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Abstract. We consider the intuitionistic fuzzification of the concept of subalgebras and
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1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [9]
several researches were conducted on the generalizations of the notion of fuzzy sets.
The idea of “intuitionistic fuzzy set” was first published by Atanassov [1, 2], as a
generalization of the notion of fuzzy set. The first author (together with Hong, Kim,
Kim, Meng, Roh, and Song) considered the fuzzification of ideals and subalgebras
in BCK-algebras (cf. [3, 4, 5, 6, 7, 8]). In this paper, using the Atanassov’s idea, we
establish the intuitionistic fuzzification of the concept of subalgebras and ideals in
BCK-algebras, and investigate some of their properties. We introduce the notion of
equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra
and investigate some related properties.

2. Preliminaries. First we present the fundamental definitions. By a BCK-algebra
we mean a nonempty set X with a binary operation ∗ and a constant 0 satisfying the
following conditions:
(I) ((x∗y)∗(x∗z))∗(z∗y)= 0,
(II) (x∗(x∗y))∗y = 0,
(III) x∗x = 0,
(IV) 0∗x = 0,
(V) x∗y = 0 and y∗x = 0 imply that x =y

for all x,y,z ∈X.
A partial ordering “≤” on X can be defined by x ≤ y if and only if x ∗y = 0.

A nonempty subset S of a BCK-algebra X is called a subalgebra of X if x ∗y ∈ S
whenever x,y ∈ S. A nonempty subset I of a BCK-algebra X is called an ideal of X if

(i) 0∈ I,
(ii) x∗y ∈ I and y ∈ I imply that x ∈ I for all x,y ∈X.

By a fuzzy set µ in a nonempty set X we mean a function µ : X → [0,1], and the
complement of µ, denoted by µ̄, is the fuzzy set in X given by µ̄(x)= 1−µ(x) for all
x ∈X. A fuzzy set µ in a BCK-algebra X is called a fuzzy subalgebra of X if µ(x∗y)≥
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min{µ(x),µ(y)} for all x,y ∈ X. A fuzzy set µ in a BCK-algebra X is called a fuzzy
ideal of X if
(i) µ(0)≥ µ(x) for all x ∈X,
(ii) µ(x)≥min{µ(x∗y),µ(y)} for all x,y ∈X.
An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having

the form

A= {(x,αA(x),βA(x)) | x ∈X
}
, (2.1)

where the functions αA : X → [0,1] and βA : X → [0,1] denote the degree of member-
ship and the degree of nonmembership, respectively, and

0≤αA(x)+βA(x)≤ 1 ∀x ∈X. (2.2)

An intuitionistic fuzzy set A= {(x,αA(x),βA(x)) | x ∈X} in X can be identified to
an ordered pair (αA,βA) in IX×IX . For the sake of simplicity, we shall use the symbol
A= (αA,βA) for the IFSA= {(x,αA(x),βA(x)) | x ∈X}.

3. Intuitionistic fuzzy ideals. In what follows, let X denote a BCK-algebra unless
otherwise specified.

Definition 3.1. An IFSA= (αA,βA) inX is called an intuitionistic fuzzy subalgebra
of X if it satisfies:
(IS1) αA(x∗y)≥min{αA(x),αA(y)},
(IS2) βA(x∗y)≤max{βA(x),βA(y)},
for all x,y ∈X.

Example 3.2. Consider a BCK-algebraX={0,a,b,c}with the following Cayley table:

∗ 0 a b c

0 0 0 0 0

a a 0 0 a

b b a 0 b

c c c c 0

Let A= (αA,βA) be an IFS in X defined by

αA(0)=αA(a)=αA(c)= 0.7> 0.3=αA(b),

βA(0)= βA(a)= βA(c)= 0.2< 0.5= βA(b).
(3.1)

Then A= (αA,βA) is an intuitionistic fuzzy subalgebra of X.

Proposition 3.3. Every intuitionistic fuzzy subalgebra A = (αA,βA) of X satisfies
the inequalities αA(0)≥αA(x) and βA(0)≤ βA(x) for all x ∈X.

Proof. For any x ∈X, we have

αA(0)=αA(x∗x)≥min
{
αA(x),αA(x)

}=αA(x),

βA(0)= βA(x∗x)≤max
{
βA(x),βA(x)

}= βA(x).
(3.2)

This completes the proof.
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Definition 3.4. An IFSA= (αA,βA) in X is called an intuitionistic fuzzy ideal of X
if it satisfies the following inequalities:
(IF1) αA(0)≥αA(x) and βA(0)≤ βA(x),
(IF2) αA(x)≥min{αA(x∗y),αA(y)},
(IF3) βA(x)≤max{βA(x∗y),βA(y)},
for all x,y ∈X.

Example 3.5. LetX = {0,1,2,3,4} be a BCK-algebra with the following Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

Define an IFSA= (αA,βA) in X as follows:

αA(0)=αA(2)= 1, αA(1)=αA(3)=αA(4)= t,

βA(0)= βA(2)= 0, βA(1)= βA(3)= βA(4)= s,
(3.3)

where t ∈ [0,1], s ∈ [0,1], and t+ s ≤ 1. By routine calculation we know that A =
(αA,βA) is an intuitionistic fuzzy ideal of X.

Lemma 3.6. Let an IFSA = (αA,βA) in X be an intuitionistic fuzzy ideal of X. If the
inequality x∗y ≤ z holds in X, then

αA(x)≥min
{
αA(y),αA(z)

}
, βA(x)≤max

{
βA(y),βA(z)

}
. (3.4)

Proof. Let x,y,z ∈X be such that x∗y ≤ z. Then (x∗y)∗z = 0, and thus
αA(x)≥min

{
αA(x∗y),αA(y)

}

≥min{min{αA
(
(x∗y)∗z),αA(z)

}
,αA(y)

}

=min{min{αA(0),αA(z)
}
,αA(y)

}

=min{αA(y),αA(z)
}
,

βA(x)≤max
{
βA(x∗y),βA(y)

}

≤max{max{βA
(
(x∗y)∗z),βA(z)

}
,βA(y)

}

=max{max{βA(0),βA(z)},βA(y)
}

=max{βA(y),βA(z)
}
,

(3.5)

this completes the proof.

Lemma 3.7. Let A= (αA,βA) be an intuitionistic fuzzy ideal of X. If x ≤y in X, then

αA(x)≥αA(y), βA(x)≤ βA(y), (3.6)

that is, αA is order-reserving and βA is order-preserving.
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Proof. Let x,y ∈X be such that x ≤y . Then x∗y = 0 and so
αA(x)≥min

{
αA(x∗y),αA(y)

}=min{αA(0),αA(y)
}=αA(y),

βA(x)≤max
{
βA(x∗y),βA(y)

}=max{βA(0),βA(y)
}= βA(y).

(3.7)

This completes the proof.

Theorem 3.8. If A = (αA,βA) is an intuitionistic fuzzy ideal of X, then for any
x,a1,a2, . . . ,an ∈X, (···((x∗a1)∗a2)∗···)∗an = 0 implies

αA(x)≥min
{
αA
(
a1
)
,αA

(
a2
)
, . . . ,αA

(
an
)}
,

βA(x)≤max
{
βA
(
a1
)
,βA

(
a2
)
, . . . ,βA

(
an
)}
.

(3.8)

Proof. Using induction onn and Lemmas 3.6 and 3.7, the proof is straightforward.

Theorem 3.9. Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subal-
gebra of X.

Proof. Let A = (αA,βA) be an intuitionistic fuzzy ideal of X. Since x∗y ≤ x for
all x,y ∈X, it follows from Lemma 3.7 that

αA(x∗y)≥αA(x), βA(x∗y)≤ βA(x), (3.9)

so by (IF2) and (IF3),

αA(x∗y)≥αA(x)≥min
{
αA(x∗y),αA(y)

}≥min{αA(x),αA(y)
}
,

βA(x∗y)≤ βA(x)≤max
{
βA(x∗y),βA(y)

}≤max{βA(x),βA(y)
}
.

(3.10)

This shows that A= (αA,βA) is an intuitionistic fuzzy subalgebra of X.

The converse of Theorem 3.9 may not be true. For example, the intuitionistic fuzzy
subalgebra A= (αA,βA) in Example 3.2 is not an intuitionistic fuzzy ideal of X since

βA(b)= 0.5> 0.2=min
{
βA(b∗a),βA(a)

}
. (3.11)

We now give a condition for an intuitionistic fuzzy subalgebra to be an intuitionistic
fuzzy ideal.

Theorem 3.10. LetA= (αA,βA) be an intuitionistic fuzzy subalgebra ofX such that

αA(x)≥min
{
αA(y),αA(z)

}
, βA(x)≤max

{
βA(y),βA(z)

}
(3.12)

for all x,y,z ∈X satisfying the inequality x∗y ≤ z. Then A= (αA,βA) is an intuition-
istic fuzzy ideal of X.

Proof. Let A = (αA,βA) be an intuitionistic fuzzy subalgebra of X. Recall that
αA(0)≥αA(x) and βA(0)≤ βA(x) for all X. Since x∗(x∗y)≤y , it follows from the
hypothesis that

αA(x)≥min
{
αA(x∗y),αA(y)

}
, βA(x)≤max

{
βA(x∗y),βA(y)

}
. (3.13)

Hence A= (αA,βA) is an intuitionistic fuzzy ideal of X.
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Lemma 3.11. An IFSA = (αA,βA) is an intuitionistic fuzzy ideal of X if and only if
the fuzzy sets αA and β̄A are fuzzy ideals of X.

Proof. Let A= (αA,βA) be an intuitionistic fuzzy ideal of X. Clearly, αA is a fuzzy
ideal of X. For every x,y ∈X, we have

β̄A(0)= 1−βA(0)≥ 1−βA(x)= β̄A(x),

β̄A(x)= 1−βA(x)≥ 1−max
{
βA(x∗y),βA(y)

}

=min{1−βA(x∗y),1−βA(y)
}

=min{β̄A(x∗y),β̄A(y)
}
.

(3.14)

Hence β̄A is a fuzzy ideal of X.
Conversely, assume that αA and β̄A are fuzzy ideals of X. For every x,y ∈X, we get

αA(0)≥αA(x), 1−βA(0)= β̄A(0)≥ β̄A(x)= 1−βA(x), (3.15)

that is, βA(0)≤ βA(x); αA(x)≥min{αA(x∗y),αA(y)} and

1−βA(x)= β̄A(x)≥min
{
β̄A(x∗y),β̄A(y)

}

=min{1−βA(x∗y),1−βA(y)
}

= 1−max{βA(x∗y),βA(y)
}
,

(3.16)

that is, βA(x)≤max{βA(x∗y),βA(y)}. Hence A= (αA,βA) is an intuitionistic fuzzy
ideal of X.

Theorem 3.12. Let A = (αA,βA) be an IFS in X. Then A = (αA,βA) is an intuition-
istic fuzzy ideal of X if and only if �A = (αA,ᾱA) and ♦A = (β̄A,βA) are intuitionistic
fuzzy ideals of X.

Proof. If A = (αA,βA) is an intuitionistic fuzzy ideal of X, then αA = ¯̄αA and βA
are fuzzy ideals of X from Lemma 3.11, hence �A = (αA,ᾱA) and ♦A = (β̄A,βA) are
intuitionistic fuzzy ideals of X. Conversely, if �A = (αA,ᾱA) and ♦A = (β̄A,βA) are
intuitionistic fuzzy ideals of X, then the fuzzy sets αA and β̄A are fuzzy ideals of X,
hence A= (αA,βA) is an intuitionistic fuzzy ideal of X.

For any t ∈ [0,1] and a fuzzy set µ in a nonempty set X, the set

U(µ;t)= {x ∈X | µ(x)≥ t
}

(3.17)

is called an upper t-level cut of µ and the set

L(µ;t)= {x ∈X | µ(x)≤ t
}

(3.18)

is called a lower t-level cut of µ.

Theorem 3.13. An IFSA = (αA,βA) is an intuitionistic fuzzy ideal of X if and only
if for all s,t ∈ [0,1], the sets U(αA;t) and L(βA;s) are either empty or ideals of X.
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Proof. Let A = (αA,βA) be an intuitionistic fuzzy ideal of X and U(αA;t) ≠∅ ≠
L(βA;s) for any s,t ∈ [0,1]. It is clear that 0 ∈ U(αA;t)∩ L(βA;s) since αA(0) ≥ t
and βA(0) ≤ s. Let x,y ∈ X be such that x∗y ∈ U(αA;t) and y ∈ U(αA;t). Then
αA(x∗y)≥ t and αA(y)≥ t. It follows that

αA(x)≥min
{
αA(x∗y),αA(y)

}≥ t (3.19)

so that x ∈ U(αA;t). Hence U(αA;t) is an ideal of X. Now let x,y ∈ X be such that
x∗y ∈ L(βA;s) and y ∈ L(βA;s). Then βA(x∗y)≤ s and βA(y)≤ s, which imply that

βA(x)≤max
{
βA(x∗y),βA(y)

}≤ s. (3.20)

Thus x ∈ L(βA;s), and therefore L(βA;s) is an ideal of X. Conversely, assume that
for each t,s ∈ [0,1], the sets U(αA;t) and L(βA;s) are either empty or ideals of X.
For any x ∈ X, let αA(x) = t and βA(x) = s. Then x ∈ U(αA;t)∩ L(βA;s), and so
U(αA;t) ≠ ∅ ≠ L(βA;s). Since U(αA;t) and L(βA;s) are ideals of X, therefore 0 ∈
U(αA;t)∩L(βA;s). Hence αA(0) ≥ t = αA(x) and βA(0) ≤ s = βA(x) for all x ∈ X. If
there exist x′,y ′ ∈X such that αA(x′) <min{αA(x′ ∗y ′),αA(y ′)}, then by taking

t0 = 12
(
αA
(
x′
)+min{αA

(
x′ ∗y ′),αA

(
y ′
)})

, (3.21)

we have

αA
(
x′
)
< t0 <min

{
αA
(
x′ ∗y ′),αA

(
y ′
)}
. (3.22)

Hence x′ �∈U(αA;t0), x′∗y ′ ∈U(αA;t0) and y ′ ∈ (αA;t0), that is, U(αA;t0) is not an
ideal of X, which is a contradiction. Finally, assume that there exist a,b ∈X such that

βA(a) >max
{
βA(a∗b),βA(b)

}
. (3.23)

Taking s0 := (1/2)(βA(a)+max{βA(a∗b),βA(b)}), then

max
{
βA(a∗b),βA(b)

}
< s0 < βA(a). (3.24)

Therefore a∗b ∈ L(βA;s0) and b ∈ L(βA;s0), but a �∈ L(βA;s0), which is a contradic-
tion, this completes the proof.

Let Λ be a nonempty subset of [0,1].

Theorem 3.14. Let {It | t ∈Λ} be a collection of ideals of X such that
(i) X =∪t∈ΛIt ,
(ii) s > t if and only if Is ⊂ It for all s,t ∈Λ.

Then an IFSA= (αA,βA) in X defined by

αA(x) := sup
{
t ∈Λ | x ∈ It

}
, βA(x) := inf

{
t ∈Λ | x ∈ It

}
(3.25)

for all x ∈X is an intuitionistic fuzzy ideal of X.

Proof. According to Theorem 3.13, it is sufficient to show that U(αA;t) and
L(βA;s) are ideals of X for every t ∈ [0,αA(0)] and s ∈ [βA(0),1]. In order to prove
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that U(αA;t) is an ideal of X, we divide the proof into the following two cases:
(i) t = sup{q ∈Λ | q < t},
(ii) t ≠ sup{q ∈Λ | q < t}.

Case (i) implies that

x ∈U
(
αA;t)⇐⇒ x ∈ Iq ∀q < t⇐⇒ x ∈∩q<tIq, (3.26)

so that U(αA;t) = ∩q<tIq, which is an ideal of X. For the case (ii), we claim that
U(αA;t) = ∪q≥tIq. If x ∈ ∪q≥tIq, then x ∈ Iq for some q ≥ t. It follows that αA(x) ≥
q ≥ t, so that x ∈ U(αA;t). This shows that ∪q≥tIq ⊆ U(αA;t). Now assume that
x �∈ ∪q≥tIq. Then x �∈ Iq for all q ≥ t. Since t ≠ sup{q ∈ Λ | q < t}, there exists
ε > 0 such that (t− ε,t)∩Λ = ∅. Hence x �∈ Iq for all q > t− ε, which means that
if x ∈ Iq, then q ≤ t − ε. Thus αA(x) ≤ t − ε < t, and so x �∈ U(αA;t). Therefore
U(αA;t) ⊆ ∪q≥tIq, and thus U(αA;t) = ∪q≥tIq which is an ideal of X. Next we prove
that L(βA;s) is an ideal of X. We consider the following two cases:
(iii) s = inf{r ∈Λ | s < r},
(iv) s ≠ inf{r ∈Λ | s < r}.
For the case (iii), we have

x ∈ L
(
βA;s

)⇐⇒ x ∈ Ir ∀s < r ⇐⇒ x ∈∩s<r Ir , (3.27)

and hence L(βA;s)=∩s<r Ir which is an ideal of X. For the case (iv) there exists ε > 0
such that (s,s+ε)∩Λ = ∅. We will show that L(βA;s) = ∪s≥r Ir . If x ∈ ∪s≥r Ir , then
x ∈ Ir for some r ≤ s. It follows that βA(x) ≤ r ≤ s so that x ∈ L(βA;s). Hence
∪s≥r Ir ⊆ L(βA;s). Conversely, if x �∈ ∪s≥r Ir , then x �∈ Ir for all r ≤ s, which implies
that x �∈ Ir for all r < s+ε, that is, if x ∈ Ir , then r ≥ s+ε. Thus βA(x) ≥ s+ε > s,
that is, x �∈ L(βA;s). Therefore L(βA;s) ⊆ ∪s≥r Ir and consequently L(βA;s) = ∪s≥r Ir
which is an ideal of X. This completes the proof.

A mapping f : X → Y of BCK-algebras is called a homomorphism if f(x ∗y) =
f(x)∗ f(y) for all x,y ∈ X. Note that if f : X → Y is a homomorphism of BCK-
algebras, then f(0) = 0. Let f : X → Y be a homomorphism of BCK-algebras. For any
IFSA= (αA,βA) in Y , we define a new IFSAf = (αf

A,β
f
A
)
in X by

αf
A(x) :=αA

(
f(x)

)
, βfA(x) := βA

(
f(x)

) ∀x ∈X. (3.28)

Theorem 3.15. Let f : X → Y be a homomorphism of BCK-algebras. If an IFSA =
(αA,βA) in Y is an intuitionistic fuzzy ideal of Y , then an IFSAf = (αf

A,β
f
A
)
in X is an

intuitionistic fuzzy ideal of X.

Proof. We first have that

αf
A(x)=αA

(
f(x)

)≤αA(0)=αA
(
f(0)

)=αf
A(0),

βfA(x)= βA
(
f(x)

)≥ βA(0)= βA
(
f(0)

)= βfA(0)
(3.29)

for all x ∈X. Let x,y ∈X. Then
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min
{
αf
A(x∗y),αf

A(y)
}=min{αA

(
f(x∗y)),αA

(
f(y)

)}

=min{αA
(
f(x)∗f(y)),αA

(
f(y)

)}

≤αA
(
f(x)

)=αf
A(x),

max
{
βfA(x∗y),βfA(y)

}=max{βA
(
f(x∗y)),βA

(
f(y)

)}

=max{βA
(
f(x)∗f(y)),βA

(
f(y)

)}

≥ βA
(
f(x)

)= βfA(x).

(3.30)

Hence Af = (αf
A,β

f
A
)
is an intuitionistic fuzzy ideal of X.

If we strengthen the condition of f , then we can construct the converse of Theorem
3.15 as follows.

Theorem 3.16. Let f : X → Y be an epimorphism of BCK-algebras and let A =
(αA,βA) be an IFS in Y . If Af = (αf

A,β
f
A
)
is an intuitionistic fuzzy ideal of X, then

A= (αA,βA) is an intuitionistic fuzzy ideal of Y .

Proof. For any x ∈ Y , there exists a∈X such that f(a)= x. Then

αA(x)=αA
(
f(a)

)=αf
A(a)≤αf

A(0)=αA
(
f(0)

)=αA(0),

βA(x)= βA
(
f(a)

)= βfA(a)≥ βfA(0)= βA
(
f(0)

)= βA(0).
(3.31)

Let x,y ∈ Y . Then f(a)= x and f(b)=y for some a,b ∈X. It follows that

αA(x)=αA
(
f(a)

)=αf
A(a)

≥min{αf
A(a∗b),αf

A(b)
}

=min{αA
(
f(a∗b)),αA

(
f(b)

)}

=min{αA
(
f(a)∗f(b)),αA

(
f(b)

)}

=min{αA(x∗y),αA(y)
}
,

βA(x)= βA
(
f(a)

)= βfA(a)

≤max{βfA(a∗b),βfA(b)
}

=max{βA
(
f(a∗b)),βA

(
f(b)

)}

=max{βA
(
f(a)∗f(b)),βA

(
f(b)

)}

=max{βA(x∗y),βA(y)
}
.

(3.32)

This completes the proof.

Let IF(X) be the family of all intuitionistic fuzzy ideals of X and let t ∈ [0,1]. Define
binary relations Ut and Lt on IF(X) as follows:

(A,B)∈Ut ⇐⇒U
(
αA;t

)=U
(
αB ;t

)
, (A,B)∈ Lt ⇐⇒ L

(
βA;t

)= L
(
βB ;t

)
, (3.33)

respectively, for A = (αA,βA) and B = (αB,βB) in IF(X). Then clearly Ut and Lt are



INTUITIONISTIC FUZZY IDEALS OF BCK-ALGEBRAS 847

equivalence relations on IF(X). For any A = (αA,βA) ∈ IF(X), let [A]Ut (respectively,
[A]Lt ) denote the equivalence class of A modulo Ut (respectively, Lt), and denote
by IF(X)/Ut (respectively, IF(X)/Lt) the system of all equivalence classes modulo Ut

(respectively, Lt); so

IF(X)/Ut := {[A]Ut |A=
(
αA,βA

)∈ IF(X)}, (3.34)

respectively,

IF(X)/Lt := {[A]Lt |A=
(
αA,βA

)∈ IF(X)}. (3.35)

Now let I(X) denote the family of all ideals of X and let t ∈ [0,1]. Define maps ft and
gt from IF(X) to I(X)∪{∅} by ft(A) = U(αA;t) and gt(A) = L(βA;t), respectively,
for all A= (αA,βA)∈ IF(X). Then ft and gt are clearly well defined.

Theorem 3.17. For any t ∈ (0,1) the maps ft and gt are surjective from IF(X) to
I(X)∪{∅}.

Proof. Let t ∈ (0,1). Note that 0∼ = (0,1) is in IF(X), where 0 and 1 are fuzzy
sets in X defined by 0(x)= 0 and 1(x)= 1 for all x ∈X. Obviously ft(0∼)=U(0;t)=
∅= L(1;t)= gt(0∼). Let G(≠∅)∈ I(X). For G∼ = (χG,χ̄G)∈ IF(X), we have ft(G∼)=
U(χG;t)=G and gt(G∼)= L(χ̄G;t)=G. Hence ft and gt are surjective.

Theorem 3.18. The quotient sets IF(X)/Ut and IF(X)/Lt are equipotent to I(X)∪
{∅} for every t ∈ (0,1).

Proof. For t ∈ (0,1) let f∗t (respectively, g∗t ) be a map from IF(X)/Ut (respec-
tively, IF(X)/Lt) to I(X)∪{∅} defined by f∗t ([A]Ut )= ft(A) (respectively, g∗t ([A]Lt )=
gt(A)) for all A = (αA,βA) ∈ IF(X). If U(αA;t) = U(αB ;t) and L(βA;t) = L(βB ;t)
for A = (αA,βA) and B = (αB,βB) in IF(X), then (A,B) ∈ Ut and (A,B) ∈ Lt ; hence
[A]Ut = [B]Ut and [A]Lt = [B]Lt . Therefore the maps f∗t and g

∗
t are injective. Now let

G(�= ∅)∈ I(X). For G∼ = (χG,χ̄G)∈ IF(X), we have

f∗t
([
G∼
]
Ut
)= ft

(
G∼
)=U

(
χG;t

)=G,

g∗t
([
G∼
]
Lt
)= gt

(
G∼
)= L

(
χ̄G;t

)=G.
(3.36)

Finally, for 0∼ = (0,1)∈ IF(X) we get

f∗t
([

0∼
]
Ut
)= ft

(
0∼
)=U(0;t)=∅,

g∗t
([

0∼
]
Lt
)= gt

(
0∼
)= L(0;t)=∅. (3.37)

This shows that f∗t and g
∗
t are surjective. This completes the proof.

For any t ∈ [0,1], we define another relation Rt on IF(X) as follows:

(A,B)∈ Rt ⇐⇒U
(
αA;t

)∩L(βA;t
)=U

(
αB ;t

)∩L(βB ;t
)

(3.38)
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for any A= (αA,βA), B = (αB,βB)∈ IF(X). Then the relation Rt is also an equivalence
relation on IF(X).

Theorem 3.19. For any t ∈ (0,1), the map φt : IF(X) → I(X)∪ {∅} defined by
φt(A)= ft(A)∩gt(A) for each A= (αA,βA)∈ IF(X) is surjective.

Proof. Let t ∈ (0,1). For 0∼ = (0,1)∈ IF(X),

φt
(
0∼
)= ft

(
0∼
)∩gt

(
0∼
)=U(0;t)∩L(1;t)=∅. (3.39)

For any H ∈ IF(X), there exists H∼ = (χH,χ̄H)∈ IF(X) such that

φt
(
H∼
)= ft

(
H∼
)∩gt

(
H∼
)=U

(
χH ;t

)∩L(χ̄H ;t
)=H. (3.40)

This completes the proof.

Theorem 3.20. For any t ∈ (0,1), the quotient set IF(X)/Rt is equipotent to
I(X)∪{∅}.

Proof. Let t ∈ (0,1) and let φ∗
t : IF(X)/Rt → I(X)∪ {∅} be a map defined by

φ∗
t ([A]Rt ) =φt(A) for all [A]Rt ∈ IF(X)/Rt. If φ∗

t ([A]Rt ) =φ∗
t ([B]Rt ) for any [A]Rt ,

[B]Rt ∈ IF(X)/Rt , then ft(A)∩ gt(A) = ft(B)∩ gt(B), that is, U(αA;t)∩ L(βA;t) =
U(αB ;t)∩L(βB ;t), hence (A,B)∈ Rt . It follows that [A]Rt = [B]Rt so that φ∗

t is injec-
tive. For 0∼ = (0,1)∈ IF(X),

φ∗
t
([

0∼
]
Rt
)=φt

(
0∼
)= ft

(
0∼
)∩gt

(
0∼
)=U(0;t)∩L(1;t)=∅. (3.41)

If H ∈ IF(X), then for H∼ = (χH,χ̄H)∈ IF(X), we have

φ∗
t
([
H∼
]
Rt
)=φ

(
H∼
)= ft

(
H∼
)∩gt

(
H∼
)=U

(
χH ;t

)∩L(χ̄H ;t
)=H. (3.42)

Hence φ∗
t is surjective, this completes the proof.
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