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ABSTRACT. A sequence in an abelian group is called a T-sequence if there exists a Hausdorff
group topology in which the sequence converges to zero. This paper describes the funda-
mental system for the finest group topology in which this sequence converges to zero.
A sequence is a To-sequence if there exist uncountably many different Hausdorff group
topologies in which the sequence converges to zero. The paper develops a condition which
insures that a sequence is a Tg-sequence and examples of Tg-sequences are given.
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1. Introduction. Let G be an abelian group and let (a,);_; be a nontrivial sequence
in G. If 0 is the identity element in G, we can ask what is the finest group topology
on G such that (a,),_; converges to zero? In the terminology of [2], we are placing
the topology of a nonconstant sequence on the subspace {a,},_; U {0} < G and find-
ing the associated Graev topology. When this topology is Hausdorff, Zelenyuk, and
Protasov [4] say that (a,);_; is a T-sequence. The purpose of this paper will be to ex-
tend some of the results of Zelenyuk and Protasov concerning T-sequences in specific
abelian groups. We will develop a fundamental system approach to defining group
topologies and use this approach to consider the cardinality of the set of Hausdorff
group topologies in which a specific sequence converges to zero. This extends results
found in [1].

We assume as additional hypothesis throughout this paper that G is an abelian
group and that each sequence under consideration is a one-to-one function from the
natural numbers N into G. Also the notations Z, Q, R, and S* will denote the integers,
rationals, real, and the circle group, respectively. The subgroup of S which is the set
of solutions of the form k/p™, where k € Z, p is prime and n € N, we will denote it as
Z(p*).

2. Fundamental systems generated by sequences. Since G is abelian it is possible
to define various fundamental systems in a subgroup and use them as a fundamental
system for the entire group. We shall use the terms of the sequence (a),,_; to define
such a fundamental system for the subgroup generated by {a,},_,. Let T(n) = {0} u
{axty_, U i—ak}y_,, where —ay denotes the inverse of ax in G, and let T denote the
collection of all increasing sequences in N. Then for C,D € C we define U(C,D) =
{g1+g2+---+gxlgi€ciT(d;) forie{l,2,...,k}; k € N}.

PROPOSITION 2.1. & = {U(C,D) | C,D € C} is a fundamental system for G.
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PROOF. Suppose that U(C,D) and U(C’,D’) are elements of %. For each i € N let
¢” =min{c;,c;} and d”" = max{d;,d;}. Define C"" = (¢;" )2, and D" = (d})$,. Clearly,
both C"”,D"” € . Since ¢, T (n) < c2T(n) whenever ¢, < ¢2 and T(n) < T (m) whenever
m < n, we have that ¢;'T(d}) < ¢;T(d;) Nnc;T(d}). Therefore we have U(C",D") <
UC,D)nU(C',D").

Now suppose x € U(C,D). Then x = g, + g» + - - - + gk for some k € N and each
gi €ciT(d;) forie {1,2,....,k}.If C' = (Ck+1,Ck+2,...) and D" = (dy+1,dk+2,...) then
x+U(C',D")<U(C,D).

Let U(C,D) € %. For each i € N we define

2 if ¢»; is even,
c;= o (2.1)
if ¢»; is odd.

If C" = {(c;) then C’' € € since C € €. Also we have that 2¢’ < ¢; for all i € N. De-
fine D’ = (dy;). Then for each i € N we have that 2¢;T(dp;) < ¢2;T(d;) and hence
2U(C',D") < U(C,D).

Finally, we note that since U(C,D)~! = U(C,D), % is a fundamental system. O

PROPOSITION 2.2. The group topology generated by F is the finest group topology
on G for which {ay,);,_-, converges to zero.

PROOF. Let T be any group topology on G for which the sequence (ay);,_, con-
verges to zero and let 0 € W € T. We inductively define a sequence of open sets in T,
say V1,Va,...,with 0 € V; for all i, 2V, < W, and in general (n+1)V,, < V,,_; for n > 2.
We also may assume that each V; is symmetric.

For any k € N we have that V; +2V, + - - - + kVi € W. Since (a,);-; converges to
zero in T, we can find a tail of the sequence in V;. We choose d; € N so that T(d;) € V;
and d; > max{di,...,di_1}. Then we have that kT (d;) < kVy and for D = (d;), we have
that UN,D) = W.

The technique used in Proposition 2.1 can be used to show that various subcollec-
tions of & are also fundamental systems for G. For example if D = (d;) € € and for
k e N, Dy = (dyi), then ¥ = {U(C,Dy) | C € T, k € N} will also form a fundamental
system. O

To-SEQUENCES. Shelah [3] constructs an example of a nonabelian group that admits
only the discrete and indiscrete topologies as group topologies. Certainly, the constant
identity sequence in Shelah’s group will be a T-sequence which converges in a unique
Hausdorff group topology. On the other hand, the sparse sequences in Q described
in [1] are shown to converge to the identity in uncountably many different Hausdorff
group topologies. We will call any such sequence a Tg-sequence. As we shall see in
this section, many sequences in abelian groups are actually To-sequences.

Our search for To-sequences will require that we focus our attention on various sub-
collections of the fundamental system described in Proposition 2.1. To refine our no-
tation we define for D = (d,) € T, U({dn)) = {>",9i 1 gi € T(d;) fori € {1,2,...,n}
and n € N} and Fp = {U({dkn)) | k € N}. Using techniques similar to those used in
Proposition 2.1, it can be shown that %p, is a fundamental system for G.
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We will also focus on a subcollection of €. For each ¢ € R with ¢ > 2 we define
cn = [n€], the greatest integer in n¢. Clearly C = (c,);-; € C.

LEMMA 2.3. If c,d are real numbers with 2 < ¢ < d and if k € N then we can find
Ny € N such that for m = Ny, Ckm + M < dyy,.

PROOF. We can find Ny € N such that for m > N; we have that k¢ +2 < m4-—¢,
Hence [(km)¢]+m < [m4] and thus cxm +m < d, for all m > Ny. O

DEFINITION 2.4. LetS<G.ForneNand g € G we say that g has an n-factorization
in S if and only if there exits {si,...,s,} = S — {0} with g = sy + 52+ - -- + 5. The
factorization is favorable if and only if —s; & {51,52,...,5i-1,Si+1,-++,Sn}-

PROPOSITION 2.5. Let {(a,)S_, be a sequence in G and S = {3, gi | gi € T(i) for
l<i<nandneN} If
(1) every element of S has only finitely many favorable factorizations in S;
() ifa=31",a; for some n,m € N, then a has no other favorable factorizations
inS;
then the sequence {an)y-, is a To-sequence.

PROOF. For any sequence D = (dy);_; € C we have that U({(dn);_;) € S. So by (1)
we have that for every g € S there exists a k € N such that no favorable factorization of
g in S has a factor in T'(k). Hence g & U ({dn);-;) and thus %p generates a Hausdorff
group topology.

Now choose C = (cyp)p-; and D = (dy ), in € with the property that for each k € N
there exists Ny € N such that cxm + m < dyy, for all m = Ni.. Suppose that U({dn)n-1)
is open in the topology generated by %.. Then there exists a k such that U ({ckn);_-1) S
U({dn)y-1)- We have that a = Zjiv:"l Acpy, +i € U({Ckn)p-1)- But by (2) and the fact that
ckn, + Nk < by,, we must conclude that a ¢ U({dy);_;). Hence the group topology
generated by ¥, is different from the group topology %p. By Lemma 2.3 we can find
uncountably many different Hausdorff group topologies on G with the property that
{an)p-; converges to zero. O

EXAMPLE 2.6. Let (p"),_, be the sequence of powers of the prime p in Z. (p™);_;
is a To- sequence.

EXAMPLE 2.7. Let k € N and let (a,);,_; be an increasing sequence in Z satisfying
the inequality a,1/a, > n/k for all n. For n > 2k we have that > an1i < Anim+1
for each m € N. Hence (a,);_; is a To-sequence.

EXAMPLE 2.8. Let Z € Z(p*). The order of Z is p" if Z is a p™-root of unity but
not a p"~!-root of unity. We denote the order of Z by O(Z). Now if O(Z) = p™ and
O(w) = p™ and m < n we have that O(Zw) = p™. Let (Z,),_; be a sequence in Z(p*)
satisfying

O(Zpn+i) = p™™O(Zynii-1) foralln e N and for 0 <i<p. (2.2)

By Proposition 2.5, (Z,)5-; is a To-sequence.
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EXAMPLE 2.9. Consider R as the direct sum of uncountably many copies of Q. If
(rn)n-1 is any sequence of linearly independent real numbers, then (r,);,_, is a To-

sequence.

We end this paper with a question. Does there exist a nontrivial sequence in a group
G which is a T-sequence, but not a T-sequence?
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