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ABSTRACT. Let B be a ring with 1, C the center of B, G a finite automorphism group of B,
and BC the set of elements in B fixed under each element in G. Then, it is shown that B is
a center Galois extension of BC (that is, C is a Galois algebra over C¢ with Galois group
G|c = G) if and only if the ideal of B generated by{c —g(c) | ¢ € C} is B for each g # 1 in
G. This generalizes the well known characterization of a commutative Galois extension C
that C is a Galois extension of CG with Galois group G if and only if the ideal generated by
{c—g(c)|ceC}is C foreach g # 1 in G. Some more characterizations of a center Galois
extension B are also given.
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1. Introduction. Let C be a commutative ring with 1, G a finite automorphism group
of C and C¢ the set of elements in C fixed under each element in G. Itis well known that
a commutative Galois extension C is characterized in terms of the ideals generated
by {c—g(c) |c e C} for g +1in G, thatis C is a Galois extension with Galois group G
if and only if the ideal generated by {c—g(c) | c € C} is C for each g + 1 in G (see [3,
Proposition 1.2, page 80]). A natural generalization of a commutative Galois extension
is the notion of a center Galois extension, that is, a noncommutative ring B with a finite
automorphism group G and center C is called a center Galois extension of B¢ with
Galois group G if C is a Galois extension of C¢ with Galois group G|c = G. Ikehata
(see [4, 5]) characterized a center Galois extension with a cyclic Galois group G of
prime order in terms of a skew polynomial ring. Then, the present authors generalized
the Ikehata characterization to center Galois extensions with Galois group G of any
cyclic order [7] and to center Galois extensions with any finite Galois group G [8].
The purpose of the present paper is to generalize the above characterization of a
commutative Galois extension to a center Galois extension. We shall show that B is a
center Galois extension of B¢ if and only if the ideal of B generated by {c—g(c) | ¢ € C}
is B for each g = 1in G. A center Galois extension B is also equivalent to each of the
following statements:

(i) Bis a Galois central extension of BC, thatis, B = B¢ C which is G-Galois extension
of BC,

(i) Bis a Galois extension of B¢ with a Galois system {b; € B, c; € C,i=1,2,...,m}
for some integer m.

(iii) the ideal of the subring B¢C generated by {c —g(c) | ¢ € C} is B¢C for each
g+1inG.
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2. Definitions and notations. Throughout this paper, B will represent a ring with
1, G =1{g1 =1, g2,...,gn} an automorphism group of B of order »n for some integer
n, C the center of B, B¢ the set of elements in B fixed under each element in G, and
B x G a skew group ring in which the multiplication is given by gb = g(b)g for b €
Band g €G.

Bis called a G-Galois extension of B¢ if there exist elements {a;,b;€B, i =1,2,...,m}
for some integer m such that Zﬁl aig(bi) = 81,4.Suchaset {a;,b;} is called a G-Galois
system for B. B is called a center Galois extension of B¢ if C is a Galois algebra over
CC with Galois group G|c = G. B is called a central extension of B¢ if B=B¢C, and B
is called a Galois central extension of B¢ if B = BYC is a Galois extension of B¢ with
Galois group G.

Let A be a subring of a ring B with the same identity 1. We denote Vz(A) the
commutator subring of A in B. We call B a separable extension of A if there exist
{ai,b; €B, i=1,2,...,m for some integer m} such that > a;b; =1, and > ba;®b; =
>a;®b;b for all b € B where ® is over A. B is called H-separable extension of A if
B®4 B is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule.
B is called centrally projective over A if B is a direct summand of a finite direct sum
of A as a A-bimodule.

3. The characterizations. In this section, we denote J}O ={c—-gj(c) | ceC}. We
shall show that B is a center Galois extension of B¢ if and only if B = BJJ(.C), the ideal

of B generated by JJ(Q, for each gj # 1 in G. Some more characterizations of a center
Galois extension B are also given. We begin with a lemma.

LEMMA 3.1. IfB= BJA;-C) foreach gj +# 1 in G (thatis, j # 1), then

(1) B is a Galois extension of B¢ with Galois group G and a Galois system {b; € B; c; €
C,i=1,2,...,m} for some integer m.

(2) B is a centrally projective over BC.

(3) Bx G is H-separable over B.

(4) Vgsg(B) =C

PROOF. (1) Since B = BJ\”) for each j + 1, there exist {b{’’ € B, ¢/ € C, i =
1,2,...,m;} for some integer m;, j = 2,3,...,n such that Z:g bl( (¢; ) fgj(cf”))

Therefore, 37" b/ ¢ = 1 +Z:nj1b(j)gj( Y. Let biij_ﬂ = —Zzﬂb.”gj( h and

mi+1 i mj+1 i i
cﬁn a=1Then 3" bci’’ =1and 3% b g;(c”’) = 0. Let by iy...i, =b\> b}
: bl(n and i, iy, .in = clff)cg’)... i fori;=1,2,...,m;+1and j = 2,3,...,n. Then
mo+1m3+1 mp+1 moy+1msz+1 mnp+1
(2)4,(3) (n) (2) (3) (n)
z z z blz i31000in Ci,13,0min = z Z Z hiz big b 12 13 ' ln
ir=1 i3=1 in ir=1 iz=1 in
mp+1lmsz+1 mpy+1
(2) (2) (3) (3) (n) (n)
> 2 2 bye'by bicq,
ir=1 i3z=1 in=1
mp+1 m3+1 mp+1
(2) ,(2) (3) .(3) (n) (n)
z biz Ci2 Z bi3 Ci3 z bn in =1
ir=1 iz=1 in=1

(3.1
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and for each j # 1

mp+1m3z+1 mp+1l
z Z z biis,...in9i (Ciziz,in)
ip=1 i3=1 in=1
mo+1msz+1 mu+1
S S S e (e el
ir=1 i3=1
mp+1lmsz+1 mn+1
- E L E e (e)a () o) o2
= 13=
mp+lmz+1 mnp+1
R T IO RREIICES
ip=1 i3=
mo+1 ms+ mp+1

S () S uoet) S u ) -o

in=1 iz=1 in=1

Thus, {bi,,is,...in € B; Ciy,is €C, ij=12,....mj+1and j=2,3,..,n}is a Galois
system for B. This complete the proof of (1).

(2) By (1), B is a Galois extension of B¢ with a Galois system {b; € B, ¢; € C, i =
1,2,...,m} for some integer m. Let f; : B — B® givenby f;(b) = Z;‘:lgj(cib) forallb
B, i=1,2,...,m. Then it is easy to check that f; is a homomorphism as B¢-bimodule
and b = 3%, bicib = 37 3% bigi(ci)gi(b) = 2L, b 31 gj(cib) = 3% bifi(b)
for all b € B. Hence {b;; f;, i = 1,2,...,m} is a dual bases for B as B¢-bimodule, and so
Bis finitely generated and projective as B¢-bimodule. Therefore, B is a direct summand
of a finite direct sum of B¢ as a B¢-bimodule. Thus B is centrally projective over B€.

(3) By (1), B is a Galois extension of B¢ with Galois group G. Hence B * G = Homygg (B,
B) [2, Theorem 1]. By (2), B is centrally projective over B¢. Thus, B * G (= Homgc (B, B))
is H-separable over B [6, Proposition 11].

(4) We first claim that Vg4 (C) = B. Clearly, B C Vg4« (C). Let Z;‘:l bjgj in Vgs«c(C)
for some b; € B. Then c(X}_; b;g;) = (3}, bjgj)c for each c € C,so cb; =bjgj(c),
thatis, bj(c —gj(c)) = 0 for each g; € G and ¢ € C. Since B = B](C) for each g; # 1,
there exist b\ € B and ¢’ € C, i = 1,2,...,m such that Zl b7 (e —gi(e)) =
1. Hence b; = 3™ b (¢ —gj(clgj)))bj = Zl bbi(c? — g;(c (J))) = 0 for each
gj = 1. This implies that 2?21 b;gj = b € B. Hence VB*(,(C) c B, and so Vg4 (C) =B
Therefore, Vgy«g(B) C Vg (C) = B. Thus Vg (B) = Vz(B) =C. O

yeenln

We now show some characterizations of a center Galois extension B.

THEOREM 3.2. The following statements are equivalent.

(1) B is a center Galois extension of BC.

(2) B=BJ" foreachgj+1inG.

(3) B is a Galois extension of B¢ with a Galois system {b; €B, ¢, €C, i=1,2,...,m}
for some integer m.

(4) B is a Galois central extension of B®.

(5) BSC = BCCJ{“ for each g; 1 inG.
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PROOF. (1)=>(2). By hypothesis, C is a Galois extension of C¢ with Galois group
Glc = G. Hence C = CJJ(C) for each g; # 1 in G [3, Proposition 1.2, page 80]. Thus,
B = BJJ(-C) for each gj # 1in G.

(2)=(1). Since B :BJJ-C foreach gj#1in G, B*G is H-separable over Bby Lemma 3.1(3)
and Vg4;(B) = C by Lemma 3.1(4). Thus C is a Galois extension of C¢ with Galois
group G|c = G by [1, Proposition 4].

(1)=(3). This is Lemma 3.1(1).

(3)=(1). Since B is Galois extension of B¢ with a Galois system {b; €B, ¢; €C, i =
1,2,...,m} for some integer m, we have ./ | b;g;(ci) = 81,4. Hence >.i" | b;(ci—g;(ci))
=1 foreach g; # 1 in G. So for every b € B, b = >, bb;(c;—g,(ci)) € B]}C). There-
fore, B = B]i(c) for each g; # 1 in G. Thus, B is a center Galois extension of B by
(2)=(1).

(1)=(4). Since C is a Galois algebra with Galois group G|c = G, B and B°C are Galois
extensions of B¢ with Galois group G|ge = G. Noting that B°C C B, we have B = B°C,
that is, B is a central extension of BS. But B is a Galois extension of B%, so B is a Galois
central extension of BC.

(4)=>(1). By hypothesis, B = B¢C is a Galois extension of B¢. Hence there exists a
Galois system {a;;b; € B, i=1,2,...,m} for some integer m such that ZZ"I alg, (b;) =
51;.But B=BC¢C,s0a; = Zk“llb(“’) ) and by = 3,7 b " c"? for some a\*”, b\"’
in B¢ and c(a') (h " in C,k=12...n4,1l=12,...,np,1=1,2,...,m. Therefore,

(b ) (bl-)
1

S
=

511—2a1g1(b)—zzbk (a) J(

i=1k=1 =
e, I (3.3)
(@), (b;) plai) (u )b (b;)
-2 3., sz gl )=ZZZ( )ai(er™)-
i=1k= i=1k=11l=
This shows that (" = b e b € By ¢ = " e € k=1,2,00 gy, L=
1,2,...,np,i=1,2,... ,m}isa Galors system for B. Thus, B is a center Galois extension

of B¢ by (3)=(1).
(1)=(5). Since B is a center Galois extension of B¢, B = BJJ(-C) foreachgj#1in G
by (1)=>(2) and B = B¢C by (1)=(4). Thus, B¢C = BGCJJ(-C) for each g; # 1 in G.
(5)=(1). Since B¢C = BGCJJ(-C) foreach gj+#1in G, B = BJJ(-C) for each g; # 1 in G.
Thus, B is a center Galois extension of B® by (2)=(1). O

The characterization of a commutative Galois extension C in terms of the ideals
generated by {c —g(c) | c € C} for g # 1 in G is an immediate consequence of
Theorem 3.2.

COROLLARY 3.3. A commutative ring C is a Galois extension of CS if and only if
C= CJJ(-C), the ideal generated by {c—gj(c) | c € C} isC foreachgj+1inG.

PROOF. Let B = C in Theorem 3.2. Then, the corollary is an immediate consequence
of Theorem 3.2(2). O

By Theorem 3.2, we derive several characterizations of a Galois centeral extension B.
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COROLLARY 3.4. IfB isa central extension of B¢ (that is, B = B¢ C), then the following
statements are equivalent.

(1) B is a Galois extension of BS.

(2) B is a center Galois extension of BC.

(3) Bx G is H-separable over B.

(4) B = CJJ(-B) foreachg;j+1inG.

(5)B = BJJ(-B) foreachgj+1inG.

PROOF. (1)< (2). This is given by (1)<=(4) in Theorem 3.2.

(2)=(3). This is Lemma 3.1(3).

(3)=(1). Since B * G is H-separable over B, B is a Galois extension of B¢ [1, Propo-
sition 2].

Since B = B¢C by hypothesis, it is easy to see that JJ(.B) = BGJJ(.C) for each g;in G. Thus,
B=cJ”, B=BJ", and B = BJ;* are equivalent. This implies that (2)«=(4)<=>(5)
by Theorem 3.2(2). O

We call a ring B the DeMeyer-Kanzaki Galois extension of B¢ if B is an Azumaya C-
algebra and B is a center Galois extension of B¢ (for more about the DeMeyer-Kanzaki
Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader
than the class of the DeMeyer-Kanzaki Galois extensions. We conclude the present
paper with two examples. (1) The DeMeyer-Kanzaki Galois extension of B¢ and (2) a
center Galois extension of B¢, but not the DeMeyer-Kanzaki Galois extension of B¢.

EXAMPLE 3.5. Let C be the field of complex numbers, that is, C = R+ R+/—1 where
R is the field of real numbers, B = C[1i,j, k] the quaternion algebra over C, and G =
{1,g 1l g(ci+cii+cjj+ckk) = glcr) +g(ci)i+g(cj)j+g(c)k foreach b = ¢y +cii +
cjj+ckk € Cli,j,kl and g(u+v+/-1) =u—v+/—1 for each ¢ = u+v+/-1 € C}. Then

(1) The center of B is C.

(2) B is an Azumaya C-algebra.

(3) C is a Galois extension of C¢ with Galois group G|c = G and a Galois system
{a1 =1/V2, az = (1/v/2)V/=1; b1 =1/3/2, by = —=(1//2)V/-1}.

(4) B is the DeMeyer-Kanzaki Galois extension of B¢ by (2) and (3).

(5) B¢ = R[i,j,k].

(6) B = B¢C, so B is a centeral extension of BS.

(1) J5Y =RV-1.

(8) B=BJ" since 1 = —/—1/—1 € BJ{“.

©) JP = Ry=T+Rv/=Ti+RV=1j+Ry=Tk.

10)B=CJP.

EXAMPLE 3.6. By replacing in Example 3.5 the field of complex numbers C with
the ring C = Z ® Z where Z is the ring of integers, g(a,b) = (b,a) for all (a,b) € C,
and G = {1,g | g(c1 +cii+cjj+ckk) = g(c1) +g(c))i+g(cj)j+glcx)k foreach b =
ci+cii+cjj+ckk € B=Cl[i,j,k]}. Then

(1) The center of B is C.

(2) C is a Galois extension of C¢ with Galois group G|c = G and a Galois system
{a: = (1,0), a» = (0,1); by = (1,0), b> = (0,1)}.
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(3) Bis not an Azumaya C-algebra (for 1/2 ¢ C), and so B is not the DeMeyer-Kanzaki
Galois extension of BS.

4)C¢ ={(a,a)|lac?}=7.

(5) B¢ = CC[i,j,k].

(6) B =BG, so B is a central extension of BC.

@ JE = {a,—-a) laez} =2(1,-1).

(8) B=BJysince 1 = (1,1) = (1,-1)(1,-1) € BJ:".

Q) JE =z711,-1)+20,-1)i+2(1,-1)j+2(1,-1)k.

(10)B=CJP.
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