

A NOTE ON (gDF) -SPACES

RENATA R. DEL-VECCHIO, DINAMÉRICO P. POMBO, JR., and
CYBELE T. M. VINAGRE

(Received 20 March 1998 and in revised form 24 July 1998)

ABSTRACT. Certain locally convex spaces of scalar-valued mappings are shown to be finite-dimensional.

Keywords and phrases. (gDF) -spaces, (DF) -spaces, finite-dimensional spaces.

2000 Mathematics Subject Classification. Primary 46A04.

1. Introduction. Radenović [6], generalizing a result of Iyahen [2], has shown that if E is a Banach space and $(E, \sigma(E, E'))$ (or $(E', \sigma(E', E))$) is a (DF) -space [1], then E is finite-dimensional. His result has been extended to arbitrary locally convex spaces by Krassowska and Śliwa [3].

In [4, 5], (DF) -spaces have been generalized as follows: a locally convex space (E, τ) is a (gDF) -space if

- (a) (E, τ) has a fundamental sequence $(B_n)_{n \in \mathbb{N}}$ of bounded sets, and
- (b) τ is the finest locally convex topology on E that agrees with τ on each B_n .

In this note, we prove that if an arbitrary vector space of scalar-valued mappings is a (gDF) -space under the locally convex topology of pointwise convergence, then it is finite-dimensional. As a consequence, the above-mentioned theorem of Krassowska and Śliwa readily follows.

2. The result. Throughout this note, all vector spaces under consideration are vector spaces over a field \mathbb{K} which is either \mathbb{R} or \mathbb{C} . In our result, E denotes an arbitrary set and H denotes a subspace of the vector space of all mappings from E into \mathbb{K} . We consider on H the separated locally convex topology of pointwise convergence and represent by H' the topological dual of H .

THEOREM 2.1. *The following conditions are equivalent:*

- (a) H is a finite-dimensional vector space;
- (b) H is a (DF) -space;
- (c) H is a (gDF) -space.

PROOF. It is clear that (a) implies (b) and (b) implies (c) (every (DF) -space is a (gDF) -space).

Suppose that condition (c) holds. If H is infinite-dimensional, there exists a countable linearly independent subset $\{\varphi_n; n \in \mathbb{N}\}$ of H' . Let $(B_n)_{n \in \mathbb{N}}$ be an increasing fundamental sequence of bounded subsets of H . Then, $(B_n^0)_{n \in \mathbb{N}}$ is a decreasing sequence of neighborhoods of zero in $(H', \beta(H', H))$ forming a fundamental system

of neighborhoods of zero in $(H', \beta(H', H))$. For each $n \in \mathbb{N}$, fix an $\alpha_n > 0$ such that $\alpha_n \varphi_n \in B_n^0$; then $(\alpha_n \varphi_n)_{n \in \mathbb{N}}$ converges to zero in $(H', \beta(H', H))$. By [5, Theorem 1.1.7], the set $\Gamma = \{\alpha_n \varphi_n; n \in \mathbb{N}\}$ is equicontinuous. Hence, there exist $x_1, \dots, x_m \in E$ and there exists an $\alpha > 0$ such that the relations

$$f \in H, \quad |f(x_1)| \leq \alpha, \dots, |f(x_m)| \leq \alpha, \quad \varphi \in \Gamma \quad (2.1)$$

imply

$$|\varphi(f)| \leq 1. \quad (2.2)$$

For each $i = 1, \dots, m$, let $\delta_i \in H'$ be given by $\delta_i(f) = f(x_i)$ for $f \in H$, and put $F = \{\delta_1, \dots, \delta_m\}$. We claim that $\Gamma \subset [F]$, where $[F]$ is the finite-dimensional vector space generated by F . Indeed, let $\varphi \in \Gamma$ and take an $f \in H$ such that $\delta_1(f) = \dots = \delta_m(f) = 0$. Then, for all $\lambda \in \mathbb{K}$,

$$|(\lambda f)(x_1)| = |\delta_1(\lambda f)| = 0 \leq \alpha, \dots, |(\lambda f)(x_m)| = |\delta_m(\lambda f)| = 0 \leq \alpha. \quad (2.3)$$

Consequently, $|\varphi(\lambda f)| = |\lambda| |\varphi(f)| \leq 1$. By the arbitrariness of λ , $\varphi(f) = 0$. By [7, Lemma 5, Chapter II], $\varphi \in [F]$. Therefore the vector space generated by the set $\{\varphi_n; n \in \mathbb{N}\}$ is finite-dimensional, which contradicts the choice of $(\varphi_n)_{n \in \mathbb{N}}$. This completes the proof of the theorem. \square

REMARK 2.2. The theorem of Krassowska and Śliwa mentioned at the beginning of this note follows from Theorem 2.1. In fact, let E be a separated locally convex space. If $(E', \sigma(E', E))$ is a (DF) -space, then E' is finite-dimensional by Theorem 2.1, and so E is finite-dimensional. Hence, E is finite-dimensional if $(E, \sigma(E, E'))$ is a (DF) -space.

REFERENCES

- [1] A. Grothendieck, *Sur les espaces (F) et (DF)*, Summa Brasil. Math. **3** (1954), 57–123. MR 17,765b. Zbl 058.09803.
- [2] S. O. Iyahen, *Some remarks on countably barrelled and countably quasibarrelled spaces*, Proc. Edinburgh Math. Soc. (2) **15** (1966/1967), 295–296. MR 37#1947. Zbl 157.20203.
- [3] D. Krassowska and W. Śliwa, *When $(E, \sigma(E, E'))$ is a DF-space?*, Comment. Math. Univ. Carolin. **33** (1992), no. 1, 43–44. MR 93f:46001. Zbl 782.46006.
- [4] K. Noureddine, *Espaces du type D_b* , C. R. Acad. Sci. Paris Sér. A-B **276** (1973), A1301–A1303. MR 51#11048. Zbl 257.46003.
- [5] ———, *Nouvelles classes d'espaces localement convexes*, Publ. Dép. Math. (Lyon) **10** (1973), no. 3, 259–277. MR 51#3847. Zbl 292.46002.
- [6] S. Radenović, *Some remarks on the weak topology of locally convex spaces*, Publ. Inst. Math. (Beograd) (N.S.) **44(58)** (1988), 155–157. MR 90d:46006. Zbl 684.46003.
- [7] A. P. Robertson and W. Robertson, *Topological Vector Spaces*, Cambridge University Press, London, 1973. MR 50#2854. Zbl 251.46002.

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es