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ABSTRACT. We prove that a Finsler manifold F™ is of constant curvature K = 1 if and only
if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle
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1. Introduction. The geometry of Finsler manifolds of constant curvature is one
of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, under
some conditions on the growth of the Cartan tensor, a Finsler manifold of constant
curvature K is locally Minkowskian if K = 0 and Riemannian if K = —1. Recently,
Bryant [5] has constructed interesting Finsler metrics of positive constant curvature
on the sphere S2. Shen [9] has also investigated the geometric structure of Finsler
manifolds of positive constant curvature via the Riemannian Y-metrics. Some special
Finsler metrics of constant curvature have been intensively studied by Matsumoto
[7, 8], Shibata-Kitayama [10], and Wei [11].

The purpose of the present paper is to obtain a geometric characterization of Finsler
manifolds of positive constant curvature. More precisely, we prove that F"* = (M, F)
is a Finsler manifold of constant curvature K = 1 if and only if the unit horizontal
Liouville vector field £ = (y!/F)§/6x" is a Killing vector field on the indicatrix bundle
IM of F™. To achieve this result, we consider the Sasaki-Finsler metric G on TM and
prove that the linear connection of the Cartan connection on F™ is just the projection
of the Levi-Civita connection V with respect to G on the vertical vector bundle (see
Theorem 2.1). This enables us to express the local coefficients of V in terms of the
local coefficients of the Cartan connection of ™ (see Theorem 2.2). Finally, a necessary
and sufficient condition for € to be a Killing vector field on IM leads to the proof of
the main result stated in Theorem 3.3.

2. The Levi-Civita connection with respect to a Sasaki-Finsler metric. In the
present section, we show that the linear connection of the Cartan connection is the
projection of the Levi-Civita connection with respect to the Sasaki-Finsler metric on
the vertical vector bundle. Then we express the local coefficients of the Levi-Civita
connection in terms of the local coefficients of the Cartan connection.
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Throughout the paper we use the Einstein convention, that is, repeated indices with
one upper index and one lower index denotes summation over their range. Also, for
any smooth manifold N, we denote by %(N) the algebra of smooth functions on N and
by I'(E) the &(N)-module of smooth sections of a vector bundle E over N. For some
Finsler tensor fields we put the index o to denote the contraction by the supporting
element %, as for example, Tj, = T;; 7.

Let F"™ = (M, F) be a Finsler manifold, where M is a real m-dimensional smooth
manifold and F is the fundamental function of F™ (see Antonelli-Ingarden-Matsumoto
[2, page 36]). Consider TM° = TM\{0} and denote by VT M° the vertical vector bundle
over TM°, that is, VTM° = Kker 1y, where 11, is the tangent mapping of the canonical
projection 17 : TM° — M. We may think of the Finsler metric g = (gi;(x,y)), where
we set

1 0°F?

20y7ay] ey

gij(x,y) =

as a Riemannian metric on VTM°. The canonical nonlinear connection HTM°® =
(N/(x,»)) of F" is given by

N/ = gffl ; (2.2a)
- Lo ((EE 25,

Then on any coordinate neighborhood U c TM° the vector fields
0 _ 90 N9 ieq,..m, (2.3)

Sxi oxi gyl

form a basis for I (HT M, ). By straightforward calculations using (2.3) we obtain the
following Lie brackets:

where we set
Gikj _ g];lf (2.6a)
gk _ ONE_ON; (2.6b)

VT sxi T sxt
On TM° we consider the almost product structure Q locally given by

0 1) 1) d
Q(a;ﬂ) ~ oxt and Q(éxi) N oyt’ 2.7)
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Then by means of the pair (g,Q), we define a Riemannian metric G on TM° by (cf.
Bejancu [4, page 42])

GX,Y)=gWwX,vY)+g(QhX,QhY) VX,YeI(TTM"), (2.8)

where v and h denote the projection morphisms of TTM° on VITM° and HTM"°,
respectively. Clearly, we have

6 6 0 0 o 0
G((Sxi’o‘xf)_c<ayi’ay-">_gij' G((Sxi'ayf)_o’ =9

thatis, HTM° and VTM° are complementary orthogonal vector subbundles of TTM°
with respect to G. As the Riemannian metric G is of Sasaki type and was obtained
from a Finsler metric, we call it the Sasaki-Finsler metric on TM°.

The Levi-Civita connection V on TM° with respect to G is given by the well-known
formula

2G(VxY,Z) = X(G(Y,2))+Y(G(X,2)) - Z(G(X,Y))

2.10
YG(IX,Y1,2) +G([Z,X1,Y) - G([Y,Z],X), (210
for any X,Y,Z €T (TTM").

On the other hand, the Cartan connection of F" is the pair FC = (HTM°,V°), where
HTM?- is the canonical nonlinear connection given by (2.2) and V° is a linear connec-
tion on VTM° whose local coefficients Cikj and Fikj are given by

o 0 x 0
21031 31 Ci i gyk’ (2.11a)
k _ 1 yn09ni
Cly=29"%, (2.11b)
and
. ) x 0
Varsxi gyt~ Fiigye (2.12a)
1 0gni 09nj 09ij
kK _ 1 kn i i 99ij
Fij=39 (5xj St " oxh |’ (2.12b)

respectively. The h- and v-covariant derivatives of a Finsler tensor field T = (TiJ: )
are denoted by T/ "}, and T/}, respectively.

In order to get an interrelation between the Levi-Civita connection V and the linear
connection V° of the Cartan connection we set Gj = g th“, and by direct calculations

using (2.1) and (2.2b), we deduce that

2yk a T ooxd axt” (2.13)

0 (0Gi 0Gj\ _0gik _0djk
oyl oyt

Now, we state the following result.
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THEOREM 2.1. The linear connection V° of the Cartan connection FC is the projec-
tion of the Levi-Civita connection V on VTM?, i.e., we have

VY =vVyY, (2.14)

forany X eT(TTM°) andY € T(VTM°).

PROOF. First, we put

d . 0 d . 0

673/1. :Ai J'W and Uvé/éxjai:yi :Bi jaiyk. (215)

vva/ay‘,-

Then in (2.10) we replace (X,Y, Z) inturnby (3/0y/,0/0y%,0/0y*) and (6/5x7,0/0y",
0/0y*%) and by using (2.1), (2.4), (2.9), and (2.11b), we obtain

Ak =ck (2.16)
and
1 OGhi
Bikj = Egkh (75?;1 +gtthti_gtiGjth>- (2.17)
Furthermore, by using (2.2a), (2.3) and (2.13), we derive
202Gt 202Gt
¢ t _ )
9inGj ;= 9uiGj = gin 3yidyi =Gt 3yhayi
B a(aGh_ 0Gi \ _ \t99th i 08t
N ayJ ayl ayl’l 3 ayl hayl
(2.18)
_(99nj 199 0gij .t 0dij
B ( axi Ni oyt ) \oxh ~Nh oyt
_%9nj 69
oxi  Oxh’

Finally, by using (2.18) in (2.17) and taking into account (2.12b) we deduce that
B¥ ji= F;¥ j» which together with (2.16) proves the assertion of the theorem. O

Next, in order to get the local coefficients of V, we consider the local frame field
{6/6x%,0/0y'} on TM° and set

5 . 0 )

V(S/(Sxf@ =X jW"—Yi TSk’ (2.19)
d .9 .8

va/ayfaiyi =Z; J'W+ Sk (2.20)
0 k9 e 0 2.21)

Vé/éxjaT/i =V; jTyk+ e
Taking into account that V is torsion free and using (2.4) and (2.21), we infer that

0

0
Va/ayi%

B) . 0
P

SA Wikfﬁ -Gty (2.22)
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Now, we replace (X,Y,Z) from (2.10) in turn by (6/6x7,6/6x%,0/0y") and (5/6x7,
5/6x%,8/6xM") and using (2.4), (2.5), (2.9), and (2.19), we obtain

R.X. y.k. = Fk._ (2.23)

Similarly, we replace (X,Y,Z) from (2.10) in turn by (3/0y/,0/0y%,0/9y") and
(0/0y7,0/0y%,8/5x") and deduce that

5 ..
Zikj = Cikj ZghkUihj =— (;illi +gthihk +g,—thhk. (2.24)

As Gikj given by (2.6a) are the local coefficients of the Berwald connection, we obtain
29mU" = = giji (2.25)

where g;j.x is the h-covariant derivative of g;; with respect to the Berwald connection.
Next, by equation (18.24) in Matsumoto [6], we have

Gijik = —2Cijkjo (2.26)
and hence
Uikj = ZCikjlo' (2.27)

Finally, replace (X,Y,Z) from (2.10) in turn by (6/6x7,0/0y%,0/2y™") and (5/5x7,
0/0y1,6/8x") and using (2.4), (2.5), (2.9), and Theorem 2.1, we derive that

1
Vikj = Fikj’ Wikj = Cikj + ERihjghky (2.28)
where we set Rixj = gitR'n;. Thus (2.19), (2.20), (2.21), (2.22), and the above calcula-

tions enable us to state the following theorem.

THEOREM 2.2. The Levi-Civita connection V on TM° with respect to the Sasaki-
Finsler metric G is locally expressed in terms of the local coefficients of the Cartan
connection of F'™ as follows:

) [ 0 x O

vé/éxfﬁ = _(Ci j+ER ij)T)”(+Fi I Sxk’ (2.29)
0 k 0 x O

Va/ayjaiyi = Ci JTy" +2Ci jloW' (230)
0 Kk 0 k1 ) O

Varoe s = Fliyn + (0 gRmis™ ) o o)

k 0

5]
= Va/ayiQ-FGi Jayk.
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3. The main result. It is well known that, on the tangent bundle TM, there exists a
globally defined vector field L = y%(0/0y?) called the Liouville vector field. By means
of the almost product structure Q, we obtain another vector field QL = yi(5/8x%)
which we call the horizontal Liouville vector field of F™. Clearly, € = £1(5/5x'), where
£% = yi/F is a unit vector field with respect to G. To state the next theorem, we recall
that the angular metric of F"" has the local components

oF
oyt’

hij = gij—4tily; Li=giit’ = (3.1)

Also, we recall that the Lie derivative of G with respect to & is given by (cf. Yano-
Kon [12, page 41])
(LeG)(X,Y) = G(VXE,Y) +G(VyE,X) VX,Y €[(TTM"). (3.2)
Now we prove the following theorem.
THEOREM 3.1. The Lie derivative of G with respect to & satisfies the equations
(LeG) (vX,vY) = (LgG) (hX,hY) = 0, (3.3)
(LgG) (hX,vY) = %(hij —Ripj)) XYY (3.4)
for any X,Y € T(TTM°), where hX = X1(5/6x%) and vY = Y1(3/0y1).

PROOF. First, by using (2.31), (2.9) and taking into account that N{‘ = yfFif;, we
obtain

0 h h
G(Va/angya)}i> :ﬁk (FJ k_Gj k)ghi

ONj 3.5
(N;L_ykayjk) Ghi 5:3)

=

o

since N Jh are positively homogeneous of degree 1 with respect to (y*). Next, by using
(2.29) and (2.9), we deduce that

o
G(W%ﬂ&@) = gkil*j =0, (3.6)

since ﬁku = (. Taking into account (3.2), we see that (3.5) and (3.6) yield (3.3). Finally,
substituting X and Y from (3.2) by §/8x/ and 9/0y%, respectively, and using (2.29),
(2.31), and (2.9), we infer that

1) 0 1 1
(LgG) (6xlayJ> =Ly — 7 Rioi = 5 (hij = Rioj), (3.7)

since by equations (17.30) and (17.21) in Matsumoto [6] we have £;; = (1/F)h;; and
Rioj = Rjoi. As (3.7) implies (3.4), the proof is complete. O
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Next, for a fixed point x € M we consider the indicatrix I, at x, which is a hyper-
surface of the fibre TMy given by the equation F(x,y) = 1. Then denote by IM the
hypersurface of TM° consisting of indicatrices at all points of M and call it the indica-
trix bundle over F™. It is easy to show that Q& = £1(3/9y") is the unit normal vector
field with respect to the Sasaki-Finsler metric. Indeed, if the local equations of IM in
TM° are

xt=xt(u®), yi=yi(u®, «eil,..2m-1}, (3.8)

then, we have

OF ox' OF oy'

oxioux oyioux 3.9
As the h-covariant derivative of F vanishes, by using (2.3), we obtain
(N{‘aaii; +gi’z>#k=o. (3.10)
The natural frame field on IM is represented by
9 _ oxt Cl yi a‘:axi 6'+< k 0x'! 8yk>8. 3.11)
oux  ouXoxt ouxoyt oux oxt Loux  oux ) oyk

Then by (3.10), we deduce

0 L oxt oyky
G (m-%) = (Ni s " aga | Y Gk =0. (3.12)

Thus Q& is orthogonal to any vector tangent to IM. The horizontal Liouville vector
field is tangent to IM since G(&,Q&) = 0.

To state the next corollary, we recall that & is a Killing vector field on IM with respect
to G if and only if L¢G = 0 (cf. Yano-Kon [12, page 41]). Thus, by Theorem 3.1, we may
state the following corollary.

COROLLARY 3.2. The unit horizontal Liouville vector field & is a Killing vector field
on the indicatrix bundle IM if and only if

hij(x,y) =Ripj(x,y) V(x,y)€IM. (3.13)

Now, we consider a Finsler vector field X = X*(9/0y") which is noncolinear to the
Liouville vector field L. Then the curvature (flag curvature) of F"* for the flag spanned
by {L, X} is the function (see Equation (26.1) in Matsumoto [6] or Bao-Cheen-Shen [3])

Rioj X' X/

K y ,X = 57 it
(x,¥,X) F2hy X X)

(3.14)
In case K is a constant we say that "™ is a Finsler manifold of constant curvature. The
above results enable us to state a geometric characterization of Finsler manifolds of
constant curvature by means of the horizontal Liouville vector field, which is the main
result of this paper.
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THEOREM 3.3. The Finsler manifold F™ is of constant curvature K = 1 if and only if
the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle
IM.

PROOF. Suppose K =1 and from (3.14) we obtain (3.13), since F(x,y) =1 on IM.

Conversely, suppose € is a Killing vector field on IM. Then by using (3.13) in (3.14),
we deduce that K(x,y,X) = 1 for any Finsler vector X (x,y) and any (x,y) € IM. Now,
take a point (x,y) € TM°\IM. Then there exists a € (0,c)\{1} such that F(x,y) = a.
As F is positive homogeneous of degree 1 with respect to y, we have F(x, (1/a)y) = 1.
Hence (x,(1/a)y) € IM and by (3.13), we have

1 1
hi; (XyaJ’) = Rioj (X'Ey)' (3.15)

Taking into account that h;; and R;,; are positively homogeneous of degrees 0 and 2,
respectively, we infer that

Rioj(x,¥) = F2(x,y)hij(x,y). (3.16)

Thus from (3.14), we deduce K(x,y,X) = 1. This completes the proof. O

In the above discussions the constant curvature was taken to be K = 1 for “normali-
sation” purposes only. However the geometric characterization remains valid for any
positive constant curvature. To be more precise, we give the following. For any real
number A > 0, we define the A-indicatrix bundle I)M to be:

I;\M={(x,y)eTM°:F(x,y)= 21\} (3.17)

Then simple modifications in the calculations given earlier will show that the unit hor-
izontal Liouville vector field § is a Killing vector field on I, M if and only if h;;(x,y) =
Rioj(x,¥), ¥V (x,¥) € LM. So, as before, this can be used to prove the following the-
orem.

THEOREM 3.4. The Finsler manifold F™ is of constant positive curvature A if and
only if the unit horizontal Liouville vector field is a Killing vector field on I\M.
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