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RAYLEIGH WAVES IN A THERMOELASTIC GRANULAR
MEDIUM UNDER INITIAL STRESS
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ABSTRACT. We study the effect of initial stress on the propagation of Rayleigh waves in a
granular medium under incremental thermal stresses. We also obtain the frequency equa-
tion, in the form of a twelfth-order determinantal expression, which is in agreement with
the corresponding classical results.
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1. Introduction. The propagation of thermoelastic waves in a granular medium
under initial stress has some applications in soil mechanics, earthquake science, geo-
physics, mining engineering, etc. The theoretical outline of the development of the
subject from the mid-thirties was given by Paria [9]. The present paper, however, is
based on the dynamics of granular media as propounded by Oshima [7, 8].

The medium under consideration is discontinuous such as one composed numerous
large or small grains. Unlike a continuous body, each element or grain cannot only
translate but also rotate about its centre of gravity. This motion is the characteristics
of the medium and has an important effect upon the equations of motion to produce
internal friction. It is assumed that the medium contains so many grains that they will
never be separated from each other during the deformation and that the grain has
perfect elasticity. The frequency equation of Rayleigh waves in a granular layer over
a granular half-space was given by Bhattacharyya [2]. In [4], EInaggar investigated the
influence of initial stress of the waves propagation in a thermoelastic granular infinite
cylinder. Recently [1], Ahmed discussed the influence of gravity on the propagation
of waves in granular medium.

This paper is devoted to the study of the effect of initial stress on the propaga-
tion of Rayleigh waves in a granular medium under incremental thermal stresses. The
medium under consideration is granular half-space overlain by a different granular
layer and initial stresses present in this medium have considerable effect in the prop-
agation of Rayleigh waves [3]. The wave velocity equation has been derived in the form
of twelfth-order determinant. The roots of this equation are in general complex and
the imaginary part of an appropriate root measures the attenuation of the waves. It
is shown that the frequency of Rayleigh waves contains terms involving thermal co-
efficients and other terms involving initial stress and so the phase velocity changes
with respect to this thermal coefficients and the initial stress. When there is no cou-
pling between the temperature and the strain field in the absence of the initial stress,
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the derived frequency equation reduces to an equation in the form of ninth-order de-
terminant similar to that obtained by Bhattacharyya [2]. Also, the classical frequency
equation when both media are elastic and the other effects are absent is obtained.

2. Formulation of the problem. Consider a system of orthogonal cartesian axes
X1,X2,x3 such that the interface and the free surface of the granular layer resting
on the granular half-space of different material are the planes x3 = H and x3 = 0,
respectively, the origin O is any point on the free surface, x3-axis is positive in the
direction towards the exterior of the half-space, and the x;-axis is positive along the
direction of Rayleigh waves propagation.

The state of deformation in the granular medium is described by the displacement
vector U(u1,0,u3) of the centre of gravity of a grain and the rotation vector &(&,n,T)
of the grain about its centre of gravity.

In this problem the stress tensor and the stress couple are nonsymmetric, i.e., T;; #
T;; and M;; # Mj;. The stress tensor T;; can be expressed as the sum of symmetric
and antisymmetric tensors

Tij=0'ij+0i/j, (2.1)
where
1 ;1
gij = E(Tij+Tji) and O_ij = E(Tij—Tﬁ). 2.2)
The symmetric tensor o;; = 07j; is related to the symmetric strain tensor
1 aui auj
i —ei= = + , 2.3
€ij €jt 2 (an aXl' ( )

by Hooke’s law.
The antisymmetric stresses Ui’j are given by

7 ag ’ ar’ ’ ag 4 4 4
0-23 = _FE, 031 = _FE, 0-12 = _Fﬁ, 0-11 = 0-22 = 0-33 = 0, (2.4)
where F is the coefficient of friction.
The stress couple M;; is given by
Mij = MVij, (2.5)
where M is the third elastic constant,
0 0 0
Vi1 = i, vop =0, V33 = i, Vo3 =0, V31 = i,
0x1 0x3 0x3
(2.6)
% —i(w—k) v —i(w+) % —ﬁ vo1 =0
1278)(1 2+n), 3278x3 2+1n), 1378){3’ 21 =0,

where w;, = 1/2(0u1/0x3—0usz/0x1) is the component of rotation.
The heat conduction equation is given by (see [6])
ou

oT
2 _ oYU
KVeT = pC, T +yToV ot (2.7)
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where K is the thermal conductivity, T is the temperature change about the initial
temperature Ty, p is the density, C, is the specific heat per unit mass at constant
strain, y is equal to «(3A +2u), « is the thermal expansion coefficient, and A and u
are Lame’s constants and t is the time.

The components of incremental stress in terms of the displacement are given by
(see [3, 6])

_ ouy ous
011—(A+2u+v)axl+(?\+n)ax3 yT,
_ 0w ous
033 = AaXI + (?\+2[J) aX3 yT, (2.8)
%+%)_

i3 =H (ax3 0x1

The dynamical equations of motion are

0Ti11 |, 0713 dwy  0%uy
o T axs P P

aT12 ang
0x1 0Xx3
aT13 i 6733 6w2 82u3

a1 T oxs T, Pare

=0, (2.9)

and

oM, M1
ax1 axl
0Mi> OMs3;
8x1 TX3
oMy | 3Mss
0x1 0x3

T23—T32+ =0,

T31 —T13+ =0, (2.10)

T2 —T21+ =0.

Equations (2.9) and (2.10) take the forms, when the stresses are substituted,

2 2
(2\+2u+P)a uzl +(u+£>a 1421
0X7 2/ 0x3 @2.11)
+ ()\_;’_ + B) azuS _ al _Fi(ﬂ) — azul -
T2 ) oxioxs Yoxy  at\ox;) ~ P o
9 ﬁ_ﬁ)_
at(ax3 dx1 =0, (2.12)
P azul p 62MS
<A+“+§) 0x10x3 +(H—§> ox3
(2.13)
+(A+2 )azu3_ a—T+ a<87n)_ 0%us
Hox2 " Vox; T at\ox ) TP e
“F%  mveE o, (2.14)

ot
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on

—F§+MV2(n+w2) =0, (2.15)
—F% +MV2C =0. (2.16)

3. Solution of the problem. Let the constants A, u, p, F, M, y and A, i, p, F, M,y
be characteristics of the layer and the half-space, respectively. Let us introduce the
displacement potentials ¢(x1,x3,t) and (x1,x3,t) which are related to the displace-
ment components u; and uj3 by the relations

_0p _ovw _0d oy
= ox1 0x3’ Us = 0x3 0x1 3.1

Substituting from (3.1) into (2.11), (2.13), and (2.15), we see that ¢ and  satisfy the
wave equations

’°¢p y
2924 9P ¥4 _
x-Vep 32 pT 0, (3.2)
202, 0%W  On
22 _ ¥ el
BVey 3 +sat 0, (3.3)
—s’aa—?+v2n—v4w =0, (3.4)
where
0(2:)\+2u+l7, 32:“_(p/2), S:f, Srzi_ (3.5)
p p p M
From (3.1), the heat conduction equation (2.7) becomes
oT op
2 _ . 2( 9P
KV2T = pC, 5 +y TV <6t ) (3.6)
Elimination of T from (3.2) and (3.6), gives
19 0%¢ o
2 L0 2924, _ 9P\ _ _g29P _
(v X at><o‘ Vi 8t2> Vo =0 (3.7)
where
k y?To
= , e=2—, (3.8)
X pce pk
Also, n can be eliminated by the use of equations (3.3) and (3.4) as follows:
0 0%y oy
2 _ o9 292, 9 W 49y _
(v-s 5 ) (Bvie- 57 ) +59¢ 5 ~o. (3.9
For a plane harmonic wave propagation in the x;-direction, we assume
¢ = 1 (x3)exp (i(Lx; - bt)), (3.10)
Y = yi(x3)exp (i(Lx; —bt)), (3.11)
(€,n,C) = (&1(x3),m (x3),C1(x3)) exp (i(Lx; — bt)), (3.12)

where b is real positive and L is in general complex.
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Substituting from (3.12) into (2.12), (2.14), and (2.16), gives
D& —ilC, =0,
D?E,+h?*, =0,
D*Cy +h*C =0,

where h? = ibs'—12, D = d/dxs.
Solutions of (3.14) and (3.15) are

El — Aleihxg +A26_ihx3, El — Bleil’lX3 +Bze_ihx3,

respectively.
From (3.13) and (3.16), we obtain

(A eth*3s — A,ethx3) _ [ (B e!"*3 — Byeh¥3) = 0,

Equating the coefficients of e"*3 and e~""*3 to zero in (3.17), gives

L -L
Ay = By, Ap = —Bs.
1= 55 2= b2

Also, substitution from (3.10) and (3.11) into (3.7) and (3.9), we obtain

: 2
[(xZD“ + (bz —2L%0% +ibe+ lh;()DZ +&°L*

: 2 2 ‘13
—bZLZ—iloLZs—lbLa+lb}¢1

X

[(B2—ibs)D* + (b2 —2L2B2 +ibs' B2 + 2ibsL?) D?

+ (B2 —ibs)L* - (b+is'B%)bL? +ib3S |y, = 0.

The solution of (3.19) and (3.20) has the form

1 = A3e™33 4 B3eT ™33 4 A e™43 4 BreT M3,

Yy = E3€n3x3 +F3€7n3x3 +E4€n4x3 +F4e’"4"3,

where

b(b+ie) ib b [ ot
—_ +

2 2y _ 12 _ _ = . N2 92 i _ =
(m5,m3) =L o2 2x = 20 (b+i&e)* -2ix*(b+ig) X

2L2B% — b2~ ibB%s' ~2ibL%s = b[ (b~ iB%s')° —4b%ss']"?

(n3,n3) = 2(B2—ibs)

Using (3.3), (3.11), (3.12), and (3.22), we get

n = Q3 (E3e”3x3 +F36_n3x3) +Qy (E4e"4"3 +F4€_n4x3),

631

(3.13)
(3.14)
(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
(3.22)

(3.23)

(3.24)
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where

Q3 = *;gz (n§—L2+Z—§), Q4= —ip° <n;21—L2+ Z—i) (3.25)
From (3.2), (3.10), and (3.21), we have

T = [Q5(A3e™3%3 + B3e ™3%3) + Q) (A4e™4*3 + Bye ™4*3) Jexp [i(Lx; —bt)], (3.26)
where

2 2 2 2
oy = P (m%—L2+b—), o, =P (mi—L2+b—2>. (3.27)
y x y «

The functions &, 1, N1, ¢1, and Y, in the state of the lower medium must vanish
as x3 — oo and using the symbols with a bar for the quantities in the lower medium
(except x3,L,b,p) and assuming the real parts of 13, n14,73, 74 are positive while the
imaginary part of h is negative, we obtain, for x3 > H,

g, - _%Eze—iﬁm,

T, =Bye s,

M =Q3F3e % 4 QuF 0743, (3.28)
1 =Bye N 4 Bye N,

W, = F3e %3 4 F e M4X3,

o
T = Q3B3e ™% 4 (), Bye 4%,

4. Boundary conditions and frequency equation. The boundary conditions on the
interface x3 = H are

M) w =70, (i) w3 =13, (iii) &=E,
iv) n=mn, V) T=C, (Vi) M3z = M33,
(vi)) M3, = M3, (Viii) M3 = M3z, (ix) T33=T33, (4.1)
(X) T31=T31, (xi) T32=T32, (xii) T=T,
(xiii) aa—; +0T = ;7:2 +0T.

The boundary conditions on the free surface x3 = 0 are

(xiv) Mz3 =0, (xv) Mz =0, (xvi) M3 =0, (xvil) T33 =0,
(4.2)
(xviii) 131 =0, (xxi) T32 =0, (xx) a—T +0T =0,
aX3
where

M33=M£, M32=Mi(f)—v2‘1'), M31=M§,
6x3 6x3

aX3
: o’y %y
EPRVE: P
Ts3 = AV ¢+2u<8x§ 0x10x3
o’y aiﬂ)_ on
0x10x3 0x35 0xj ot’

__p98
)‘YT, T32 = Fat’

T31 = H(Z
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0 is the ratio of the coefficients of heat transfer to the thermal conductivity.
From the boundary conditions (iii), (v), (vi), and (vii), we get

BleihH 7BZe—ihH _ 7?28—1'EH

ByeihH 4 B,e~ihH — _B,pihH

, , L (4.3)
M(BleLhH *BQ@ith) — *MBzeith,
M (Bye"H 4 Bye thHY) = _ N[ Bye~thH,
Whence
Bi=B,=B>=0, E£=C=£=C=0. (4.4)

The other significant boundary conditions are responsible for the following relations:

(xvi) qi(E3—F3)+q2(Es—F4) =0,
(xvii) q3(A3+B3) +qa(As+By) +q5(E3 —F3) +q6(Es—F4) =0,
(xviil) q7(As—B3) +qs(As—By) +q9(E3—F3) +q10(Es—F4) =0,

(i) iL(Aze™3H 4 Bge ™3H 1 A e™4H 4 B o MH) _p3(Eze™H 4 Fye~"3H)

—ny(Eze™H + Fyre ™) = {ILB3e™™3H { {IBje ™4 {73 Fye ™H 4 iy Fye ™H,

(i) m3(Aze™H —Bye ™ H) 4y (Age™H — BjeMaH)
+iL(E3e™H — Fze "3H { E oMl | Fje—al)

= —W3§3e‘m3H —W4§4e‘ﬁ4H + l’Lfg,e_ﬁ3H + iL?4e_ﬁ4H,
(iv) Q3 (E36n3H +F36_n3H) +Qy (E32n4H + F4e‘"4H) = 63?36ﬁ3H +§4F48_W3H,

(viii) M[q, (E3e™ — F3e™™H) 4 gy (Ege™H — Fye )]
=—M(q,Fze ™" +q,Fye ™M),
(ix) q3(Aze™ +Bze ™M) 4 qq(Age™H + Bye ™M) 4 g5 (Eze™H — Fze™H)

+qe(Ese"H — Fye M) = q,Bye ™ + G, Bye™H — G Fye ™H —qgFie ™1,

X)) q7(Ase™H —Bye ™M) 4 qo(Ase™4H — e ™H) 4 go (Eze™H — Fye~™3H)
+qi0(Ese™H —Fye ") = —q;Bse ™sH B e MM

—qoF3e ™M —q o Fae ™1,

(xii) Qf(Aze™H + Bse ™3H) 4 Q) (Age™4H 4 By ™sH) = 03By "3H £ (), Bye 4H,
3 4 3 4
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(xiii) q11A3e™" +qiBze ™3 + qi3 A0+ g1y Bye e

=qpBze ™M + G, ,Bie ™,

(xxX) q11A3+q12B3 +q13A4+q14B4 = 0,

a1 =n3(Q3+L%—n?),

42 =g (Qu+L* —nj),

a3 = (2u+p)L? - pb* — pm3,
ds = Ru+p)L? - pb* - pmj,
qs = —2iLuns,

qe = —2iLpuny,
q7; =2iLlums,
qs = 2iLumy,

do = ibFQ3 — uL? — unj,
do = ibFQ4 — pL? — pn3,
a1 = Q3(0+m;3),
qi2 = Q3(0-m3),
q13 = Q4 (0 +my),

( )

d1s = Q4 (0—my),

(4.5)
q, =n3(Q3+L%-m3),

q, =74 (Qu + L7 -713),

as = (2a+p)L? —pb* - pm3,

4, = (2@ +p)L? —pb* - pm,

ds = —2ilpmns,

de = 2ilpny,

q; = 2ilpms,

s = 2L, (4.6)

qy = ibFQ3 - iL? - i3,

Elimination of As3,Bs, Ay, By, E3, F3,E4,F4,B3,B4,F3,F4 gives the wave velocity equation

in the form of

detd;; =0, 4.7)
where the non-vanishing entries of the twelfth-order determinant of d,;; are given by

dis=aqie™",  dig=-qe™",  diz=qee™", dig = —qze™",

dz1 = qze” "™, dzz = qze™", dz3 = qee”™H, day = qse™H,

dzs = gse” ™", dy6 = —qse™", d27 = qee” ™", dag = —qee™",

dz1 = qre ™M, d3> = —qre™", d33 = qge ™M, d3s = —qge™",

dzs = qoe ™", d3s = —qoe™H, d37 = qroe ™M, d3g = —qroe™",

dyy =1L, dyo =1L, dy3 =1L, dsg =1L,

dys = —ns, dag = —n3, da7 = —ng, dag = Ny,

dag = —1L, dayo = iL, dan = —n3, da1p = —My,

ds1 =ms, dsz = -ms, ds3 =my, dsq = —My,

dss =1L, dsg =1L, ds7 =1L, dsg =1L,

dsg =3, ds10 = M4, ds11 =L, dsi2 =iL,

des = Qs, des = Q3, de7 = Qa, deg = Qu,
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de1n = —Q3, de12 = —Qa, d7s=Maq, dz6 = -Mq,
d77 = Mqg, dzs = -Mqo, dz11 =Maq,, d712 = —Mqp,
dg1 = qs, dgz = g3, dgz = qa, dgs = qa,

dgs = gs, dge = —qs, dg7 = qs, dgs = —ds,
dgo = —q3, dgi0 = —dy, dg11 =1qs, dg12 =4,
do1 = 4q7, do2 = —q7, dy3 = gs, dos = —qs,
dys = qo, dos = —qo, do7 = qio, dos = —d10,
doo =137, dg10 = qs, do11 =4y, do12 =,
dio1 = Q3, dio2 = Q3, dio3 = Qj, dioa = Qj,
diog = —5,3, dioio = —521, dii1 =411, di12 = q12,
di13 = qu3, di1s =qu4, dig = =42, d1110 = —q14
dizi =que ™", dip=qiee™H, dipy=quze™H, dipy = quae™H.

(4.8)

Equation (4.7) determines the wave velocity equation for the Rayleigh waves in a
thermoelastic granular medium under initial stress.

5. Discussion. The transcendental equation (4.7), in the determinant form, has
complex roots. The real part gives the velocity of Rayleigh waves and the imaginary
part gives the attenuation due to the granular nature of the medium. It is clear from
the frequency equation (4.7) that the phase velocity depends on the initial stress P,
the friction F, and the coupling factor e.

When there is no coupling between the temperature and strain fields, we have 0
vanishes,

«?

2
lim (m%,mﬁ) = <L2— bz,Lz) , lim(y-Q5) =0, lim(y-Q}) = b2 (5.1)
e—~0 y—0 y=0

where
limg;, =0, limg»=0, limg;3=b°L, limgqis = -b’L. (5.2)
y—0 y—0 y—0 y—0

Similar results hold for the lower medium. Multiplying the rows 10, 11 and 12 of
the determinant |d;j| by y and then taking lin%, equation (4.7) reduces, after some
y—

computation, to the following ninth-order determinantal equation:

0 0 qie ™WH _giemH goemaH _g.emiH 0 0
aze”™M qze™t qse st —qse™t gee ™ —gee™ 00 0
are”"™M —qze™t qoe M —qoe™t qroe ™! —qie™™ 0 0 0

il il —Nn3 —Nnj3 —N4 Ny —ilL -3 -y

ms —Mms il il il il m3 —il —il | =0,

0 0 Q3 Q3 Q4 Q4 0 -Q3 Q4

0 0 Mql —Mql MQ2 _Mq2 0 Mﬁl Mﬁz

as as as —qs de —-ds —4q3 4qs ds

qr -qr 7 —d9 dio —di0  d; 4y 4dio

(5.3)
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where
a1 =n3(Q3 +L*—nj), q, =7m3(Q3 +L%-m3),

> = n4(Qq +L? —nj3), a5 =74 (Qs +1° -73),

s = 2uL* - pb?, 4, = 2[L? - pb?,

a5 = —2iLuns, s = —2iLums, G4)
Qe = —2iLuny, g = —2ilpny,

q7 = 2ilums, q; = 2ilpms,

qo = ibFQ3 — uL? — uns, 4y = ibF Q3 —uL® —un3,

410 = ibFQy — uL? — un3, dy0 = ibFQu — L —[m;.
The frequency equation (5.3) determines the wave velocity equation for the Rayleigh
waves in a granular medium under initial stress.
When the initial stress is absent, we have
A+2u u
2 2 2 2
xXr=——, BZ*; q3:21-1L _pb!
p p
Thus, equation (5.3) with the relations (5.5) reduces to the frequency equation ob-
tained by Bhattacharyya [2].
If the granular rotations vanish, we get

q; = 2uL% —pb2. (5.5)

b2
. . 2 2\ 2 72 . . i -
lim lim (n5,ng) = (L L Bz), }}1;1(1)%1{%(3 Q3) ib,

M-05-0
2
lim lim (§-Q4) =0, Iimlim(Qy) = —— (5.6)
M—0S5-0 M-0S5-0 B?
U 2 2 c T 2 b?
}}E% }3513019 =pb° 2L, Al}g}) }glz%qw =-u <2L - BZ) .

Similar results also hold for the lower medium. Multiplying the columns 5, 6 and 11
of the determinant |d;;| by S and then taking }}H(l) giné, we get after some computation,

the following ninth-order determinantal equation:

ase”™M qze™t qiemmel quem gge™! —qge™ 0 0 0
aze”™" qrem™t gge™ —qge™i grpe ™M grpe™” 0 0 0
il il il il —Ny Ny —iL —ilL -7y
ms —ms My —My il il ms my —il
as as a4 a4 —ds a6  —d3 —ds dqp | =0.
a7 —q7 qs —qs —d1o q10 d; ds dio
Q4 Q) Q o 0 0 -0; -Q, 0
an q12 a13 A4 0 0 di2 —qi4 O
ane ™t gpemst gizemmifl g emat 0 0 0 0 0

(5.7)
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Equation (5.7) is the velocity equation of an initially stressed thermoelastic granular
layer of thickness H overlaying semi-infinite elastic isotropic medium.

Finally, in the absence of initial stress and when there is no coupling between the
temperature and strain fields, as well as the vanishing of granular rotations, equa-
tion (5.7) takes the form

R2ems3H 21 myemaH R2e—m3H —2Lmye m4H 0 0
2Lmge™3f  R2emsH  _D[ipqe-m3H R2e~—maH 0 0
-L —My -L my L -y
—ms —L ms —L —ms L = O,
2Lms R2 —2Lm; R2 —21. M, %*2
R2 2Lmy R2 2L, _HERr orHam,
u u
(5.8)
where
2 2 pb? =2 _y2 _ pb*
’ A+2p’ 3 A+bp’
u 2 M
BZ = ==
p 0 (5.9)
2 2 2 2
mi=12-2  miop-L R2=<2L2—b2), R =(22-2
B B B B

Equation (5.8) is identical to [5, equation (4.195)].
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