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RAYLEIGH WAVES IN A THERMOELASTIC GRANULAR
MEDIUM UNDER INITIAL STRESS
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Abstract. We study the effect of initial stress on the propagation of Rayleigh waves in a
granular medium under incremental thermal stresses. We also obtain the frequency equa-
tion, in the form of a twelfth-order determinantal expression, which is in agreement with
the corresponding classical results.
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1. Introduction. The propagation of thermoelastic waves in a granular medium
under initial stress has some applications in soil mechanics, earthquake science, geo-
physics, mining engineering, etc. The theoretical outline of the development of the
subject from the mid-thirties was given by Paria [9]. The present paper, however, is
based on the dynamics of granular media as propounded by Oshima [7, 8].
Themedium under consideration is discontinuous such as one composed numerous

large or small grains. Unlike a continuous body, each element or grain cannot only
translate but also rotate about its centre of gravity. This motion is the characteristics
of the medium and has an important effect upon the equations of motion to produce
internal friction. It is assumed that the medium contains so many grains that they will
never be separated from each other during the deformation and that the grain has
perfect elasticity. The frequency equation of Rayleigh waves in a granular layer over
a granular half-space was given by Bhattacharyya [2]. In [4], Elnaggar investigated the
influence of initial stress of the waves propagation in a thermoelastic granular infinite
cylinder. Recently [1], Ahmed discussed the influence of gravity on the propagation
of waves in granular medium.
This paper is devoted to the study of the effect of initial stress on the propaga-

tion of Rayleigh waves in a granular medium under incremental thermal stresses. The
medium under consideration is granular half-space overlain by a different granular
layer and initial stresses present in this medium have considerable effect in the prop-
agation of Rayleigh waves [3]. The wave velocity equation has been derived in the form
of twelfth-order determinant. The roots of this equation are in general complex and
the imaginary part of an appropriate root measures the attenuation of the waves. It
is shown that the frequency of Rayleigh waves contains terms involving thermal co-
efficients and other terms involving initial stress and so the phase velocity changes
with respect to this thermal coefficients and the initial stress. When there is no cou-
pling between the temperature and the strain field in the absence of the initial stress,
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the derived frequency equation reduces to an equation in the form of ninth-order de-
terminant similar to that obtained by Bhattacharyya [2]. Also, the classical frequency
equation when both media are elastic and the other effects are absent is obtained.

2. Formulation of the problem. Consider a system of orthogonal cartesian axes
x1,x2,x3 such that the interface and the free surface of the granular layer resting
on the granular half-space of different material are the planes x3 = H and x3 = 0,
respectively, the origin O is any point on the free surface, x3-axis is positive in the
direction towards the exterior of the half-space, and the x1-axis is positive along the
direction of Rayleigh waves propagation.
The state of deformation in the granular medium is described by the displacement

vector U(u1,0,u3) of the centre of gravity of a grain and the rotation vector ξ(ξ,η,ζ)
of the grain about its centre of gravity.
In this problem the stress tensor and the stress couple are nonsymmetric, i.e., τij ≠

τji and Mij ≠ Mji. The stress tensor τij can be expressed as the sum of symmetric
and antisymmetric tensors

τij = σij+σ ′ij , (2.1)

where

σij = 12
(
τij+τji

)
and σ ′ij =

1
2

(
τij−τji

)
. (2.2)

The symmetric tensor σij = σji is related to the symmetric strain tensor

eij = eji = 12

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.3)

by Hooke’s law.
The antisymmetric stresses σ ′ij are given by

σ ′23 =−F
∂ξ
∂t
, σ ′31 =−F

∂η
∂t
, σ ′12 =−F

∂ζ
∂t
, σ ′11 = σ ′22 = σ ′33 = 0, (2.4)

where F is the coefficient of friction.
The stress couple Mij is given by

Mij =Mνij, (2.5)

where M is the third elastic constant,

ν11 = ∂ξ
∂x1

, ν22 = 0, ν33 = ∂ζ
∂x3

, ν23 = 0, ν31 = ∂ξ
∂x3

,

ν12 = ∂
∂x1

(ω2+η), ν32 = ∂
∂x3

(ω2+η), ν13 = ∂ξ
∂x3

, ν21 = 0,
(2.6)

where ω2 = 1/2(∂u1/∂x3−∂u3/∂x1) is the component of rotation.
The heat conduction equation is given by (see [6])

K∇2T = ρCe ∂T∂t +γT0∇·
∂U
∂t
, (2.7)
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where K is the thermal conductivity, T is the temperature change about the initial
temperature T0, ρ is the density, Ce is the specific heat per unit mass at constant
strain, γ is equal to α(3λ+2µ), α is the thermal expansion coefficient, and λ and µ
are Lame’s constants and t is the time.
The components of incremental stress in terms of the displacement are given by

(see [3, 6])

σ11 = (λ+2µ+p)∂u1∂x1
+(λ+p)∂u3

∂x3
−γT ,

σ33 = λ∂u1∂x1
+(λ+2µ)∂u3

∂x3
−γT ,

σ13 = µ
(
∂u1
∂x3

+ ∂u3
∂x1

)
.

(2.8)

The dynamical equations of motion are

∂τ11
∂x1

+ ∂τ13
∂x3

+P ∂ω2

∂x3
= ρ∂

2u1
∂t2

,

∂τ12
∂x1

+ ∂τ32
∂x3

= 0,
∂τ13
∂x1

+ ∂τ33
∂x3

+P ∂ω2

∂x1
= ρ∂

2u3
∂t2

,

(2.9)

and

τ23−τ32+ ∂M11

∂x1
+ ∂M31

∂x1
= 0,

τ31−τ13+ ∂M12

∂x1
+ ∂M32

∂x3
= 0,

τ12−τ21+ ∂M13

∂x1
+ ∂M33

∂x3
= 0.

(2.10)

Equations (2.9) and (2.10) take the forms, when the stresses are substituted,

(λ+2µ+P)∂
2u1
∂x21

+
(
µ+ P

2

)
∂2u1
∂x23

+
(
λ+µ+ P

2

)
∂2u3
∂x1∂x3

−γ ∂T
∂x1

−F ∂
∂t

(
∂η
∂x3

)
= ρ∂

2u1
∂t2

,
(2.11)

∂
∂t

(
∂ξ
∂x3

− ∂ζ
∂x1

)
= 0, (2.12)

(
λ+µ+ P

2

)
∂2u1
∂x1∂x3

+
(
µ− P

2

)
∂2u3
∂x21

+(λ+2µ)∂
2u3
∂x23

−γ ∂T
∂x3

+F ∂
∂t

(
∂η
∂x1

)
= ρ∂

2u3
∂t2

,
(2.13)

−F ∂ξ
∂t
+M∇2ξ = 0, (2.14)
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−F ∂η
∂t
+M∇2(η+ω2)= 0, (2.15)

−F ∂ζ
∂t
+M∇2ζ = 0. (2.16)

3. Solution of the problem. Let the constants λ, µ, ρ, F , M , γ and λ, µ, ρ, F , M , γ
be characteristics of the layer and the half-space, respectively. Let us introduce the
displacement potentialsφ(x1,x3, t) andψ(x1,x3, t)which are related to the displace-
ment components u1 and u3 by the relations

u1 = ∂φ
∂x1

− ∂ψ
∂x3

, u3 = ∂φ
∂x3

− ∂ψ
∂x1

. (3.1)

Substituting from (3.1) into (2.11), (2.13), and (2.15), we see thatφ andψ satisfy the
wave equations

α2∇2φ− ∂
2φ
∂t2

− γ
ρ
T = 0, (3.2)

β2∇2ψ− ∂
2ψ
∂t2

+s ∂η
∂t
= 0, (3.3)

−s′ ∂η
∂t
+∇2η−∇4ψ= 0, (3.4)

where

α2 = λ+2µ+p
ρ

, β2 = µ−(p/2)
ρ

, S = F
ρ
, S′ = F

M
. (3.5)

From (3.1), the heat conduction equation (2.7) becomes

k∇2T = ρCe ∂T∂t +γT0∇
2
(
∂φ
∂t

)
. (3.6)

Elimination of T from (3.2) and (3.6), gives(
∇2− 1

χ
∂
∂t

)(
α2∇2φ− ∂

2φ
∂t2

)
−ε∇2 ∂φ

∂t
= 0, (3.7)

where

χ = k
ρce

, ε= γ2T0
ρk

. (3.8)

Also, η can be eliminated by the use of equations (3.3) and (3.4) as follows:(
∇2−s′ ∂

∂t

)(
β2∇2ψ− ∂

2ψ
∂t2

)
+S∇4 ∂ψ

∂t
= 0. (3.9)

For a plane harmonic wave propagation in the x1-direction, we assume

φ=φ1(x3)exp
(
i(Lx1−bt)

)
, (3.10)

ψ=ψ1(x3)exp
(
i(Lx1−bt)

)
, (3.11)(

ξ,η,ζ
)= (ξ1(x3),η1(x3),ζ1(x3))exp(i(Lx1−bt)), (3.12)

where b is real positive and L is in general complex.
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Substituting from (3.12) into (2.12), (2.14), and (2.16), gives

Dξ1−iLζ1 = 0, (3.13)

D2ξ1+h2ξ1 = 0, (3.14)

D2ζ1+h2ζ1 = 0, (3.15)

where h2 = ibs′ −L2, D ≡ d/dx3.
Solutions of (3.14) and (3.15) are

ξ1 =A1eihx3+A2e−ihx3 , ζ1 = B1eihx3+B2e−ihx3 , (3.16)

respectively.
From (3.13) and (3.16), we obtain

h
(
A1eihx3−A2e−ihx3

)−L(B1eihx3−B2e−ihx3)= 0. (3.17)

Equating the coefficients of eihx3 and e−ihx3 to zero in (3.17), gives

A1 = L
h
B1, A2 = −Lh B2. (3.18)

Also, substitution from (3.10) and (3.11) into (3.7) and (3.9), we obtain

[
α2D4+

(
b2−2L2α2+ibε+ ibα

2

χ

)
D2+α2L4

−b2L2−ibL2ε− ibL
2α2

χ
+ ib

3

χ

]
φ1 = 0,

(3.19)

[(
β2−ibs)D4+(b2−2L2β2+ibs′β2+2ibsL2)D2

+(β2−ibs)L4−(b+is′β2)bL2+ib3S′]ψ1 = 0.
(3.20)

The solution of (3.19) and (3.20) has the form

φ1 =A3em3x3+B3e−m3x3+A4em4x3+B4e−m4x3 , (3.21)

ψ1 = E3en3x3+F3e−n3x3+E4en4x3+F4e−n4x3 , (3.22)

where

(
m2
3,m

2
4

)= L2− b(b+iε)
2α2

− ib
2χ
± b
2α2

[
(b+iε)2−2iα2(b+iε)− α

4

χ

]1/2
,

(
n23,n

2
4

)= 2L2β2−b2−ibβ2s′ −2ibL2s±b
[(
b−iβ2s′)2−4b2ss′]1/2

2
(
β2−ibs) .

(3.23)

Using (3.3), (3.11), (3.12), and (3.22), we get

η1 =Ω3
(
E3en3x3+F3e−n3x3

)+Ω4(E4en4x3+F4e−n4x3), (3.24)
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where

Ω3 = −iβ
2

bS

(
n23−L2+

b2

β2

)
, Ω4 = −iβ

2

bS

(
n24−L2+

b2

β2

)
. (3.25)

From (3.2), (3.10), and (3.21), we have

T = [Ω′3(A3em3x3+B3e−m3x3
)+Ω′4(A4em4x3+B4e−m4x3

)]
exp

[
i(Lx1−bt)

]
, (3.26)

where

Ω′3 =
ρα2

γ

(
m2
3−L2+

b2

α2

)
, Ω′4 =

ρα2

γ

(
m2
4−L2+

b2

α2

)
. (3.27)

The functions ξ1, ζ1, η1, φ1, and ψ1 in the state of the lower medium must vanish
as x3 →∞ and using the symbols with a bar for the quantities in the lower medium
(except x3,L,b,p) and assuming the real parts ofm3,m4,n3,n4 are positive while the
imaginary part of h is negative, we obtain, for x3 >H,

ξ1 =−
L
h
B2 e−ihx3 ,

ζ1 = B2 e−ihx3 ,
η1 =Ω3F3 e−n3x3+Ω4F4 e−n4x3 ,
φ1 = B3 e−m3x3+B4 e−m4x3 ,

ψ1 = F3 e−n3x3+F4 e−n4x3 ,
T =Ω′3B3 e−m3x3+Ω′4B4 e−m4x3 .

(3.28)

4. Boundary conditions and frequency equation. The boundary conditions on the
interface x3 =H are

(i) u1 =u1, (ii) u3 =u3, (iii) ξ = ξ,
(iv) η= η, (v) ζ = ζ, (vi) M33 =M33,

(vii) M31 =M31, (viii) M32 =M32, (ix) τ33 = τ33, (4.1)

(x) τ31 = τ31, (xi) τ32 = τ32, (xii) T = T ,

(xiii)
∂T
∂x3

+θT = ∂T
∂x3

+θT .

The boundary conditions on the free surface x3 = 0 are
(xiv) M33 = 0, (xv) M31 = 0, (xvi) M32 = 0, (xvii) τ33 = 0,

(xviii) τ31 = 0, (xxi) τ32 = 0, (xx)
∂T
∂x3

+θT = 0, (4.2)

where

M33 =M ∂ζ
∂x3

, M32 =M ∂
∂x3

(η−∇2Ψ), M31 =M ∂ξ
∂x3

,

τ33 = λ∇2φ+2µ
(
∂2φ
∂x23

− ∂2ψ
∂x1∂x3

)
−γT , τ32 =−F ∂ξ∂t ,

τ31 = µ
(
2

∂2φ
∂x1∂x3

− ∂
2ψ
∂x23

+ ∂
2ψ
∂x21

)
−F ∂η

∂t
,
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θ is the ratio of the coefficients of heat transfer to the thermal conductivity.
From the boundary conditions (iii), (v), (vi), and (vii), we get

B1eihH−B2e−ihH =−B2e−ihH,
B1eihH+B2e−ihH =−B2eihH,

M
(
B1eihH−B2e−ihH

)=−MB2e−ihH,

M
(
B1eihH+B2e−ihH

)=−MB2e−ihH.

(4.3)

Whence

B1 = B2 = B2 = 0, ξ = ζ = ξ = ζ = 0. (4.4)

The other significant boundary conditions are responsible for the following relations:

(xvi) q1
(
E3−F3

)+q2(E4−F4)= 0,
(xvii) q3

(
A3+B3

)+q4(A4+B4)+q5(E3−F3)+q6(E4−F4)= 0,
(xviii) q7

(
A3−B3

)+q8(A4−B4)+q9(E3−F3)+q10(E4−F4)= 0,
(i) iL

(
A3em3H+B3e−m3H+A4em4H+B4e−m4H

)−n3(E3en3H+F3e−n3H)
−n4

(
E3en4H+F4e−n4H

)= iLB3e−m3H+iLB4e−m4H+n3F3e−n3H+n4F4e−n4H,

(ii) m3
(
A3em3H−B3e−m3H

)+m4
(
A4em4H−B4e−m4H

)
+iL(E3en3H−F3e−n3H+E4en4H+F4e−n4H)

=−m3B3e−m3H−m4B4e−m4H+iLF3e−n3H+iLF4e−n4H,

(iv) Ω3
(
E3en3H+F3e−n3H

)+Ω4(E3en4H+F4e−n4H)=Ω3F3en3H+Ω4F4e−n3H,
(viii) M

[
q1
(
E3en3H−F3e−n3H

)+q2(E4en4H−F4e−n4H)]
=−M(q1F3e−n3H+q2F4e−n4H),

(ix) q3
(
A3em3H+B3e−m3H

)+q4(A4em4H+B4e−m4H
)+q5(E3en3H−F3e−n3H)

+q6
(
E4en4H−F4e−n4H

)= q3B3e−m3H+q4B4e−m4H−q5F3e−n3H−q6F4e−n4H,

(x) q7
(
A3em3H−B3e−m3H

)+q8(A4em4H−B4e−m4H
)+q9(E3en3H−F3e−n3H)

+q10
(
E4en4H−F4e−n4H

)=−q7B3e−m3H−q8B4e−m4H

−q9F3e−n3H−q10F4e−n4H,

(xii) Ω′3
(
A3em3H+B3e−m3H

)+Ω′4(A4em4H+B4e−m4H
)=Ω′3B3e−m3H+Ω′4B4e−m4H,
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(xiii) q11A3em3H+q12B3e−m3H+q13A4em4H+q14B4e−m4H

= q12B3e−m3H+q14B4e−m4H,

(xx) q11A3+q12B3+q13A4+q14B4 = 0, (4.5)

where

q1 =n3
(
Ω3+L2−n23

)
,

q2 =n4
(
Ω4+L2−n24

)
,

q3 = (2µ+p)L2−ρb2−pm2
3,

q4 = (2µ+p)L2−ρb2−pm2
4,

q5 =−2iLµn3,
q6 =−2iLµn4,
q7 = 2iLµm3,

q8 = 2iLµm4,

q9 = ibFΩ3−µL2−µn23,
q10 = ibFΩ4−µL2−µn24,
q11 =Ω′3

(
θ+m3

)
,

q12 =Ω′3
(
θ−m3

)
,

q13 =Ω′4
(
θ+m4

)
,

q14 =Ω′4
(
θ−m4

)
,

q1 =n3
(
Ω3+L2−n23

)
,

q2 =n4
(
Ω4+L2−n24

)
,

q3 =
(
2µ+p)L2−ρb2−pm2

3,

q4 =
(
2µ+p)L2−ρb2−pm2

4,

q5 =−2iLµn3,
q6 = 2iLµn4,
q7 = 2iLµm3,

q8 = 2iLµm4,

q9 = ibFΩ3−µL2−µn23,
q10 = ibFΩ4−µL2−µn24,
q11 =Ω′3

(
θ+m3

)
,

q12 =Ω′3
(
θ−m3

)
,

q13 =Ω′4
(
θ+m4

)
,

q14 =Ω′4
(
θ−m4

)
,

(4.6)

Elimination of A3,B3,A4,B4,E3,F3,E4,F4,B3,B4,F3,F4 gives the wave velocity equation
in the form of

det dij = 0, (4.7)

where the non-vanishing entries of the twelfth-order determinant of dij are given by

d15 = q1e−n3H, d16 =−q1en3H, d17 = q2e−n4H, d18 =−q2en4H,
d21 = q3e−m3H, d22 = q3em3H, d23 = q4e−m4H, d24 = q4em4H,

d25 = q5e−n3H, d26 =−q5en3H, d27 = q6e−n4H, d28 =−q6en4H,
d31 = q7e−m3H, d32 =−q7em3H, d33 = q8e−m4H, d34 =−q8em4H,

d35 = q9e−n3H, d36 =−q9en3H, d37 = q10e−n4H, d38 =−q10en4H,
d41 = iL, d42 = iL, d43 = iL, d44 = iL,
d45 =−n3, d46 =−n3, d47 =−n4, d48 =n4,
d49 =−iL, d410 = iL, d411 =−n3, d412 =−n4,
d51 =m3, d52 =−m3, d53 =m4, d54 =−m4,

d55 = iL, d56 = iL, d57 = iL, d58 = iL,
d59 =m3, d510 =m4, d511 = iL, d512 = iL,
d65 =Ω3, d66 =Ω3, d67 =Ω4, d68 =Ω4,
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d611 =−Ω3, d612 =−Ω4, d75 =Mq1, d76 =−Mq1,
d77 =Mq2, d78 =−Mq2, d711 =Mq1, d712 =−Mq2,
d81 = q3, d82 = q3, d83 = q4, d84 = q4,
d85 = q5, d86 =−q5, d87 = q6, d88 =−q6,
d89 =−q3, d810 =−q4, d811 = q5, d812 = q6,
d91 = q7, d92 =−q7, d93 = q8, d94 =−q8,
d95 = q9, d96 =−q9, d97 = q10, d98 =−q10,
d99 = q7, d910 = q8, d911 = q9, d912 = q10,
d101 =Ω′3, d102 =Ω′3, d103 =Ω′4, d104 =Ω′4,
d109 =−Ω′3, d1010 =−Ω′4, d111 = q11, d112 = q12,
d113 = q13, d114 = q14, d119 =−q12, d1110 =−q14,
d121 = q11e−m3H, d122 = q12em3H, d123 = q13e−m4H, d124 = q14em4H.

(4.8)

Equation (4.7) determines the wave velocity equation for the Rayleigh waves in a
thermoelastic granular medium under initial stress.

5. Discussion. The transcendental equation (4.7), in the determinant form, has
complex roots. The real part gives the velocity of Rayleigh waves and the imaginary
part gives the attenuation due to the granular nature of the medium. It is clear from
the frequency equation (4.7) that the phase velocity depends on the initial stress P ,
the friction F , and the coupling factor ε.
When there is no coupling between the temperature and strain fields, we have θ

vanishes,

lim
ε→0

(
m2
3,m

2
4

)
=
(
L2− b

2

α2
,L2

)
, lim

γ→0
(
γ ·Ω′3

)= 0, lim
γ→0

(
γ ·Ω′4

)= b2, (5.1)

where

lim
γ→0

q11 = 0, lim
γ→0

q12 = 0, lim
γ→0

q13 = b2L, lim
γ→0

q14 =−b2L. (5.2)

Similar results hold for the lower medium. Multiplying the rows 10, 11 and 12 of
the determinant |dij| by γ and then taking lim

γ→0
, equation (4.7) reduces, after some

computation, to the following ninth-order determinantal equation:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 q1e−n3H −q1en3H q2e−n4H −q2en4H 0 0 0
q3e−m3H q3em3H q5e−n3H −q5en3H q6e−n4H −q6en4H 0 0 0
q7e−m3H −q7em3H q9e−n3H −q9en3H q10e−n4H −q10en4H 0 0 0

iL iL −n3 −n3 −n4 n4 −iL −n3 −n4
m3 −m3 iL iL iL iL m3 −iL −iL
0 0 Ω3 Ω3 Ω4 Ω4 0 −Ω3 −Ω4
0 0 Mq1 −Mq1 Mq2 −Mq2 0 Mq1 Mq2
q3 q3 q5 −q5 q6 −q6 −q3 q5 q6
q7 −q7 q9 −q9 q10 −q10 q7 q9 q10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(5.3)
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where

q1 =n3
(
Ω3+L2−n23

)
,

q2 =n4
(
Ω4+L2−n24

)
,

q3 = 2µL2−b2
(
ρ− P

α2

)
,

q4 = 2µL2−ρb2,
q5 =−2iLµn3,
q6 =−2iLµn4,
q7 = 2iLµm3,

q9 = ibFΩ3−µL2−µn23,
q10 = ibFΩ4−µL2−µn24,

q1 =n3
(
Ω3+L2−n23

)
,

q2 =n4
(
Ω4+L2−n24

)
,

q3 = 2µL2−b2
(
ρ− P

α2

)
,

q4 = 2µL2−ρb2,
q5 =−2iLµn3,
q6 =−2iLµn4,
q7 = 2iLµm3,

q9 = ibFΩ3−µL2−µn23,
q10 = ibFΩ4−µL2−µn24.

(5.4)

The frequency equation (5.3) determines the wave velocity equation for the Rayleigh
waves in a granular medium under initial stress.
When the initial stress is absent, we have

α2 = λ+2µ
ρ

, B2 = µ
ρ
, q3 = 2µL2−ρb2, q3 = 2µL2−ρb2. (5.5)

Thus, equation (5.3) with the relations (5.5) reduces to the frequency equation ob-
tained by Bhattacharyya [2].
If the granular rotations vanish, we get

lim
M→0

lim
S→0

(
n23,n

2
4

)=
(
L2,L2− b

2

β2

)
, lim

M→0
lim
S→0

(S ·Ω3)=−ib,

lim
M→0

lim
S→0

(S ·Ω4)= 0, lim
M→0

lim
S→0

(Ω4)=−b
2

β2

lim
M→0

lim
S→0

q9 = ρb2−2µL2, lim
M→0

lim
S→0

q10 =−µ
(
2L2− b

2

β2

)
.

(5.6)

Similar results also hold for the lower medium. Multiplying the columns 5, 6 and 11
of the determinant |dij| by S and then taking lim

M→0
lim
S→0

, we get after some computation,

the following ninth-order determinantal equation:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q3e−m3H q3em3H q4e−m4H q4em4H q6e−n4H −q6en4H 0 0 0

q7e−m3H q7em3H q8e−m4H −q8em4H q10e−n4H q10en4H 0 0 0

iL iL iL iL −n4 n4 −iL −iL −n4
m3 −m3 m4 −m4 iL iL m3 m4 −iL
q3 q3 q4 q4 −q6 q6 −q3 −q4 q6
q7 −q7 q8 −q8 −q10 q10 q7 q8 q10
Ω′3 Ω′3 Ω′4 −Ω′4 0 0 −Ω′3 −Ω′4 0

q11 q12 q13 q14 0 0 q12 −q14 0

q11e−m3H q12em3H q13e−m4H q14em4H 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(5.7)
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Equation (5.7) is the velocity equation of an initially stressed thermoelastic granular
layer of thickness H overlaying semi-infinite elastic isotropic medium.
Finally, in the absence of initial stress and when there is no coupling between the

temperature and strain fields, as well as the vanishing of granular rotations, equa-
tion (5.7) takes the form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R2em3H 2Lm4em4H R2e−m3H −2Lm4e−m4H 0 0

2Lm3em3H R2em4H −2Lm3e−m3H R2e−m4H 0 0

−L −m4 −L m4 L −m4

−m3 −L m3 −L −m3 L

2Lm3 R2 −2Lm3 R2 −2Lµ
µ
m3

µ
µ
R2

R2 2Lm4 R2 −2Lm4 −µ
µ
R2 −2Lµ

µ
m4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(5.8)

where

m2
3 = L2−

ρb2

λ+2µ , m2
3 = L2−

ρb2

λ+bµ ,

β2 = µ
ρ
, β

2 = µ
ρ
,

m2
4 = L2−

b2

β2
, m2

4 = L2−
b2

β
2 , R2 =

(
2L2− b

2

β2

)
, R2 =


2L2− b2

β
2




(5.9)

Equation (5.8) is identical to [5, equation (4.195)].
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