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1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [9]
several researches were conducted on the generalizations of the notion of fuzzy sets.
The idea of “intuitionistic fuzzy set” was first published by Atanassov [1, 2], as a
generalization of the notion of fuzzy set. The first author (together with Hong, Kim,
Kim, Meng, Roh, and Song) considered the fuzzification of ideals and subalgebras
in BCK-algebras (cf. [3, 4, 5, 6, 7, 8]). In this paper, using the Atanassov’s idea, we
establish the intuitionistic fuzzification of the concept of subalgebras and ideals in
BCK-algebras, and investigate some of their properties. We introduce the notion of
equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra
and investigate some related properties.

2. Preliminaries. First we present the fundamental definitions. By a BCK-algebra
we mean a nonempty set X with a binary operation * and a constant 0 satisfying the
following conditions:

M ((x*xy)*(x*x2z))*x(zxy) =0,
) (x*x(x*xy))*xy =0,

(Im) x*xx =0,

(IV) 0% x =0,

(V) x*xy =0and y *xx =0 imply that x =y
for all x,y,z € X.

A partial ordering “<” on X can be defined by x < y if and only if x *x y = 0.
A nonempty subset S of a BCK-algebra X is called a subalgebra of X if x xy € §
whenever x,y € S. A nonempty subset I of a BCK-algebra X is called an ideal of X if

i O0el,

(ii) x*y €I and v €1 imply that x €I for all x,y € X.
By a fuzzy set p in a nonempty set X we mean a function p : X — [0,1], and the
complement of u, denoted by f, is the fuzzy set in X given by fi(x) = 1—u(x) for all
x € X. Afuzzy set yin a BCK-algebra X is called a fuzzy subalgebra of X if u(x xy) >
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min{u(x),u(y)} for all x,y € X. A fuzzy set u in a BCK-algebra X is called a fuzzy
ideal of X if
(i) p(0) = u(x) for all x € X,
(i) p(x)=min{u(x*xy),u(y)} forall x,y € X.
An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having
the form

A={(x,004(x),Ba(x)) | x € X}, (2.1)

where the functions &4 : X — [0,1] and B4 : X — [0,1] denote the degree of member-
ship and the degree of nonmembership, respectively, and

O<aa(x)+Balx) <1 VxeX. (2.2)

An intuitionistic fuzzy set A = {(x,xa(x),Ba(x)) | x € X} in X can be identified to
an ordered pair (4, B4) in IX X IX. For the sake of simplicity, we shall use the symbol
A= (xa,Ba) for the IFSA = {(x,xa(x),Ba(x)) | x € X}.

3. Intuitionistic fuzzy ideals. In what follows, let X denote a BCK-algebra unless
otherwise specified.

DEFINITION 3.1. AnIFSA = (x4, B4) in X is called an intuitionistic fuzzy subalgebra
of X if it satisfies:
(IS1) aa(x*y) =z min{oa(x),xa ()},

(1S2) Ba(x*y) <max{Ba(x),Ba(3)},
for all x,y € X.

EXAMPLE 3.2. Consider a BCK-algebra X={0,a, b, c} with the following Cayley table:

* 0 a b c
0 O 0 o0 O
a a 0 0 a
b| b a 0 b
c c c c 0

Let A = (x4, B4) be an IFS in X defined by
xa(0) = xg(a) = aa(c) =0.7 > 0.3 = xxx(b),
Ba(0) =Ba(a) =Balc) =0.2<0.5=B4s(b).

Then A = (x4, B4) is an intuitionistic fuzzy subalgebra of X.

(3.1

PROPOSITION 3.3. Every intuitionistic fuzzy subalgebra A = (xa,Ba) of X satisfies
the inequalities x4 (0) = xa(x) and Ba(0) < Ba(x) forall x € X.

PROOF. For any x € X, we have
o4 (0) = ota (x x x) = min {oea (x), oa ()} = xa(x),
Ba(0) = Ba(x*x) <max {Ba(x),Ba(x)} = Ba(x).
This completes the proof. O

(3.2)
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DEFINITION 3.4. AnIFSA = (x4, B4) in X is called an intuitionistic fuzzy ideal of X
if it satisfies the following inequalities:

(IF1) 4 (0) = xxa(x) and B4(0) < Ba(x),

(IF2) xa(x) =min{oa(x*xy),xa(y)},

(IF3) Ba(x) <max{Ba(x*y),Ba())},
for all x,y € X.

EXAMPLE 3.5. Let X = {0,1,2,3,4} be aBCK-algebra with the following Cayley table:

B ow N~ O ¥
B w o= OO
w w N o o
B w o = O N
= O O O O |w
S O O O O |

Define an IFSA = (x4, 4) in X as follows:
xa(0) = xa(2) =1, xa(l) = xa(3) = xa(4) =t,
Ba(0) =B4(2) =0, Ba(l) = Ba(3) = Pa(4) =5,

where t € [0,1], s € [0,1], and t + s < 1. By routine calculation we know that A =
(xa, Ba) is an intuitionistic fuzzy ideal of X.

(3.3)

LEMMA 3.6. Let anIFSA = (xa,B4) in X be an intuitionistic fuzzy ideal of X. If the
inequality x * vy < z holds in X, then
oa(x) =min{xa(y), xa(2)}, Ba(x) <max{Ba(¥),Ba(2)}. (3.4)
PROOF. let x,y,z € X be such that x xy < z. Then (x *x y) * z = 0, and thus
oA (x) = min {ea (x % ), xa ()}
>min{min{os((x *y)*x2),x4(2)},xa(y)}
=min {min {4 (0), x4 (2)}, x4 (1)}

=1’1’111’1{(XA(:)/),0(A(Z)}1

(3.5)
Ba(x) <max{Ba(x*¥y),Ba(y)}
<max {max {Ba((x*y)*2z),B4(2)},B4()}
= max {max {84(0),B4(2)},B4(»)}
=max {Ba(y),Ba(2)},
this completes the proof. O

LEMMA 3.7. Let A = (xa,Ba) be an intuitionistic fuzzy ideal of X. If x <y in X, then
xa(x) = xa(y), Balx) < Baly), (3.6)

that is, x4 is order-reserving and B 4 is order-preserving.
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PROOF. Let x,y € X be such that x < y. Then x x y = 0 and so

a(x) zmin{aa(x*y),xa(¥)} =min{xa(0),xa(¥)} = xa(y),

3.7
Ba(x) <max{Ba(x*y),Ba(y)} =max{Ba(0),Ba(y)} = Ba(y). 57
This completes the proof. O

THEOREM 3.8. If A = (x4, Ba) is an intuitionistic fuzzy ideal of X, then for any
X,a1,a2,...,an €X, (---((x*xay) *xaz) *x---)*xa, =0 implies

aa(x) =min{xa(ar),xa(az),...,xa(an)},

Ba(x) =max{Ba(ai),Ba(az),...,Ba(an)}. (3:8)

PROOF. Using induction on n and Lemmas 3.6 and 3.7, the proof is straightforward.
O

THEOREM 3.9. Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subal-
gebra of X.

PROOF. lLet A = (x4, B4) be an intuitionistic fuzzy ideal of X. Since x * y < x for
all x,y € X, it follows from Lemma 3.7 that

xa(x*y) = xa(x), Balx*y) < Ba(x), (3.9)
so by (IF2) and (IF3),

oa(xky) = xa(x) 2min{oa(x*y), 04 ()} = min{o, (x), x4 ()},

3.10
Ba(xxy) < Ba(x) <max{Ba(x*y),Ba(y)} <max{Ba(x),Ba(¥)}. 610
This shows that A = (x4, B4) is an intuitionistic fuzzy subalgebra of X. O

The converse of Theorem 3.9 may not be true. For example, the intuitionistic fuzzy
subalgebra A = (x4,B4) in Example 3.2 is not an intuitionistic fuzzy ideal of X since

Ba(b) =0.5>0.2 =min{Ba(bxa),Ba(a)}. (3.11)

We now give a condition for an intuitionistic fuzzy subalgebra to be an intuitionistic
fuzzy ideal.

THEOREM 3.10. Let A = (x4, Ba) be an intuitionistic fuzzy subalgebra of X such that
aa(x) =min{xa(¥),®a(2)},  Balx) <max {Ba(y),Ba(2)} (3.12)

for all x,y,z € X satisfying the inequality x xy < z. Then A = (x4, B4) IS an intuition-
istic fuzzy ideal of X.

PROOF. Let A = (xa,B4) be an intuitionistic fuzzy subalgebra of X. Recall that
04 (0) = xa(x) and BA(0) < Ba(x) for all X. Since x * (x *x y) < y, it follows from the
hypothesis that

®a(x) =min{oa(x *y),xa(3)}, Ba(x) =max{Ba(x*xy),Ba(y)}.  (3.13)

Hence A = (x4, B4) is an intuitionistic fuzzy ideal of X. O
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LEMMA 3.11. AnIFSA = (x4, B4) is an intuitionistic fuzzy ideal of X if and only if
the fuzzy sets x4 and B are fuzzy ideals of X.
PROOF. Let A = (x4, B4) be an intuitionistic fuzzy ideal of X. Clearly, &4 is a fuzzy
ideal of X. For every x,y € X, we have
Ba(0) =1-B4(0) = 1—Ba(x) = Ba(x),
Ba(x)=1-Ba(x)=1-max{Ba(x*y),Ba(y)}
=min{l-Ba(x*y),1-Ba(y)}
=min {Ba(x*y),B4()}.

(3.14)

Hence B4 is a fuzzy ideal of X.
Conversely, assume that 4 and 84 are fuzzy ideals of X. For every x,y € X, we get

®a(0) = xa(x),  1-Ba(0)=Pa(0) = Balx)=1-Balx), (3.15)
that is, f4(0) < Ba(x); xa(x) =min{xa(x *xy),xa(y)} and

1—Ba(x) =Ba(x) =min{Ba(x*y),Bs(»)}
=min{l-Ba(x*y),1-Ba(y)} (3.16)
=1-max{Ba(x*y),Ba(¥)},
thatis, Ba(x) <max{Ba(x*y),Ba(y)}. Hence A = (x4, B4) is an intuitionistic fuzzy
ideal of X. O

THEOREM 3.12. Let A = (x4,B4) be an IFS in X. Then A = (x4, 4) is an intuition-
istic fuzzy ideal of X if and only if DA = (xa,&4) and OA = (B, B4) are intuitionistic
fuzzy ideals of X.

PROOF. If A = (x4,fB4) is an intuitionistic fuzzy ideal of X, then &4 = &4 and B4
are fuzzy ideals of X from Lemma 3.11, hence 0OA = (x4, &4) and OA = (B4,B4) are
intuitionistic fuzzy ideals of X. Conversely, if OA = (x4, &4) and 0A = (B4,84) are
intuitionistic fuzzy ideals of X, then the fuzzy sets &4 and 4 are fuzzy ideals of X,
hence A = (x4, B4) is an intuitionistic fuzzy ideal of X. O

For any t € [0,1] and a fuzzy set py in a nonempty set X, the set
Up;t) = {x € X | u(x) = t} (3.17)
is called an upper t-level cut of u and the set
L(p;t) ={x € X | p(x) < t} (3.18)

is called a lower t-level cut of p.

THEOREM 3.13. AnIFSA = (x4, B4) is an intuitionistic fuzzy ideal of X if and only
if for all s,t € [0,1], the sets U(xu;t) and L(B4;s) are either empty or ideals of X.
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PROOF. Let A = (x4, B4) be an intuitionistic fuzzy ideal of X and U (xa;t) + @ +
L(B4;s) for any s,t € [0,1]. It is clear that 0 € U(oa;t) N L(B4;s) since os(0) >t
and B4(0) < s. Let x,y € X be such that x x y € U(xa;t) and y € U(xa;t). Then
xa(x*ky)>tand xs(y) > t. It follows that

xa(x) =zmin{aa(xxy), 04 (¥)} =t (3.19)

so that x € U(xa;t). Hence U(xa;t) is an ideal of X. Now let x,y € X be such that
xxy €L(Ba;s)and y € L(Ba;s). Then Ba(xxy) <sand a(y) < s, which imply that

Ba(x) <max{Balx*y),Ba(y)} <s. (3.20)

Thus x € L(B4;s), and therefore L(f4;s) is an ideal of X. Conversely, assume that
for each t,s € [0,1], the sets U(wu;t) and L(S4;s) are either empty or ideals of X.
For any x € X, let xa(x) =t and Ba(x) = s. Then x € U(xa;t) NL(B4;s), and so
U(oxa;t) + @ + L(Ba;s). Since U(wxa;t) and L(B4;s) are ideals of X, therefore 0 €
U(xa;t) NL(Ba;s). Hence x4 (0) >t = xa(x) and Ba(0) < s = Ba(x) forall x € X. If
there exist x’,y" € X such that o4 (x’) <min{o(x’ *y"),xa(y")}, then by taking

to =5 (xa(x’) +min {oea (x" % "), xa(¥")}), (3.21)

N —

we have
oa(x") <to <min{oa(x" *y"),0a(y')}. (3.22)

Hence x’ ¢ U(xa;to), X' * ¥ € U(xa;tyo) and ¥' € (xa;to), thatis, U(wxa;to) is not an
ideal of X, which is a contradiction. Finally, assume that there exist a,b € X such that

Ba(a) >max{Ba(axb),Ba(b)}. (3.23)
Taking 5o := (1/2)(Ba(a) +max{Ba(a*xb),Ba(b)}), then
max{Ba(a*xb),Ba(b)} <so < Bala). (3.24)

Therefore a xb € L(Ba;So) and b € L(B4;So), but a & L(Ba;So), which is a contradic-
tion, this completes the proof. O

Let A be a nonempty subset of [0,1].

THEOREM 3.14. Let {I; | t € A} be a collection of ideals of X such that
(1) X = Urenls,
(i) s>t ifand only if I; C I; for all s,t € A.
Then an IFSA = (x4, Ba) in X defined by

x(x):=sup{t € A| x €I}, Balx):=inf{t e A | x € I} (3.25)

for all x € X is an intuitionistic fuzzy ideal of X.

PROOF. According to Theorem 3.13, it is sufficient to show that U(xa;t) and
L(B4;s) are ideals of X for every t € [0,x4(0)] and s € [4(0),1]. In order to prove
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that U(wy;t) is an ideal of X, we divide the proof into the following two cases:
(@) t=supf{geAlq<t},
(ii) t =#sup{geAlg<t}.

Case (i) implies that

xeU(agt) =xel; Vqa<t = xengly, (3.26)

so that U(axa;t) = Ng<tly, which is an ideal of X. For the case (ii), we claim that
U(axa;t) = Ugsily. If x € Ugsily, then x € I; for some g = t. It follows that x4 (x) =
q = t, so that x € U(xy;t). This shows that Ugstl; S U(axa;t). Now assume that
X & Ugsily. Then x ¢ I; for all g > ¢. Since t # sup{g € A | g < t}, there exists
& > 0 such that (t —&,t) NA = &. Hence x ¢ I; for all g > t — ¢, which means that
if x €I, then g <t —¢. Thus xa(x) <t—¢ <t, and so x & U(ay;t). Therefore
U(xa;t) € Ugstlg, and thus U(aa;t) = Ugs¢I; which is an ideal of X. Next we prove
that L(B4;s) is an ideal of X. We consider the following two cases:

(iii) s=inf{reA|s<r},

iv) s+inf{r e A|s<r}.

For the case (iii), we have

x €EL(Ba;s) = xe€l, Vs<r < X € Nsorly, (3.27)

and hence L(S4;5) = Ns<, I, which is an ideal of X. For the case (iv) there exists € > 0
such that (s,s + &) NA = &. We will show that L(B4;5) = Ussy L. If X € Ugs, I, then
x € I, for some r < s. It follows that f4(x) < v < s so that x € L(B4;s). Hence
Ussr Iy © L(Ba;s). Conversely, if x ¢ Ussy I, then x & I, for all v < s, which implies
that x ¢ I, for all ¥ < s + ¢, that is, if x € I,,, then ¥ > s+ £. Thus Bs(x) = s+¢€ > s,
that is, x & L(B4;s). Therefore L(B4;s) € Uss I, and consequently L(B4;S) = Uss Iy
which is an ideal of X. This completes the proof. O

A mapping f : X — Y of BCK-algebras is called a homomorphism if f(x x y) =
f(x)*x f(y) for all x,y € X. Note that if f: X — Y is a homomorphism of BCK-
algebras, then f(0) = 0. Let f: X — Y be a homomorphism of BCK-algebras. For any
IFSA = (x4, B4) in Y, we define a new IFSAS = (ocf,,ﬁf‘) in X by

oh(x) == xa(f (X)), Bh(x):=Ba(f(x)) VxeX. (3.28)

THEOREM 3.15. Let f : X — Y be a homomorphism of BCK-algebras. If an IFSA =
(&, B4) inY is an intuitionistic fuzzy ideal of Y, then an IFSASf = ((xﬁ,Bﬁ) in X is an
intuitionistic fuzzy ideal of X.

PROOF. We first have that

o (x) = aa(f(x)) = ®4(0) = xa(£(0)) = oy (0),

P f (3.29)
Ba(x) = Ba(f(x)) 2 Ba(0) = Ba(f(0)) = B4(0)

for all x € X. Let x,y € X. Then
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min {ocy (x * ), oy ()} = min {oa (f (x*3)), a (f (1))}
=min {oa (f (x) % £ (1)), xa(f ()}

< aa(f(x)) = o (%),

p P (3.30)
max {B; (x ), B4 ()} = max{Ba(f (x*3)),B4(f ()}
= max {Ba(f(x)* f (1), Ba(f(¥))}
= Ba(f(x)) = BA(x).
Hence A/ = («, p%) is an intuitionistic fuzzy ideal of X. O

If we strengthen the condition of f, then we can construct the converse of Theorem
3.15 as follows.

THEOREM 3.16. Let f : X — Y be an epimorphism of BCK-algebras and let A =
(Xa,B4) be an IFSin Y. If AT = ((xf\,Bj;) is an intuitionistic fuzzy ideal of X, then
A = (x4, B4) is an intuitionistic fuzzy ideal of Y.

PROOF. For any x €Y, there exists a € X such that f(a) = x. Then

o (x) = aa(f(@) = &y (a) < &y (0) = x4 (F(0)) = x4(0),

(3.31)
Ba(x) = Ba(f(@)) = Bh(a) = BL(0) = BA(F(0)) = B(0).

Let x,y € Y. Then f(a) = x and f(b) = y for some a,b € X. It follows that

oa(x) = aa(f (@) = s (@)
zmin{aﬁ(a*b),(xﬁ(b)}
=min{o,(f(a*xb)),xa(f (b))}
=min{os(f(a)*f(b)),xs(f(b))}
=min {xa(x*y),xa(1)],

Ba(x) = Ba(f(a)) = Bh(a)
<max {B}(axb),p,(b)}
=max {Ba(f(axb)),Pa(f(b))}
=max{Ba(f(a)* f(D)),Ba(f (D))}
=max {Ba(xxy),Ba(y)].

(3.32)

This completes the proof. O

Let IF(X) be the family of all intuitionistic fuzzy ideals of X and let £ € [0, 1]. Define
binary relations Ut and L! on IF(X) as follows:

(A,B) e U = U(au;t) = U(ap;t), (A,B) € L' < L(Ba;t) = L(Bp;t), (3.33)

respectively, for A = (x4,B4) and B = (x,Bz) in IF(X). Then clearly U! and Lt are
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equivalence relations on IF(X). For any A = (x4, Ba) € I[F(X), let [A]y+ (respectively,
[A];:) denote the equivalence class of A modulo U! (respectively, L!), and denote
by IF(X)/U! (respectively, IF(X)/L!) the system of all equivalence classes modulo U!
(respectively, L!); so

IF(X)/U":= {[Alyt | A = (@a,Ba) €F(X)}, (3.34)
respectively,
IF(X) /L' := {[Al;: | A= (&xa,Ba) €IF(X)]}. (3.35)

Now let I(X) denote the family of all ideals of X and let t € [0, 1]. Define maps f; and
gr from IF(X) to I(X) U {D} by fi(A) = U(xa;t) and g¢(A) = L(Ba;t), respectively,
for all A = (&4,B4) €IF(X). Then f; and g; are clearly well defined.

THEOREM 3.17. For any t € (0,1) the maps f: and g; are surjective from IF(X) to
I(X)u{Qa}.

PROOF. lett € (0,1). Note that 0. = (0,1) is in IF(X), where 0 and 1 are fuzzy
sets in X defined by O0(x) = 0 and 1(x) =1 for all x € X. Obviously f;(0.) = U(0;t) =
@ =L(1;t) = g¢;(0.). Let G(# @) € I(X). For G~ = (xg,X¢g) € IF(X), we have f;(G.) =
U(xg;t) =G and g¢(G-) = L(X¢;t) = G. Hence f; and g; are surjective. O

THEOREM 3.18. The quotient sets IF(X) /Ut and IF(X) /Lt are equipotent to I(X) U
{D} foreveryt € (0,1).

PROOF. For t € (0,1) let f* (respectively, g;) be a map from IF(X)/U* (respec-
tively, IF(X) /Lf) to [(X) U {@} defined by f* ([Alyt) = fi (A) (respectively, g; ([Al;t) =
gi(A)) for all A = (xa,Ba) € IF(X). If U(axa;t) = U(xp;t) and L(Ba;t) = L(Bp;t)
for A = (xa,B4) and B = (xg,Bg) in IF(X), then (A,B) € U! and (A,B) € L!; hence
[Alyt = [Blyt and [Al;e = [B];:. Therefore the maps f;* and g; are injective. Now let
G(#+ @) eI(X).For G. = (X¢,Xc) € IF(X), we have

SEGye) = fi(G-) =U(Xa;t) =G,
e

_ (3.36)
9i ([G-]11) = 9:(G-) = L(Xe3t) = G-
Finally, for 0. = (0,1) € IF(X) we get
JE([0-]ye) = f(02) =U(0;0) = @,
* (3.37)
i ([0-]1¢) = g:(0-) = L(0;t) = @.
This shows that f;* and g/ are surjective. This completes the proof. O

For any t € [0,1], we define another relation R! on IF(X) as follows:

(A,B) € R' = U(axa;t) NL(Bast) = U(ag;t) NL(Bs;t) (3.38)
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for any A = (xa4,B4), B = (&g, Bp) € IF(X). Then the relation R! is also an equivalence
relation on IF(X).

THEOREM 3.19. For any t € (0,1), the map ¢ : IF(X) — I(X) u {&} defined by
i (A) = ft(A)nge(A) for each A = (xa,Ba) € IF(X) is surjective.

PROOF. Lett e (0,1).For 0. =(0,1) € IF(X),
¢:(0.) = f1(0-) Ng:(0-.) =U0;t)NL(1;t) = D. (3.39)
For any H € IF(X), there exists H. = (xg,Xn) € IF(X) such that
¢i(H-) = fi(H-)nge(H-) = U(xu;t) N L(xns5t) = H. (3.40)

This completes the proof. O

THEOREM 3.20. For any t € (0,1), the quotient set IF(X)/R! is equipotent to
I(X)u{a}.

PROOF. Let t € (0,1) and let ¢ : IF(X)/R! — I(X) U {Q} be a map defined by
dF ([Alge) = i (A) for all [Alge € IF(X)/REIf b ([Alge) = dF ([Blge) for any [Alge,
[Blg: € IF(X)/RY, then fi(A) N gi(A) = fi(B) N g;(B), that is, U(xa;t) N L(Ba;t) =
U(axg;t) NL(Bg;t), hence (A,B) € RE. It follows that [A]g: = [Blge so that ¢/ is injec-
tive. For 0. = (0,1) € IF(X),

¢F ([0~]ge) = e (0-) = f:(0-) ng:(0-) =U(0;t) NL(1;t) = D. (3.41)
If H € IF(X), then for H. = (xy,Xu) € IF(X), we have
o ([H-1ge) = p(H-) = fr(H-) nge(H-) = U(Xm;t) NL(Xu;t) = H. (3.42)

Hence ¢/ is surjective, this completes the proof. O
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