
Internat. J. Math. & Math. Sci.
Vol. 23, No. 5 (2000) 367–368

S0161171200001575
© Hindawi Publishing Corp.

A NOTE ON (gDF )-SPACES

RENATA R. DEL-VECCHIO, DINAMÉRICO P. POMBO, JR., and
CYBELE T. M. VINAGRE

(Received 20 March 1998 and in revised form 24 July 1998)

Abstract. Certain locally convex spaces of scalar-valued mappings are shown to be finite-
dimensional.
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1. Introduction. Radenovĭc [6], generalizing a result of Iyahen [2], has shown that
if E is a Banach space and (E,σ(E,E′)) (or (E′,σ(E′,E))) is a (DF )-space [1], then E is
finite-dimensional. His result has been extended to arbitrary locally convex spaces by
Krassowska and S̆liwa [3].
In [4, 5], (DF )-spaces have been generalized as follows: a locally convex space (E,τ)

is a (gDF )-space if
(a) (E,τ) has a fundamental sequence (Bn)n∈N of bounded sets, and
(b) τ is the finest locally convex topology on E that agrees with τ on each Bn.

In this note, we prove that if an arbitrary vector space of scalar-valued mappings is
a (gDF )-space under the locally convex topology of pointwise convergence, then it is
finite-dimensional. As a consequence, the above-mentioned theorem of Krassowska
and S̆liwa readily follows.

2. The result. Throughout this note, all vector spaces under consideration are vec-
tor spaces over a field K which is either R or C. In our result, E denotes an arbitrary
set and H denotes a subspace of the vector space of all mappings from E into K. We
consider on H the separated locally convex topology of pointwise convergence and
represent by H′ the topological dual of H.

Theorem 2.1. The following conditions are equivalent:
(a) H is a finite-dimensional vector space;
(b) H is a (DF )-space;
(c) H is a (gDF )-space.

Proof. It is clear that (a) implies (b) and (b) implies (c) (every (DF )-space is a (gDF )-
space).
Suppose that condition (c) holds. If H is infinite-dimensional, there exists a count-

able linearly independent subset {ϕn;n ∈ N} of H′. Let (Bn)n∈N be an increasing
fundamental sequence of bounded subsets of H. Then, (B0n)n∈N is a decreasing se-
quence of neighborhoods of zero in (H′,β(H′,H)) forming a fundamental system
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of neighborhoods of zero in (H′,β(H′,H)). For each n ∈ N, fix an αn > 0 such that
αnϕn ∈ B0n; then (αnϕn)n∈N converges to zero in (H′,β(H′,H)). By [5, Theorem1.1.7],
the set Γ = {αnϕn;n ∈ N} is equicontinuous. Hence, there exist x1, . . . ,xm ∈ E and
there exists an α> 0 such that the relations

f ∈H, ∣
∣f
(
x1
)∣∣≤α,. . . ,∣∣f (xm

)∣∣≤α, ϕ ∈ Γ (2.1)

imply
∣
∣ϕ
(
f
)∣∣≤ 1. (2.2)

For each i = 1, . . . ,m, let δi ∈ H′ be given by δi(f ) = f(xi) for f ∈ H, and put F =
{δ1, . . . ,δm}. We claim that Γ ⊂ [F], where [F] is the finite-dimensional vector space
generated by F . Indeed, letϕ ∈ Γ and take an f ∈H such that δ1(f )= ··· = δm(f)= 0.
Then, for all λ∈K,

∣
∣(λf

)(
x1
)∣∣= ∣∣δ1

(
λf
)∣∣= 0≤α,. . . ,∣∣(λf )(xm

)∣∣= ∣∣δm
(
λf
)∣∣= 0≤α. (2.3)

Consequently, |ϕ(λf)| = |λ||ϕ(f)| ≤ 1. By the arbitrariness of λ,ϕ(f) = 0. By [7,
Lemma 5, Chapter II], ϕ ∈ [F]. Therefore the vector space generated by the set
{ϕn;n∈N} is finite-dimensional, which contradicts the choice of (ϕn)n∈N. This com-
pletes the proof of the theorem.

Remark 2.2. The theorem of Krassowska and S̆liwa mentioned at the beginning of
this note follows from Theorem 2.1. In fact, let E be a separated locally convex space.
If (E′,σ(E′,E)) is a (DF )-space, then E′ is finite-dimensional by Theorem 2.1, and so
E is finite-dimensional. Hence, E is finite-dimensional if (E,σ(E,E′)) is a (DF )-space.
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