 1
so that for any «; € K and for any integers m,n, m < n,

m n
> aixil| S| ouxil|. 2.1)
i1 i

PROOF. Suppose that {x,},=>1 is a basic sequence for its closed linear span [{x; :
i=1,2,...,m,...}]. Then there exists areal number t, 0 < t = 1, such that the sequence
{Xn}nz1 is t-orthogonal. Hence we have

m
> ouxi|| =max (leaxill,..., lotmXml)
i=1
smax (llerxil,..., [&nxnll) (2.2)
1 n
== Z(xixi .
t i=1

Conversely, suppose that there exists a constant ¢ = 1 such that for any «; € K and
for any integers m,n, m < n,

. (2.3)

=c

m
Z XiXi
i=1

n
Z XiXi
i=1
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If we have >.;7; &;x; = 0, then for any € > 0 there exists an integer no such that for
every integer n = ngl|| Z?:l ;x| < €. Hence we have

n

Z XiXi

i=1

loulllxill = ¢ <ce. (2.4)

This implies that &; = 0 and we have Z'f:z aix; = 0. Proceeding with this way, we
can conclude that for every integer n, o, = 0. It follows that if a vector x € E has
a representation in the form x = Zf’:l ®iXi, then this representation is unique. Next,
we show that every x € [{x; :i = 1,2,...,m,...}] has a representation in the form
S aix; (o € K). Let L({xy,}) denote the linear span of {x, :n =1,2,...} and for
each m let P,, denote a linear operator from L({x,}) into itself defined by

by, (ZD(J'XJ) = g:(x,-xi, (2.5)
i=1

where > «;x; denotes a finite linear combination of {x, :n = 1,2,...}. Then it holds
that || P, |l = ¢, so Py, is continuous. It follows that P,, has a continuous linear exten-
sionto [{x,:n =1,2,...}], still called Py,. Further, let x;, (k =1,2,...) be a coordinate
functional defined on L({x»}) by x} (> xjx;) = &x. Let x = > &xjx; € L({xy}). Then
for integer k = 2, we have

/ log| . 1 lowxill 1 [(Pk=Pr1) 0] ~ ¢
=sup = o = —sup - S 2.6
[l2k]| = sup ixl = Tl sup x| - Sup T B (2.6)
Obviously,
, 1 c
x| = =PIl = —=. (2.7)
[T [T

Hence for every integer k, x; € (L({x,}))’. It follows that x; has a unique continuous
linear extension to all of [{x,:n =1,2,...}], still also called x;. By the continuity of
X, Py and their definitions on L({x,}), it is easy to see that for every x € [{x, :n =
1,2,...}]x1 (x)x1 = Pi(x) and x; (x)xg = Pe(x) —Pr_1(x) (k22). Let x € [{xp:n =
1,2,...}] and € > 0 be given. Thus
Pp(x) =P1(x) + (P2(x) = P1(x)) + - - - + (Pn(x) = Py_1(x))
< (2.8)
= > xp(x)xk.
k=1

Then there exist an integer n; and an element y in the linear span of {x1,x>,...,Xn, }
such that [|x —y|| < €. If n 2 ny, then we have

I = Pp(00) Il =max (llx =y I, 1y = P ()11, 1 Pn (3 —x)|I)

’o / (2.9)
=max(&,ce’) =ce'.
This implies that
n
x = lim P, (x) = lim > x},(x)xx, (2.10)
n—oo n—oo

k=1

which completes the proof. O
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COROLLARY 2.4. Every t-orthogonal sequence (0 < t = 1) in a Banach space is a
basic sequence.

PROOF. t-orthogonal sequences satisfy the condition of Proposition 2.3 as shown
in the proof. O

PROPOSITION 2.5. Let E be a strongly polar space and {x,} =1 be a basic sequence
inE. If x € E is a weak limit point of {x,}n=1, then x = 0.

PROOF. Since {x,}n=1 is a basic for [{x, :nn = 1,2,...}], there exists a real num-
ber t, 0 <t =1, such that {x,},=1 is t-orthogonal. For every k define a linear operator

gr:[{xn:n=12,...}]—K (2.11)

by gk (272, ®ixi) = & (s €K, i=1,2,...). Then it holds that | gkll = 1/t. Therefore
gk € [{xn:mn=1,2,...}]. Since E is a strongly polar space, by [12, Theorem 4.2], gk
has an extension linear operator to all of E. Hence we may assume that gy € E’ and
gk(x;j) = Ok;. Since x is a weak limit point of the sequence {x,},=1, we have

gr(x) =limge(xy,,) (k=12,..), (2.12)

where {xk,,};>; is some subsequence of {x,}n=:. But as gi(xx,,) = 0 for kn; > k,
gk (x) =0 for all k. By [12, Corollary 4.9], [{x, :n =1,2,...}] is weakly closed. Hence
x € [{x,:n=1,2,...}]. It follows that x has a unique expansion of the form x =
SoiBixi (Bi€K,i=1,2,...). Hence we have x = 3.7 | gi(x)x; = 0, which completes
the proof. O

THEOREM 2.6. Let E be a strongly polar space and let A be a subset of E. Suppose
that A = A% and let xo € A¥\A. Then there exist a sequence {xy}nz1 in A and x;, € E’
which satisfy the following conditions.

(1) limy, -~ X0 (x0) = X (x0) and |x4(x0)| Z lIxoll /2.

(2) {xn —x0}nz1 Iis a basic sequence.

(3B)Ifxg+0,then xo ¢ [{xn—x0:n=1,2,...}].

PROOF. Choose three sequences {7y }n=0, {Sn}nzo0, and {t;},20 in R (the set of real
numbers) with the following properties:
i O<rp<lforaln=zo0,
(ii) whenever 1 £ p < g < oo, H‘}:";(I -7 >1-7y,
(iii) 0 <sy <1y forallm =0,
@iv) tn,=(1—-7,)/(1—s5sy,) forall n = 0.
Take any x;, € E’ such that |x;(x0)| Z I|xoll/2. Since xo ¢ A, there exists a real number
6 > 0 such that for every z € A, ||z — x¢ll 2 6. By hypothesis, there is a y; € A such
that

| x4 (1) —x0(x0) | < 1. (2.13)

Set E; = [{v1—x0}] =[{a}], where a is an element of [{y; —xo}] with || = [lal| =1
for 1T referred to in the introduction. For every x € E1, x = Aa (A € K), let x7(x) = A.
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Then we have

1

_ (2.14)
lall

lIxill =

Hence x| € E;. Since E is a strongly polar space, for every € > 0, x; has an extension
X1 € E’ such that

11 = o @.15)
By hypothesis, there is a y» € A such that
X2 = xp0x0) | < 50 |XG () =¥ (x0) | < sl 2.16)
Now, we show that for every x € E; and for every & € K,
[Ix + & (v2 = x0)[| > t1 (1 = s1) llx [l (2.17)
Towards this end it is sufficient to show that
lla+a(y2=xo)|l > tr(1=s1)llall. (2.18)
If |x| =1/, then we have
lla+ (2 —x0)|| = |X71(11+0<(73/2 — o)) |
[Ix1 ]
= L {Ix @] -l X (32 - x0) ) 219)
[l ]
12l -simh) 2 = (-s)lall.
Since ¢ is arbitrary, we have
lla+a(y2=x0)|| > (1=s1)llall z t1(1-s1)llal. (2.20)
If || > 1/6, then |x|]|y2 — xoll > 1. Since ||a]| = 1, we have
[la+a(y2—x0)|| = lll|y2—x0l| > llall Z t: (1 -s1) llall. (2.21)

Thus, for every o« € K, (2.18) is proved.
Next, set E> = [{y1 — X0, V2 —Xo}]. Then E, is two dimensional. Hence there exist
by,b, € E> such that E; = [{by,b>}], |TT] = ||bi]| =1 (i =1,2) and for every A,u € K,

Ay + ub|| = tomax (|Aby |, [l ub2l) (2.22)

(see [16, page 66]).
For every x € E», x = Aby + uby, let y;(x) = A and y5(x) = y. Then we have

1 1
! S i
el P2E e

1] = (2.23)
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This means that y;,y} € E5. Hence, for every € > 0, v and y; have extensions y; and
3, respectively, such that

A EFA T A E e (224
By hypothesis, there is a 3 € A such that
|x0(>v3) = xg(x0) | < % (2.25)
and
|71 (v3) =i (x0) | <8s20mtl,  [>3(v3) = va(x0) | < 8salml. (2.26)
We wish to show that for every x € E> and for every @ € K,
IIx + (3 = x0) || > £2(1 = s2) lI . (2.27)

We may assume that |mr| = ||x]|| = 1. Let x = Ab; + ub> (A,u € K). Suppose that
max([[Ab[l, |ub2|l) = |Aby|l. Then t2[|Aby || = |Ix|| = |Aby]l. If || = 1/6, then we have

(x) + &y (3 —x0) |

I+ s —xo)l 2 121

A
_ 1y [ =l [y (ys —xo) |
1]l
t2[|b1ll (2.28)
> 2 (Al =slmr))
= 1+E(”Ab1” s2|mllby )
t>
>_"2 (1-
= 1+g(1 s2) llx1l.
Since ¢ is arbitrary, we have
[l + (3 — x0)|| Z t2 (1 —s2) llx]l. (2.29)

If || > 1/6, then |x|||y3 —xoll > 1. Since ||x|| =1, we have
llx +ax(y3—x0)|| = l&lll 3 = x0ll > 1> t2(1-s2) [l x| (2.30)

Hence, in the case max(||Ab.|l,|ub2ll) = ||Ab1]|, we showed the inequality (2.27). If
max(|[Ab1]l, l|ub2ll) = [|ub2||, then in a similar fashion, we can also show the inequality
(2.27). Thus, for every A1,A2,A3 € K we have

[[A1 (1 = x0) + A2 (2 —x0) + A3 (3 —x0) || Z t2(1 = 52)[[A1 (31 — x0) + A2 (2 — x0)||

2 ta(1—s2)t1 (1 —s1)[|A1 (71 — x0) |-
(2.31)

Proceeding thusly, we find a sequence {y,},21 in A such thatalln = 1

7 14 1
|x0 () =xp(x0) [ < (2.32)
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and for which given 1 = p < g < o and &, &o,...,x; €K,

Z

>tq1]. Sql

St

= tq_]tq_z e tp(l—Sq_])(l—Sq_z) e (I—Sp)

=(1-714-1)(1-74-2) - (1=7p)

g0

14

Z i (vi—xo)||-

i=1

> (1—1’0)

(2.33)

By Proposition 2.3, the sequence {y; —Xo}nz1 is basic. Now, we wish to show that

e

[{yk —x0, Yks1 —X0,...}] = {0}. (2.34)
k

1

To this end, suppose that there exists a non-zero element x in (\_; [{Vk — X0, Vk+1 —
Xo,...}]. Take a real number &; such that O < &; < ||x]||. Then there exist &«;, &>,..., Xy,
Xn+1,-..,&j € K such that

2

1
||X—0<1(3’1—X0)—0(2(3’2—x0)—'"—O(n(yn—xo)H < &1,

. (2.35)

1
||X_(X1’L+1(yn+1 —XO) _O(n+2(yn+2—x0) - _(Xj(yj_XO)H < &1.

Hence, we have

—7
5 Qer > [lor (71 —X0) + - - - + O (¥ — X0) + Qo1 (Vns1 —X0) + - -+ & (v — x0) |

> (1—70) |1 (¥1—x0) + 02 (172 = X0) + - - - + &t (n — X0) ||

=(1-7)llxll > (1-7y)e€;.

(2.36)
This is a contradiction and we showed that
ﬁ [{>k = x0, ik+1 = X0, }] = {0} (2.37)
k=1
Hence there exists m such that
x0 & [{m = X0, Ym+1—x0,... }]. (2.38)

Thus, for every positive integer n we put x,, = Ym+n, then the sequence {x,},=; is
the required sequence, which completes the proof. O

From now on we assume that K is locally compact. Then we recall that every Banach
space is strongly polar.
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THEOREM 2.7. Let B be a subset of the dual E' of E. Suppose that B + B¥" and let
Xy € BY"\B. Then there exist a sequence {x,}n>1 in B and x, € E which satisfy the
following conditions:

(1) limy, ~ o0 X7, (x0) = x4 (x0) and |xg(x0)| Z lIxgll/2.

(2) {x;, — x(}nz1 is a basic sequence.

(3) If x(, =0, then x ¢ [{x;, —x,:n=1,2,...}].

PROOF. The proof is similar to the archimedean case (e.g., [1]). Choose a sequence
{rn}nz1 in R with the following properties:
i) O<rp<1lforallmn=1.
(ii) Whenever 1 =p <q < o, ?;;(l—n) >1-71.
Take any xo € E such that |x((xo)| Z |Ix;ll/2. Since x; ¢ B, there exists a real number
6 > 0 such that for every z' € B||z’ — x|l 2 6. By hypothesis, there is a y; € B such
that

| 1 (x0) —x0(x0) | <1. (2.39)

Set F1 = [{] —x(}]. Then F, is the one-dimensional subspace of E’. Since K is locally
compact, the subset

Bi={xeF:|ml x| =1} (2.40)

is compact, so we can pick a 11|7|/3 net ay,a;, ..., ay, for By. Take x1,x2,...,Xn(1)
in E such that for all i |r| = ||x;|| =1 and

laitel (1—%)”61;” (i=1,2,...,N(1)). (2.41)

il

By hypothesis, there is a v, € B such that

|5 (x0) ~ x5 (x0) | < 3,

2
2.42
’ ’ 5TI|7T|2 ’ ’ 6Tl|7T|2 ( )
| s (x1) —x0(x1) | < 3 |5 (enay) —x0(envan) | < 3
We wish to show that for every x’ € E’ and for every « € K,
[Ix"+ (35 = xg) [ > (1 =71) ||x"]]. (2.43)

We may assume that 77| = [|x’]| = 1. Suppose that || = 1/6. There exists an a; such
that

(2.44)
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This means that ||x’[| = ||la;|l. We have
4 14 ! 1 4 4 4
e+ s =) | 2 o '+ e =) ()|
1
1 ’ 7 ’ ! ’
= ||x'||{~a’l(xl)| - |cx(y2—x0)(xi)|—||xi||||x _aiH}
1
1 rl) , 167r|ml2 |l
1—-—= / - = _
> e 1075 ) laillbedl— 5 275 - P
il nml , ,
2 (1= flagl - 2 - T = -l = (1= )
3 3 3
(2.45)
If || > 1/6, then |«x|lly; —xgll > 1. Since [|x'|| = 1, we have
1"+ (3 = x0) | = Texl |25 = x| > [[x"[| > (1 =71) [[x|]. (2.46)
Hence for every x’ € E’ and for every & € K the inequality (2.43) holds. Set
Fp = [{y1 —x0,05 = x0}] (2.47)
and
By={x'eF:|m| =||x'||=1}. (2.48)

Then B, is compact. Hence we can pick a 72|1|/3 net bj,by,...,by,, for B. Take
Y1,¥2,---,¥YN(2) Iin E such that || = ||yl =1 and

ATV
s E (1R ) Il (=12 N @), (2.49

By hypothesis, there is a 5 € B such that

4 4 1
| 5 (x0) = x0(x0) | < 3

4 7 6,’/' |7T|2 7 4
|v3 (1) =x6(01) | < ZT o [3(rne) = x0(Wnv@) | <

s (@50

3

In a similar fashion to the above proof, for every x’ € E’ and for every & € K we can
obtain the following inequality:

[Ix" + (3 =xg) || > (1 =72)[|x"]]. (2.51)

Thus, proceeding this way, we find a sequence {y;,} =1 in B such that for all n = 1,

, 1
| v (x0) —x((x0) | < P (2.52)

and for which given 1 = p < g < c0 and &, oz,...,&; in K,

o (v —xq) (2.53)

p
=1

1< C
< — (v — .
: 1_1/0 izzlal(yl XO)

1

In a similar argument to the proof of Theorem 2.6, we can conclude that there exists
a sequence {x;,},>1 in B which satisfies the given conditions. O
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The next corollary follows immediately from Theorem 2.7.

COROLLARY 2.8. Let A be a subset of E. If x| € E" is a point of A¥" in E” such
that x; ¢ A, then there exists a sequence {Xy}nz1 in A and x{, € E' which satisfy the
following conditions:

(1) limy, .o X (xn) = X0 (%) and |xq (xg)| 2 11x¢11/2.

(2) {xn—x{ }n=z1 s a basic sequence in E"'.

(3) Ifxy #0, thenxy ¢ [{xn—x5 :n=1,2,...}].

Further we have the following corollary.
COROLLARY 2.9. Let {xy,}n>1 be a sequence in E such that

0< inllf x5l = sup l[xp |l < co. (2.54)
n

Then the following statements are equivalent.
(1) {xn}nz1 contains a basic subsequence.
(2) {xn}nz1 contains a basic subsequence of type l*.
(3) W:; 1 Is not weakly compact.

PROOF. (1)=(3).Let {xy,}iz1 be abasic subsequence of {xy}nz1.Since 0 <inf, [|xx |,
{xn,;}iz1 does not contain a norm-convergent subsequence, so does not contain a
weakly convergent subsequence. Hence by [5], {Tnl}gl is not weakly compact, so
{XnTn=, is not. The implication (2)=(1) is trivial.

(3)=(2).Since {Jg(xy,) :n=1,2,...} isabounded subsetin E”, {Jg (x5 ) :n:1,2,...}w*
is weak™ compact. Hence by hypothesis, there exists a weak™* limit point po of {Jr(xy,) :
n=1,2,...} such that pg € E"\Jg(E) C E"\[{Jg(xyn) : m=1,2,...}]. Hence by Corol-
lary 2.8, there exist a subsequence {Jg(xn,)}kz1 of {Jg(xn)}nz1 and X € E’ with the
following conditions:

(@) limy .o JE(xn, ) (Xg) = pol(xg) and |po(x))| Z [Ipoll /2.

(i) {Je(xn,) —polkz1 is a basic sequence.

(i) po & [{Je(xn,) —po:k=1,2,...}].

Put
Z = [{po,Je(xn, ), Je(Xny),-.. 1],
Zy = [{Je(xny) sk =1,2,...}], 2.55)
Zy = [{Je(xn,) —po:k=1,2,...}].
Then

Z=21€B[po] =Zz€B[po]. (2.56)

Let P and Q be projections from Z onto Z; and Z», respectively. Then P|,, is an
isomorphism from Z» onto Z1, so it is homeomorphic. By virtue of P(Jg(xy,) —po) =
Je(xw,) (k=1,2,...), {Je(xy,) :k=1,2,...} is a basis for Z;. Since it holds that

lIpoll
>
= 12, (2.57)

{xn, }kz1 contains a basic sequence of type I*. Thus we complete the proof. O

[po(xs) | = |limxj (x,)
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3. Tauberian operators. Now we give characterizations of Tauberian operators and
related operators by using a basic sequence. Let B = B1(0) and Bgr = {x"" € E" :
Ix""|| =1}. Before we proceed to our main results, we show the following proposition.

PROPOSITION 3.1. Let T € L(E,F). Let {xy,}n=1 be a bounded basic sequence such
that {Txy}nz1 IS basic. If {Tx,}n=1 converges, then so does {x,}n=>1.

PROOF. At first we note that if a basic sequence converges, then its convergent
point is zero. Suppose that {x;},>1 does not converge. Then we may assume that
there exists a real number 6 > 0 such that for every n (n =1,2,...) ||x,ll 2 6. Since
{Xn}nz1 does not converge weakly to zero, there exist a real number ¢ > 0, x, € E’
and a subsequence {xy, }x=1 of {xy}n=1 such that Ix(’)(xnk)l 2g>0(k=1,2,...). Set

Yie= (%0 (xn) xm, (k=1,2,.00). 3.1)

Then {yy}k=1 is a basic sequence and

o = vl = (k=1,2,...). (3.2)

5 !
A €
Hence {Tyy}k=1 is a bounded basic sequence in F. Put E; = [{yx: k =1,2,...}]. Let
{fx:k=1,2,...} C E] be a biorthogonal functional sequence to {y}k=1. Since there

exists a real number t, 0 <t =1 such that {yy}xz1 is t-orthogonal, it holds that

||fk||§% (k=1,2,...). (3.3)
Therefore, {fy : k = 1,2,...} is bounded. Put Ty = Tlg,, zi = T1 () (k = 1,2,...)
and F; = [{zx: k =1,2,...}]. Then {zy}k=1 is a basis for F;. Let {gx: k =1,2,...} C
F| be a biorthogonal functional sequence to {zx}rz1 and let g (k = 1,2,...) denote
an extension of gy to F. Then it follows that T gx = fk. Let x’ be any element of
Ey. Put x'(yx) = Bk (k=1,2,...) and x, = >¢_; Bxfx- Then x’ = w* —lim, x;,. Set
z), = >k fr. Since x((vx) =1 (k=1,2,...), {z},}nz1 is weak* convergent to x; in E;.
Hence x(, is weak* limit point of {T; (22:1ﬁ)}n;1. Let C be a closed absolutely convex
hull subset of {fx:k =1,2,...} in E{. Then C is a bounded closed subset such that
xy € C¥". Hence C¥* = C c T{(F’) C E'. Now take go € F’ with || T} (go) — xoll < &/2.
Then

sup [(T1g0) ) =xo(v) | _ € (3.4)
k [l 2
Therefore
lgo(zx) 1] ¢
sup —————r—— < —. (3.5)
& bl T2
Since for all k (k=1,2,...),
1 (3.6)

— >,
vl
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it holds that

1
|90(21) = 1] < 5. (3.7)

While, it holds that
lim | go(2¢) | = lim [|goll[| T
) , -1
= [lgol[1im |5 () | [T, (3.8)

= & H|goll lim || Txn || = 0.

This is a contradiction to the above, and so {x;,},>1 converges to zero. O

COROLLARY 3.2. Let T € L(E,F). Let {x,}n=1 be a basic sequence such that 0 <
infy, [|xn ]l = sup, |xnll < . If {TxXn}n=1 is basic, then {Tx,}nz1 does not contain a
convergent subsequence.

The next proposition is obtained by [4] in the case of archimedean analysis.

PROPOSITION 3.3. Let T € L(E,F). The following statements are equivalent.
(1) T is Tauberian.

(2) T has property N and T (Bg) is closed.

(3) T has property N and T (Bg) C R(T).

PROOF. (1)=(2). Let ¥ € T(Bg). Then there exists a sequence {x;,},=>1 in Bg such
— ¥
that {Tx,},=1 converges to Y. Since BEw is weak* compact subset, {x;,},>1 contains
a weak* convergent subsequence, call it {x;},>1 again. Let x = w* —lim,, x;,. Then

T'x=w*-1mT"x, =w* - 1lim Tx,. (3.9)

Nn—oo n—oo
Hence T”x = v € E. By hypothesis, we have x € E. It follows that Tx = y. And
by Theorem 2.1,

X =w - lim x, = lim x,,. (3.10)

Nn—oo n—oo

Hence ||x|| = 1. This means that v € T(Bg), so T(Bg) is closed. Obviously (2)=(3). We
now show that (3)=(1). Suppose that T’z € F and z € E”’. We may assume |/z| = 1.
Then there exists a net S C Br such that S is weak* convergent to z. Then a net
{T"”(S)}, equal to {T(S)}, is weak* convergent to T"'z. Hence z € mw*. Since
mw* =T(Bg)in F” and T’z € F, z € T(Bg) in F. So by hypothesis, it follows that
Tz € T(E). Hence there exists a w in E such that T”’ (z—w) = 0. Since T has property
N, it follows that z € E, and so T is Tauberian. O

Combing [6, Theorem 6] and Proposition 3.3, we obtain the following corollary.

COROLLARY 3.4. Let T € L(E,F). The following statements are equivalent.
(1) T is Tauberian.

(2) T has property N and R(T) is closed.

(3) T is semi-Fredholm.

And combing Proposition 3.3 with Corollary 3.4, we obtain the following corollary.
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COROLLARY 3.5. If T € L(E,F) has property N, then T (Bg) is closed if and only if
R(T) is closed.

THEOREM 3.6. Let T € L(E,F). Then the following statements are equivalent.

(1) T has property N.

(2) Let {xyn}nz1 be a bounded sequence in E. If {Tx,},21 converges to zero, then
{xn}nz1 contains a convergent subsequence.

PROOF. Suppose that T has property N.If z € E” is a weak* limit point of {x, },=1,
then

Tz = %1111 T xp = }lim Tx, =0. (3.11)

Hence z € E. This implies that {x, :n = 1,2,...}“1* C E. Therefore, {x,,:n=1,2,...}1is

weakly relatively compact in E, so, by [5], it is weakly relatively sequentially compact
in E. Thus {x,},21 obtains a convergent subsequence. Conversely, let z€ E"", Tz =
0. We may assume that |[z|| = 1. Since K is locally compact, by the same argument
used in archimedean analysis (see [1] and [19]), we have Bg» = BT;w* in E”, where
Bpr = {x" € E” :||x"|| £ 1}. By Theorem 2.2, it holds that B~ = Bg in E”’. Hence there
exists a sequence {x;,}y=1 in Bg such that z = lim, x, in E”’. Hence we have in F"

0=T"z= 71115{)10 T 'xp = 7lllzrolo Txnp, (3.12)

so 0 = w —lim,, Tx, in F. By Theorem 2.1, {Tx,},=1 converges to zero. Therefore,
by assumption, {x,},z1 contains a convergent subsequence, say it {xy, }x=1. Let a =
limy x5, . Then we have a = z, and so z is in E. Hence T has property N. O

COROLLARY 3.7. Let T € L(E,F). The following properties are equivalent.

(1) T has property N.

(2) For every basic sequence {x,}n=z1 with 0 <infy, ||xy|l = sup, lIxull < 0, {Txn}nz1
does not converge to zero.

PROOF. (1)=(2).If {Txy,},=1 converges to zero, then by Theorem 3.6, {x;,},>1 con-
tains a convergent subsequence. Since {x,},z1 is basic, so is the subsequence. Hence
it converges to zero, but this contradicts to the condition 0 < inf}, ||x;, ||

(2)=(1). Let {z; } n=1 be a bounded sequence for which {Tz, },>; converges to zero.
Suppose that all subsequences of {z,},=1 do not converge, so they do not converge
weakly and we can assume that 0 < infy, ||z, || = sup,, |zxll < «. Hence by [5, The-
orem 2.3], {z,:n= 1,2,...}‘” is not weakly compact. From Corollary 2.9, it follows
that {z,}xz1 contains a basic subsequence {zy, }rz1 of type I*. Hence by hypothe-
sis, {Tzy, }k=z1 does not converge to zero. But this is a contradiction to our assump-
tion. Thus we conclude that {z,},>1 contains a convergent subsequence. By virtue
of Theorem 3.6, T has property N. O

Finally, by using Corollary 3.4 and [7], we can obtain a characterization of Tauberian
operators in terms of basic sequences and precompact subsets. (We recall that for
locally compact K, a compactoid subset means the same as a precompact subset.)
This corollary is analogous to Corollary 3.7 which is a characterization of operators
having property N.
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COROLLARY 3.8. Let T € L(E,F). The following statements are equivalent.

(1) T is Tauberian.

(2) For every basic sequence {xy, } =1 with 0 <inf,, ||[x,|l,{Txn}nz1 does not converge
to zero.

(3) Let D be a bounded subset of E. T (D) is precompact if and only if D is precompact.
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