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Abstract. Let {Xni} be an array of rowwise independent B-valued random elements and
{an} constants such that 0 < an ↑ ∞. Under some moment conditions for the array, it is
shown that

∑n
i=1Xni/an converges to 0 completely if and only if

∑n
i=1Xni/an converges

to 0 in probability.
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1. Introduction. Let (B,‖‖) be a real separable Banach space. A separable Banach
space B is said to be of type r , 1≤ r ≤ 2, if there exists a constants Cr such that

E

∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥
r

≤ Cr
n∑
i=1
E
∥∥Xi∥∥r (1.1)

for all independent B-valued random elements X1, . . . ,Xn with mean zero and finite
r th moments.
A sequence {Xn, n≥ 1} of B-valued random elements is said to converge completely

to zero if for each ε > 0,

∞∑
n=1
P
(∥∥Xn∥∥> ε)<∞. (1.2)

Note that complete convergence implies almost surely by the Borel-Cantelli lemma.
Now let {Xn, n≥ 1} be a sequence of independent random variables. Let ψ(t) be a

positive, even and continuous function such that

ψ
(|t|)
|t| ↑ and ψ

(|t|)
|t|2 ↓ as |t| ↑ . (1.3)

Chung [3] strong law of large numbers (SLLN) states that if

EXn = 0 for n≥ 1,
∞∑
n=1

Eψ
(∣∣Xn∣∣)
ψ(n)

<∞ (1.4)

then ∑n
i=1Xi
n

�→ 0 almost surely. (1.5)
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Recently, Hu and Taylor [6] proved Chung type SLLN for arrays of rowwise inde-
pendent random variables. More specifically, let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array
of rowwise independent random variables and let {an, n ≥ 1} be a sequence of real
numbers with 0 < an ↑ ∞. Let ψ(t) be a positive, even and continuous function such
that

ψ
(|t|)
|t|p ↑ and ψ

(|t|)
|t|p+1 ↓ as |t| ↑ (1.6)

for some integer p ≥ 2. Furthermore, assume that
EXni = 0 for 1≤ i≤n, n≥ 1, (1.7)

∞∑
n=1

n∑
i=1

Eψ
(∣∣Xni∣∣)
ψ
(
an
) <∞, (1.8)

∞∑
n=1

( n∑
i=1

EX2ni
a2n

)2k
<∞, (1.9)

where k is a positive integer. Then the conditions (1.6), (1.7), (1.8), and (1.9) imply

1
an

n∑
i=1
Xni �→ 0 almost surely. (1.10)

Many classical theorems hold for B-valued random elements under the assump-
tion that the weak law of large numbers (WLLN) holds (see, Kuelbs and Zinn [8], de
Acosta [4], Choi and Sung [1, 2], Wang, Rao and Yang [10], Kuczmaszewska and Szynal
[7], and Sung [9]).
In this paper, we apply de Acosta [4] inequality to obtain Hu and Taylor’s [6] result

in a general Banach space under the assumption that WLLN holds.

2. Main Result. To prove our main theorem, we need the following lemma which
is due to de Acosta [4].

Lemma 2.1. For each p ≥ 1, there exists a positive constant Cp such that for sepa-
rable Banach space B and any finite sequence {Xi, 1≤ i≤n} of independent B-valued
random elements with E‖Xi‖p <∞ (1≤ i≤n), the following inequalities hold.
(i) For 1≤ p ≤ 2,

E

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥−E
∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥
∣∣∣∣∣
p

≤ Cp
n∑
i=1
E
∥∥Xi∥∥p. (2.1)

(ii) For p > 2,

E

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥−E
∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥
∣∣∣∣∣
p

≤ Cp
[( n∑

i=1
E
∥∥Xi∥∥2

)p/2
+

n∑
i=1
E
∥∥Xi∥∥p

]
. (2.2)

Throughout this paper, let ψ(t) be a positive, even function such that

ψ
(|t|)
|t| ↑ and ψ

(|t|)
|t|p ↓ as |t| ↑ (2.3)

for some p ≥ 1.
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Theorem 2.2. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent
B-valued random elements and {an, n ≥ 1} constants such that 0 < an ↑ ∞. Assume
that

∞∑
n=1

n∑
i=1

Eψ
(∥∥Xni∥∥)
ψ
(
an
) <∞, (2.4)

∞∑
n=1

( n∑
i=1

E
∥∥Xni∥∥2
a2n

)s
<∞ (2.5)

for some s > 0. Then the following statements are equivalent.
(i) (1/an)

∑n
i=1Xni→ 0 in L1.

(ii) (1/an)
∑n
i=1Xni→ 0 completely.

(iii) (1/an)
∑n
i=1Xni→ 0 almost surely.

(iv) (1/an)
∑n
i=1Xni→ 0 in probability.

Proof. (i) �⇒(ii). Define Yni = XniI(‖Xni‖ ≤ an) and Zni = XniI(‖Xni‖> an). Since
ψ(|t|)/|t| is an increasing function of |t|, we have by (2.4) that

∞∑
n=1

1
an
E

∥∥∥∥∥
n∑
i=1
Zni

∥∥∥∥∥≤
∞∑
n=1

1
an

n∑
i=1
E
∥∥Zni∥∥

≤
∞∑
n=1

1
ψ
(
an
) n∑
i=1
Eψ

(∥∥Zni∥∥)≤
∞∑
n=1

n∑
i=1

Eψ
(∥∥Xni∥∥)
ψ
(
an
) <∞.

(2.6)

It follows that

1
an

n∑
i=1
Zni �→ 0 completely. (2.7)

The proof will be completed by showing that

1
an

n∑
i=1
Yni �→ 0 completely. (2.8)

From (i) and (2.6), we have

1
an
E

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥= 1
an
E

∥∥∥∥∥
n∑
i=1

(
Xni−Zni

)∥∥∥∥∥
≤ 1
an
E

∥∥∥∥∥
n∑
i=1
Xni

∥∥∥∥∥+ 1
an
E

∥∥∥∥∥
n∑
i=1
Zni

∥∥∥∥∥ �→ 0.
(2.9)

Thus, to prove (2.8), it is enough to show that

1
an

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥− 1
an
E

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥ �→ 0 completely. (2.10)

First consider the case of 1≤ p ≤ 2. From Markov’s inequality and Lemma 2.1(i), we
have
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∞∑
n=1
P
(∣∣∣∣∣ 1an

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥− 1
an
E

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥
∣∣∣∣∣> ε

)

≤ 1
εp

∞∑
n=1

1

apn
E

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥−E
∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥
∣∣∣∣∣
p

≤ Cp
εp

∞∑
n=1

n∑
i=1

E
∥∥Yni∥∥p
apn

≤ Cp
εp

∞∑
n=1

n∑
i=1

Eψ
(∥∥Yni∥∥)
ψ
(
an
)

≤ Cp
εp

∞∑
n=1

n∑
i=1

Eψ
(∥∥Xni∥∥)
ψ
(
an
) <∞,

(2.11)

since ψ(|t|)/|t|p ↓ and (2.4). Thus (2.10) holds.
Now consider the case of p > 2. Note thatψ(|t|)/|t|p ↓ impliesψ(|t|)/|t|q ↓ for each

q ≥ p. Let q =max{p,2s}. Then we have by Markov’s inequality and Lemma 2.1(ii) that
∞∑
n=1
P
(∣∣∣∣∣ 1an

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥− 1
an
E

∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥
∣∣∣∣∣> ε

)

≤ 1
εq

∞∑
n=1

1

aqn
E

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥−E
∥∥∥∥
n∑
i=1
Yni

∥∥∥∥∥
∣∣∣∣∣
q

≤ Cq
εq

∞∑
n=1

1

aqn

[( n∑
i=1
E
∥∥Yni∥∥2

)q/2
+

n∑
i=1
E
∥∥Yni∥∥q

]

= Cq
εq

∞∑
n=1

(∑n
i=1E

∥∥Yni∥∥2
a2n

)q/2
+ Cq
εq

∞∑
n=1

1

aqn

n∑
i=1
E
∥∥Yni∥∥q.

(2.12)

Since q ≥ p, ψ(|t|)/|t|p ↓ implies ψ(|t|)/|t|q ↓, and so
∞∑
n=1

1

aqn

n∑
i=1
E
∥∥Yni∥∥q ≤

∞∑
n=1

n∑
i=1

Eψ
(∥∥Yni∥∥)
ψ
(
an
) ≤

∞∑
n=1

n∑
i=1

Eψ
(∥∥Xni∥∥)
ψ
(
an
) <∞. (2.13)

Also,

∞∑
n=1

(∑n
i=1E

∥∥Yni∥∥2
a2n

)q/2
≤
[ ∞∑
n=1

(∑n
i=1E

∥∥Yni∥∥2
a2n

)s]q/2s

≤
[ ∞∑
n=1

(∑n
i=1E

∥∥Xni∥∥2
a2n

)s]q/2s
<∞,

(2.14)

since q ≥ 2s and (2.5). Combining (2.12), (2.13), and (2.14) yields (2.10). Thus (i) �⇒(ii)
is proved. Since the implications (ii) �⇒(iii) and (iii) �⇒(iv) are obvious, it remains to
show that (iv) �⇒(i).
Assume that (iv) holds. From Lemma 2.1(i) and (2.5)

E

∣∣∣∣∣ 1an
∥∥∥∥∥
n∑
i=1
Xni

∥∥∥∥∥− 1
an
E

∥∥∥∥∥
n∑
i=1
Xni

∥∥∥∥∥
∣∣∣∣∣
2

≤ C2
a2n

n∑
i=1
E
∥∥Xni∥∥2 �→ 0, (2.15)

which entails

1
an

∥∥∥∥∥
n∑
i=1
Xni

∥∥∥∥∥− 1
an
E

∥∥∥∥∥
n∑
i=1
Xni

∥∥∥∥∥ �→ 0 in probability. (2.16)
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It follows by (iv) that E‖∑ni=1Xni‖/an �→ 0, and so (i) holds. Thus the proof of
Theorem 2.2 is completed.

The following theorem states that Theorem 2.2 holds even if the condition (2.5) is
replaced by

∞∑
n=1

( n∑
i=1

E
∥∥Xni∥∥r
arn

)s
<∞, (2.17)

for some 1≤ r ≤ 2 and s > 0.
Theorem 2.3. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent

B-valued random elements and {an, n ≥ 1} constants such that 0 < an ↑ ∞. Assume
that (2.4) and (2.17) hold. Then the following statements are equivalent.
(i) (1/an)

∑n
i=1Xni→ 0 in L1.

(ii) (1/an)
∑n
i=1Xni→ 0 completely.

(iii) (1/an)
∑n
i=1Xni→ 0 almost surely.

(iv) (1/an)
∑n
i=1Xni→ 0 in probability.

Proof. Let {Yni} and {Zni} be as in the proof of Theorem 2.2. From the proof of
(i) �⇒(ii) in Theorem 2.2, we have

∞∑
n=1

1
an
E

∥∥∥∥∥
n∑
i=1
Zni

∥∥∥∥∥<∞, (2.18)

which implies
∑n
i=1Zni/an → 0 in L1, completely, almost surely, and in probability.

Hence, it is enough to show that

1
an

n∑
i=1
Yni �→ 0 in L1⇐⇒ 1

an

n∑
i=1
Yni �→ 0 completely

⇐⇒ 1
an

n∑
i=1
Yni �→ 0 almost surely

⇐⇒ 1
an

n∑
i=1
Yni �→ 0 in probability.

(2.19)

Since Yni =XniI(‖Xni‖ ≤ an), it follows that Eψ(‖Yni‖)≤ Eψ(‖Xni‖) and
∞∑
n=1

( n∑
i=1

E
∥∥Yni∥∥2
a2n

)s
≤

∞∑
n=1

( n∑
i=1

E
∥∥Yni∥∥r
arn

)s
≤

∞∑
n=1

( n∑
i=1

E
∥∥Xni∥∥r
arn

)s
. (2.20)

Thus {Yni} satisfies the conditions of Theorem 2.2, and so (2.19) holds by Theorem 2.2.

Corollary 2.4. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent
B-valued random elements and {an, n ≥ 1} constants such that 0 < an ↑ ∞. Assume
that EXni = 0 and B is of type r (1≤ r ≤ 2). Then (2.4) and (2.17) imply that

1
an

n∑
i=1
Xni �→ 0 almost surely. (2.21)
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Proof. By Theorem 2.3, it is enough to show that

1
an

n∑
i=1
Xni �→ 0 in L1. (2.22)

Since B is of type r and EXni = 0, it follows by (2.17) that

E

∥∥∥∥∥ 1an
n∑
i=1
Xni

∥∥∥∥∥
r

≤ Cr
arn

n∑
i=1
E
∥∥Xni∥∥r �→ 0, (2.23)

and so (2.22) holds.

Remark 2.5. The condition (2.3) is weaker than (1.6). Hu and Chung [5] proved
Corollary 2.4 under the stronger condition (1.6).
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