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Abstract. Let B be a ring with 1, C the center of B, G a finite automorphism group of B,
and BG the set of elements in B fixed under each element in G. Then, it is shown that B is
a center Galois extension of BG (that is, C is a Galois algebra over CG with Galois group
G|C � G) if and only if the ideal of B generated by{c−g(c) | c ∈ C} is B for each g ≠ 1 in
G. This generalizes the well known characterization of a commutative Galois extension C
that C is a Galois extension of CG with Galois group G if and only if the ideal generated by
{c−g(c) | c ∈ C} is C for each g ≠ 1 in G. Some more characterizations of a center Galois
extension B are also given.
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1. Introduction. LetC be a commutative ringwith 1,G a finite automorphism group
ofC andCG the set of elements inC fixed under each element inG. It is well known that
a commutative Galois extension C is characterized in terms of the ideals generated
by {c−g(c) | c ∈ C} for g ≠ 1 in G, that is C is a Galois extension with Galois group G
if and only if the ideal generated by {c−g(c) | c ∈ C} is C for each g ≠ 1 in G (see [3,
Proposition 1.2, page 80]). A natural generalization of a commutative Galois extension
is the notion of a center Galois extension, that is, a noncommutative ring B with a finite
automorphism group G and center C is called a center Galois extension of BG with
Galois group G if C is a Galois extension of CG with Galois group G|C � G. Ikehata
(see [4, 5]) characterized a center Galois extension with a cyclic Galois group G of
prime order in terms of a skew polynomial ring. Then, the present authors generalized
the Ikehata characterization to center Galois extensions with Galois group G of any
cyclic order [7] and to center Galois extensions with any finite Galois group G [8].
The purpose of the present paper is to generalize the above characterization of a
commutative Galois extension to a center Galois extension. We shall show that B is a
center Galois extension of BG if and only if the ideal of B generated by {c−g(c) | c ∈ C}
is B for each g ≠ 1 in G. A center Galois extension B is also equivalent to each of the
following statements:

(i) B is a Galois central extension of BG, that is, B = BGC which isG-Galois extension
of BG.
(ii) B is a Galois extension of BG with a Galois system {bi ∈ B, ci ∈ C, i= 1,2, . . . ,m}

for some integerm.
(iii) the ideal of the subring BGC generated by {c−g(c) | c ∈ C} is BGC for each

g ≠ 1 in G.
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2. Definitions and notations. Throughout this paper, B will represent a ring with
1, G = {g1 = 1, g2, . . . ,gn} an automorphism group of B of order n for some integer
n, C the center of B, BG the set of elements in B fixed under each element in G, and
B∗G a skew group ring in which the multiplication is given by gb = g(b)g for b ∈
B and g ∈G.
B is called aG-Galois extension of BG if there exist elements {ai,bi∈B, i= 1,2, . . . ,m}

for some integerm such that
∑m
i=1aig(bi)= δ1,g . Such a set {ai,bi} is called aG-Galois

system for B. B is called a center Galois extension of BG if C is a Galois algebra over
CG with Galois group G|C �G. B is called a central extension of BG if B = BGC , and B
is called a Galois central extension of BG if B = BGC is a Galois extension of BG with
Galois group G.
Let A be a subring of a ring B with the same identity 1. We denote VB(A) the

commutator subring of A in B. We call B a separable extension of A if there exist
{ai,bi ∈ B, i= 1,2, . . . ,m for some integerm} such that ∑aibi = 1, and ∑bai⊗bi =∑
ai⊗bib for all b ∈ B where ⊗ is over A. B is called H-separable extension of A if

B⊗AB is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule.
B is called centrally projective over A if B is a direct summand of a finite direct sum
of A as a A-bimodule.

3. The characterizations. In this section, we denote J(C)j = {c−gj(c) | c ∈ C}. We
shall show that B is a center Galois extension of BG if and only if B = BJ(C)j , the ideal

of B generated by J(C)j , for each gj ≠ 1 in G. Some more characterizations of a center
Galois extension B are also given. We begin with a lemma.

Lemma 3.1. If B = BJ(C)j for each gj ≠ 1 in G (that is, j ≠ 1), then
(1) B is a Galois extension of BG with Galois group G and a Galois system {bi ∈ B; ci ∈

C, i= 1,2, . . . ,m} for some integerm.
(2) B is a centrally projective over BG.
(3) B∗G is H-separable over B.
(4) VB∗G(B)= C .
Proof. (1) Since B = BJ(C)j for each j ≠ 1, there exist

{
b(j)i ∈ B, c(j)i ∈ C, i =

1,2, . . . ,mj
}
for some integermj, j = 2,3, . . . ,n such that

∑mj
i=1b

(j)
i
(
c(j)i −gj

(
c(j)i

))= 1.
Therefore,

∑mj
i=1b

(j)
i c

(j)
i = 1+∑mj

i=1b
(j)
i gj

(
c(j)i

)
. Let b(j)mj+1 = −

∑mj
i=1b

(j)
i gj

(
c(j)i

)
and

c(j)mj+1 = 1. Then
∑mj+1
i=1 b(j)i c

(j)
i = 1 and ∑mj+1

i=1 b(j)i gj
(
c(j)i

) = 0. Let bi2,i3,...,in =b(2)i2 b(3)i3
···b(n)in and ci2,i3,...,in = c(2)i2 c

(3)
i3 . . .c

(n)
in for ij = 1,2, . . . ,mj+1 and j = 2,3, . . . ,n. Then

m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

bi2,i3,...,inci2,i3,...,in=
m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

b(2)i2 b
(3)
i3 ···b

(n)
in c

(2)
i2 c

(3)
i3 ···c

(n)
in

=
m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

b(2)i2 c
(2)
i2 b

(3)
i3 c

(3)
i3 ···b

(n)
in c

(n)
in

=
m2+1∑
i2=1

b(2)i2 c
(2)
i2

m3+1∑
i3=1

b(3)i3 c
(3)
i3 ···

mn+1∑
in=1

b(n)in c
(n)
in = 1

(3.1)
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and for each j ≠ 1

m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

bi2,i3,...,ingj(ci2,i3,...,in)

=
m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

b(2)i2 b
(3)
i3 ···b

(n)
in gj

(
c(2)i2 c

(3)
i3 ···c

(n)
in

)

=
m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

b(2)i2 b
(3)
i3 ···b

(n)
in gj

(
c(2)i2

)
gj
(
c(3)i3

)
···gj

(
c(n)in

)

=
m2+1∑
i2=1

m3+1∑
i3=1

···
mn+1∑
in=1

b(2)i2 gj
(
c(2)i2

)
b(3)i3 gj

(
c(3)i3

)
···b(n)in gj

(
c(n)in

)

=
m2+1∑
i2=1

b(2)i2 gj
(
c(2)i2

)m3+1∑
i3=1

b(3)i3 gj
(
c(3)i3

)
···

mn+1∑
in=1

b(n)in gj
(
c(n)in

)
= 0.

(3.2)

Thus, {bi2,i3,...,in ∈ B; ci2,i3,...,in ∈ C, ij = 1,2, . . . ,mj+1 and j = 2,3, . . . ,n} is a Galois
system for B. This complete the proof of (1).
(2) By (1), B is a Galois extension of BG with a Galois system {bi ∈ B, ci ∈ C, i =

1,2, . . . ,m} for some integerm. Let fi : B→ BG given by fi(b)=
∑n
j=1gj(cib) for all b ∈

B, i= 1,2, . . . ,m. Then it is easy to check that fi is a homomorphism as BG-bimodule
and b = ∑m

i=1bicib =
∑n
j=1

∑m
i=1bigj(ci)gj(b) =

∑m
i=1bi

∑n
j=1gj(cib) =

∑m
i=1bifi(b)

for all b ∈ B. Hence {bi;fi, i= 1,2, . . . ,m} is a dual bases for B as BG-bimodule, and so
B is finitely generated and projective as BG-bimodule. Therefore, B is a direct summand
of a finite direct sum of BG as a BG-bimodule. Thus B is centrally projective over BG.
(3) By (1), B is a Galois extension of BG with Galois group G. Hence B∗G �HomBG(B,

B) [2, Theorem 1]. By (2), B is centrally projective over BG. Thus, B∗G(�HomBG(B,B))
is H-separable over B [6, Proposition 11].
(4) We first claim that VB∗G(C)= B. Clearly, B ⊂ VB∗G(C). Let

∑n
j=1bjgj in VB∗G(C)

for some bj ∈ B. Then c(
∑n
j=1bjgj)= (

∑n
j=1bjgj)c for each c ∈ C , so cbj = bjgj(c),

that is, bj(c−gj(c)) = 0 for each gj ∈ G and c ∈ C . Since B = BJ(C)j for each gj ≠ 1,

there exist b(j)i ∈ B and c(j)i ∈ C, i = 1,2, . . . ,m such that
∑m
i=1b

(j)
i
(
c(j)i −gj

(
c(j)i

)) =
1. Hence bj =

∑m
i=1b

(j)
i
(
c(j)i −gj

(
c(j)i

))
bj =

∑m
i=1b

(j)
i bj

(
c(j)i −gj

(
c(j)i

)) = 0 for each
gj ≠ 1. This implies that

∑n
j=1bjgj = b1 ∈ B. Hence VB∗G(C)⊆ B, and so VB∗G(C)= B.

Therefore, VB∗G(B)⊂ VB∗G(C)= B. Thus VB∗G(B)= VB(B)= C .
We now show some characterizations of a center Galois extension B.

Theorem 3.2. The following statements are equivalent.
(1) B is a center Galois extension of BG.
(2) B = BJ(C)j for each gj ≠ 1 in G.
(3) B is a Galois extension of BG with a Galois system {bi ∈ B, ci ∈ C, i= 1,2, . . . ,m}

for some integerm.
(4) B is a Galois central extension of BG.
(5) BGC = BGCJ(C)j for each gj ≠ 1 in G.
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Proof. (1) �⇒(2). By hypothesis, C is a Galois extension of CG with Galois group
G|C � G. Hence C = CJ(C)j for each gj ≠ 1 in G [3, Proposition 1.2, page 80]. Thus,

B = BJ(C)j for each gj ≠ 1 in G.
(2) �⇒(1). Since B=BJCj for eachgj≠1 inG, B∗G isH-separable over B by Lemma 3.1(3)
and VB∗G(B) = C by Lemma 3.1(4). Thus C is a Galois extension of CG with Galois
group G|C �G by [1, Proposition 4].
(1) �⇒(3). This is Lemma 3.1(1).
(3) �⇒(1). Since B is Galois extension of BG with a Galois system {bi ∈ B, ci ∈ C, i=

1,2, . . . ,m} for some integerm, we have∑m
i=1bigj(ci)= δ1,g . Hence

∑m
i=1bi(ci−gj(ci))

= 1 for each gj ≠ 1 in G. So for every b ∈ B, b =
∑m
i=1bbi(ci−gj(ci))∈ BJ(C)j . There-

fore, B = BJ(C)i for each gi ≠ 1 in G. Thus, B is a center Galois extension of BG by
(2) �⇒(1).
(1) �⇒(4). Since C is a Galois algebra with Galois group G|C �G, B and BGC are Galois

extensions of BG with Galois group G|BGC �G. Noting that BGC ⊂ B, we have B = BGC ,
that is, B is a central extension of BG. But B is a Galois extension of BG, so B is a Galois
central extension of BG.
(4) �⇒(1). By hypothesis, B = BGC is a Galois extension of BG. Hence there exists a

Galois system {ai;bi ∈ B, i= 1,2, . . . ,m} for some integerm such that
∑m
i=1aigj(bi)=

δ1,j . But B = BGC , so ai =
∑nai
k=1b

(ai)
k c(ai)k and bi =

∑nbi
l=1 b

(bi)
l c(bi)l for some a(ai)k , b(bi)l

in BG and c(ai)k , c(bi)l in C, k= 1,2 . . . ,nai , l= 1,2, . . . ,nbi , i= 1,2, . . . ,m. Therefore,

δ1,j =
m∑
i=1
aigj(bi)=

m∑
i=1

nai∑
k=1
b(ai)k c(ai)k gj

(nbi∑
l=1
b(bi)l c

(bi)

l

)

=
m∑
i=1

nai∑
k=1
b(ai)k c(ai)k

nbi∑
l=1
bbil gj

(
c(bi)l

)
=

m∑
i=1

nai∑
k=1

nbi∑
l=1

(
b(ai)k c(ai)k b(bi)l

)
gj
(
c(bi)l

)
.

(3.3)

This shows that
{
b(ai,bi)k,l = b(ai)k c(ai)k b(bi)l ∈ B; c(ai,bi)k,l = c(bi)l ∈ C, k = 1,2, . . . ,nai , l =

1,2, . . . ,nbi , i= 1,2, . . . ,m
}
is a Galois system for B. Thus, B is a center Galois extension

of BG by (3) �⇒(1).
(1) �⇒(5). Since B is a center Galois extension of BG, B = BJ(C)j for each gj ≠ 1 in G

by (1) �⇒(2) and B = BGC by (1) �⇒(4). Thus, BGC = BGCJ(C)j for each gj ≠ 1 in G.
(5) �⇒(1). Since BGC = BGCJ(C)j for each gj ≠ 1 in G, B = BJ(C)j for each gj ≠ 1 in G.

Thus, B is a center Galois extension of BG by (2) �⇒(1).
The characterization of a commutative Galois extension C in terms of the ideals

generated by {c − g(c) | c ∈ C} for g ≠ 1 in G is an immediate consequence of
Theorem 3.2.

Corollary 3.3. A commutative ring C is a Galois extension of CG if and only if
C = CJ(C)j , the ideal generated by {c−gj(c) | c ∈ C} is C for each gj ≠ 1 in G.

Proof. Let B = C in Theorem 3.2. Then, the corollary is an immediate consequence
of Theorem 3.2(2).

By Theorem 3.2, we derive several characterizations of a Galois centeral extension B.
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Corollary 3.4. If B is a central extension of BG (that is, B = BGC), then the following
statements are equivalent.
(1) B is a Galois extension of BG.
(2) B is a center Galois extension of BG.
(3) B∗G is H-separable over B.
(4) B = CJ(B)j for each gj ≠ 1 in G.
(5) B = BJ(B)j for each gj ≠ 1 in G.

Proof. (1)⇐⇒(2). This is given by (1)⇐⇒(4) in Theorem 3.2.
(2) �⇒(3). This is Lemma 3.1(3).
(3) �⇒(1). Since B∗G is H-separable over B, B is a Galois extension of BG [1, Propo-

sition 2].
Since B = BGC by hypothesis, it is easy to see that J(B)j = BGJ(C)j for eachgj inG. Thus,

B = CJ(B)j , B = BJ(B)j , and B = BJ(C)j are equivalent. This implies that (2)⇐⇒(4)⇐⇒(5)
by Theorem 3.2(2).

We call a ring B the DeMeyer-Kanzaki Galois extension of BG if B is an Azumaya C-
algebra and B is a center Galois extension of BG (for more about the DeMeyer-Kanzaki
Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader
than the class of the DeMeyer-Kanzaki Galois extensions. We conclude the present
paper with two examples. (1) The DeMeyer-Kanzaki Galois extension of BG and (2) a
center Galois extension of BG, but not the DeMeyer-Kanzaki Galois extension of BG.

Example 3.5. Let C be the field of complex numbers, that is, C=R+R√−1 where
R is the field of real numbers, B = C[i,j,k] the quaternion algebra over C, and G =
{1,g | g(c1+cii+cjj+ckk) = g(c1)+g(ci)i+g(cj)j+g(ck)k for each b = c1+cii+
cjj+ckk∈ C[i,j,k] and g(u+v

√−1)=u−v√−1 for each c =u+v√−1∈ C}. Then
(1) The center of B is C.
(2) B is an Azumaya C-algebra.
(3) C is a Galois extension of CG with Galois group G|C � G and a Galois system

{a1 = 1/
√
2, a2 = (1/

√
2)
√−1; b1 = 1/

√
2, b2 =−(1/

√
2)
√−1}.

(4) B is the DeMeyer-Kanzaki Galois extension of BG by (2) and (3).
(5) BG =R[i,j,k].
(6) B = BGC, so B is a centeral extension of BG.
(7) J(C)g =R√−1.
(8) B = BJ(C)g since 1=−√−1√−1∈ BJ(C)g .
(9) J(B)g =R√−1+R√−1i+R√−1j+R√−1k.
(10) B = CJ(B)g .

Example 3.6. By replacing in Example 3.5 the field of complex numbers C with
the ring C = Z⊕Z where Z is the ring of integers, g(a,b) = (b,a) for all (a,b) ∈ C ,
and G = {1,g | g(c1+cii+cjj+ckk) = g(c1)+g(ci)i+g(cj)j+g(ck)k for each b =
c1+cii+cjj+ckk∈ B = C[i,j,k]}. Then
(1) The center of B is C .
(2) C is a Galois extension of CG with Galois group G|C � G and a Galois system

{a1 = (1,0), a2 = (0,1); b1 = (1,0), b2 = (0,1)}.
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(3) B is not an Azumaya C-algebra (for 1/2 ∉ C), and so B is not the DeMeyer-Kanzaki
Galois extension of BG.
(4) CG = {(a,a) | a∈ Z} � Z.
(5) BG = CG[i,j,k].
(6) B = BGC , so B is a central extension of BG.
(7) J(C)g = {(a,−a) | a∈ Z} = Z(1,−1).
(8) B = BJ(C)g since 1= (1,1)= (1,−1)(1,−1)∈ BJ(C)G .

(9) J(B)g = Z(1,−1)+Z(1,−1)i+Z(1,−1)j+Z(1,−1)k.
(10) B = CJ(B)g .
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