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Abstract. We derive the biorthogonality condition for axisymmetric Stokes flow in a re-
gion between two concentric spheres. This biorthogonality condition is a property satis-
fied by the eigenfunctions and adjoint eigenfunctions, which is needed to compute the
coefficients of the eigenfunction expansion solution of the corresponding creeping flow
problem.
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1. Introduction. Recently, the eigenfunction expansion method has been used ex-
tensively for solving problems of Stokes flow. The method leads to the development
of a set of eigenfunctions, adjoint eigenfunctions, biorthogonality conditions and an
algorithm for the computation of the eigenfunction expansions. This technique was
first introduced by Smith [10] in his solution of the biharmonic problem governing
the bending of a semi-infinite strip clamped at its side and loaded at its top edge.
The biorthogonal series expansion method was also used by Joseph [2] in his study

of the free surface on the round edge of a flowing liquid filling a torsion flow viscome-
ter and by Joseph and Sturges [3] in the steady flow induced in a rectangular cavity by
the uniform translation of a covering plate or belt. Similar biorthogonal eigenfunction
expansions and biorthogonality conditions are required for the axisymmetric Stokes
flow problems in a wedge shaped trench studied by Liu and Joseph [7], the axisym-
metric Stokes flow in a cone studied by Liu and Joseph [8] and for the problem of
Stokes flow in a trench between concentric cylinders studied by Yoo and Joseph [11].
Most recently, biorthogonality conditions were used by Khuri to solve Stokes flow in

a sectorial cavity [5] and by Khuri and Wang for solving Stokes flow around a bend [6].
The previous references are just a small sample of problems arising in Stokes flow

and elasticity which can be solved in biorthogonal series of eigenfunctions generated
by separating variables. A list of several other problems is given in [4, 9].
In this paper, we derive the biorthogonality condition for axisymmetric Stokes flow

in a spherical region by implementing a theorem proved by Khuri [5]. This biorthog-
onality condition is a property satisfied by the eigenfunctions and adjoint eigenfunc-
tions, which is needed to compute the coefficients of the eigenfunction expansion
solution of the corresponding creeping flow problem.
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2. Biorthogonality conditions. We state a biorthogonality property satisfied by the
eigenfunctions and adjoint eigenfunctions of the following fourth-order boundary
value problem:

(
P0(r)y

′′
(r)
)′′ +(P1(r ;α)y ′

(r)
)′ +P2(r ;α)y(r)= 0 r ∈ [r1,r2] (2.1)

The boundary conditions are given by

y
(
r1
)=y(r2)=y ′(

r1
)=y ′(

r2
)= 0. (2.2)

This biorthogonality condition, given in Theorem 2.1, which was proved by Khuri [5],
gives the biorthogonality property for the boundary value problem given in equations
(2.1) and (2.2) with certain restrictions imposed on the coefficients.

Theorem 2.1 (biorthogonality condition). Consider the boundary value problem
given in (2.1) and (2.2), where P0(r), P

′′
1 (r ;α), P2(r ;α) are continuous and P0(r) �= 0

on r1 ≤ r ≤ r2. Pi in equation (2.1) is a polynomial of degree at most i in the parameter
α, in particular, let P1(r ;α)= p11(r)α+p12(r), and we require

P21 (r ;α)−4P0(r)P2(r ;α)= p31(r)α+p32(r),
p211(r)+p231(r) �≡ 0.

(2.3)

Then with P∗n defined by

P∗n =
∫ r2
r1

[
φ(n)2 (r),φ

(n)
1 (r)

]
B(r)



φ(n)1 (r)

φ(n)2 (r)


 dr, (2.4)

we have the following biorthogonality condition:

∫ r2
r1

[
φ(m)2 (r),φ(m)1 (r)

]
B(r)



φ(n)1 (r)

φ(n)2 (r)


 dr = P∗n δmn, (2.5)

where δmn is the Kronecker’s delta,

B(r)=




−1
2
p11(r)
P0(r)

0

1
2
p
′′
11(r)+

1
4
p31(r)
P0(r)

−1
2
p11(r)
P0(r)




(2.6)

with

φ(n)1 (r)=yn(r),

φ(n)2 (r)= P0(r)y
′′
n(r)+

1
2
P1(r ;αn)yn(r).

(2.7)

Here yi is an eigenfunction of equation (2.1) corresponding to the eigenvalue αi. As-
sume the eigenvalues αi are simple.
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3. Axisymmetric Stokes flow in spherical regions. In this section, the biorthogo-
nality condition for the axisymmetrical creeping flow in a region between two concen-
tric spheres is derived. The flow region is

ν = {r ,θ : 0< r1 ≤ r ≤ r2, −θ1 ≤ θ ≤ θ1}. (3.1)

The Stokes flow equation in spherical coordinates (r ,θ,φ) in ν is given by

E4Ψ(r ,θ)=
(
∂2

∂r 2
+ 1
r 2
∂2

∂θ2
− cotθ
r 2

∂
∂θ

)2
Ψ(r ,θ)= 0. (3.2)

The velocity components in the (r ,θ) direction in terms of the stream function are
given by

vr =− 1
r 2 sinθ

∂Ψ
∂θ
, vθ = 1

r sinθ
∂Ψ
∂r
. (3.3)

Requiring the velocity to vanish on r = r1, r2, (3.3) gives

Ψ
(
r1,θ

)= Ψ(r2,θ)= ∂Ψ∂r
(
r1,θ

)= ∂Ψ
∂r
(
r2,θ

)= 0. (3.4)

Separable solutions of (3.2) and (3.4) in the form

Ψ(r ,θ)∼ T(cosθ)y(r) (3.5)

exist (see [1]) when y(r) satisfies the following equation:

y(4)+ 2
r 2
p(1−p)y(2)− 4

r 3
p(1−p)y(1)+p(1−p)(2+p)(3−p) 1

r 4
y = 0 (3.6)

and the boundary conditions

y
(
r1
)=y(r2)=y ′(

r1
)=y ′(

r2
)= 0. (3.7)

Seeking an eigenfunction solution in r direction it is necessary that the function T(η),
where η= cosθ be required to satisfy the following equation:

(
1−η2)T ′′(η)−p(1−p)T(η)= 0. (3.8)

Equation (3.8) is Gegenbauer’s equation of degree −1/2 where p could be complex.
The two independent solutions of (3.8) are C−1/2p (η) and D−1/2p (η) that are termed
as Gegenbauer functions of the first and second kind, respectively. Clearly, equation
(3.6) can be written in the following form:

(
y
′′)′′ +2p(1−p)

(
1
r 2
y
′
)′
+p(1−p)(2+p)(3−p) 1

r 4
y = 0. (3.9)

The hypothesis of Theorem 2.1 is satisfied when αn �=αm with

P0(r)= 1; P1(r ;α)= 2
r 2
α; P2(r ;α)= 1

r 4
α(α+6), (3.10)
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where

α= p(1−p). (3.11)

Since

P21 (r ;α)−4P0(r)P2(r ;α)=−
24
r 4
α (3.12)

so

p31(r)=−24r 4 ; p32(r)= 0. (3.13)

Clearly,

p11(r)= 2
r 2
; p12(r)= 0. (3.14)

Thus using Theorem 2.1. The biorthogonality condition is given by

∫ r2
r1

−1
r 2
[
ψ(m)1 (r),ψ(m)2 (r)

]


φ(n)1 (r)

φ(n)2 (r)


 dr = P∗n δmn, pn

(
1−pn

) �= pm(1−pm)

(3.15)

upon using

B(r)=− 1
r 2
I2×2 =



− 1
r 2

0

0 − 1
r 2


 , (3.16)

where I2×2 is the identity matrix. The eigenfunctions satisfy

φ(n)1 (r)=yn(r), φ(n)2 (r)=y
′′
n(r)+

αn
r 2
yn(r) (3.17)

and the adjoint eigenfunctions satisfy

ψ(m)1 (r)=y ′′
m(r)+

αm
r 2
ym(r), ψ(m)2 (r)=ym(r), (3.18)

where

αn = pn
(
1−pn

)
. (3.19)
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