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ABSTRACT. Let X = (Z;f:l#{‘)p, p > 1. In this paper, we investigate M-ideals which are
also ideals in L(X), the algebra of all bounded linear operators on X. We show that K(X),
the ideal of compact operators on X is the only proper closed ideal in L(X) which is both
an ideal and an M-ideal in L(X).
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1. Introduction. Since Alfsen and Effros [1, 2] introduced the notion of an M-ideal
in a Banach space, many authors have studied M-ideals in algebras of operators. An
interesting problem has been characterizing and finding those Banach spaces X for
which K (X), the space of all compact linear operators on X, is an M-ideal in L(X), the
space of all continuous linear operators on X [4, 8, 9, 11, 12].

Itis known that if X is a Hilbert space, €,, (1 <p < o) orcy,then K(X) is an M-ideal in
L(X) [6, 8, 12] while K (#;) and K (£ ) are not M-ideals in the corresponding spaces of
operators [12]. Smith and Ward [12] proved that M-ideals in a complex Banach algebra
with identity are subalgebras and that they are two-sided algebraic ideals if the algebra
is commutative. They also proved that M-ideals in a C*-algebra are exactly the two-
sided ideals [12]. Later, Cho and Johnson [5] proved that if X is a uniformly convex
Banach space, then every M-ideal in L(X) is a left ideal, and if X* is also uniformly
convex, then every M-ideal in L(X) is a two-sided ideal in L(X).

Flinn [7], and Smith and Ward [13] proved that K (ﬂ,,) is the only nontrivial M-ideal
in L(#,,) for 1 < p < . Kalton and Werner [10] proved that if 1 < p, g < o, X =
(O #g)p with complex scalars, then K (X) is the only nontrivial M-ideal in L(X). In
their proof of this fact, Kalton and Werner [13] used the uniform convexity of X and
X*.In this case, M-ideals in L(X) are two-sided closed ideals in L(X) [5].

In this paper, we investigate M-ideals which are also ideals in L(X) for X=(3.;;_; 1) p,
1 < p < oo. In our case, neither X nor X* is uniformly convex. Therefore, no relation-
ships between M-ideals and algebraic ideals in L(X) seem to be known. But still we
can use Kalton and Werner’s proof in [10] without using uniform convexity of X and
X* to prove that K(X) is the only nontrivial M-ideal in L(X) which is also a closed
ideal in L(X) (Theorem 3.3). By duality we have the same conclusion for the space
i) p, 1 <p < 0.

2. Preliminaries. A closed subspace J of a Banach space X is said to be an
L-summand (respectively, M-summand) if there exists a closed subspace J' of X
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such that X is an algebraic direct sum X = J & J' and satisfies a norm condition
lj+J"lI =17l +11j" Il (respectively, [lj+j" Il = max{lljll,Ilj'|I}) forall j € Jand j € J'.
In this case, we write X = J &, J' (respectively, X = J & J') and the projection P on X
with rang J is called an L-projection (respectively, an M-projection). A closed subspace
J of a Banach space X is an M-ideal in X if the annihilator J* of J is an L-summand
in X*.

Let A be a complex Banach algebra with identity e. The state space S of A is defined
tobe {¢p € A*: Pp(e) = ||p|l = 1}. Anelement h € A is said to be Hermitian if ||e?|| = 1
for all real number A. Equivalently, h is Hermitian if and only if ¢(h) is real for every
¢ €S [3, page 46].

In what follows, Z always denote a complex Banach space (X.;,_; €}')p, the £,-sum
of £1's for 1 < p < co. For each n, let {e,;}}-, be the standard basis of £}". Then these
bases string together to form the standard basis {e,},_; of Z and each T € L(Z) has
a matrix representation with respect to {e,},,_;. If T € L(Z) has the matrix whose
(i,j)-entryis t;;, then we can write T = 3, ;. t;je; ® e;, where e ®¢; is the rank 1 map
sending e; to e;. Observe that T(e;) forms the jth column vector of the matrix of T
and |[Te;|| < |IT|l for all j =1,2,.... If the matrix of T has at most one nonzero entry
in each row and column, then || T'|| is the l.-norm of the sequence of nonzero entries.

A number of facts which hold in L(£,),1 < p < o, still hold in L(Z). If the matrix
of T € L(Z) is a diagonal matrix (t;;) with real diagonal entries, then for each real A
the matrix of AT is also a diagonal matrix with diagonal matrix entries e i, Thus
T € L(Z) is Hermitian if the matrix T is a diagonal matrix with real entries.

Flinn [7] proved that if M is an M-ideal in L(ﬁ,,), 1 <p < x and h is a Hermitian
element in L(#,,) with h? = I, then hM < M and Mh < M. From this he proved that
if h is any diagonal matrix with real entries, then hM < M and Mh < M. His proof is
valid for Z in place of £,. Thus we have the following.

LEMMA 2.1. IfM is an M-ideal in L(Z) and h € L(Z) is a diagonal matrix with real
entries, then hM = M and Mh = M.

The M-ideal structure of L(X) for X = (Z;’l":l#g)p,l < p,q < ~ was studied by
Kalton and Werner [10]. Some of their proofs for X are still good for Z. One of them
is the following.

LEMMA 2.2. There is a constant C such that, whenever (k,,) is a sequence of positive
integers with limsupk, = co, then (3_, ™), is C-isomorphic to (35_, £}) .

PROOF. See proof of Lemma 3.1 of [10]. O

We recall that a Banach space X is C-isomorphic to a Banach space Y if there exists
an isomorphism T form X onto Y such that

1
EHXH < |ITxll = Clix|l (2.1)
for every x € X. We use the following lemma which is due to Kalton and Werner [10].

LEMMA 2.3 [10]. Let X be a Banach space, I C L(X) be a two-sided ideal, and P a
projection onto a complemented subspace E of X which is isomorphic to X.
(@ IfP €T, thenJ = L(X).
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(b) IfE is C-isomorphic with X and J contains an operator T with ||T —P|| < (C||P||™Y),
then J = L(X).

3. M-ideals in L((>.;,_; ¥1")p). A matrix carpentry used by Flinn [7] to characterize
the M-ideal structure in L(£,) can be used to some extent in our case Z = (3.;,_; £}'),.
The proof of the following lemma is really a minor modification of Flinn’s proof in [7].

LEMMA 3.1. If M is a nontrivial M-ideal in L(Z), then K(Z) < M.

SKETCH OF THE PROOF. Let us call two positive integers i and j are in the same
block if n(n+1)/2<1i, j<(n+1)(n+2)/2 for some n. Using Lemma 2.1, we can
follow Flinn’s proof of the second corollary to Lemma 1 in [7]. The only modification
is the following: to prove 214 < |t,; + ;| < 21/4, we consider two cases. If p and k are
in a different block, Flinn’s proof just run through. If p and k are in the same block,
then 21/ < |tp[+tkl| <|[T(ep)ll < 274, O

The proof of the following lemma is contained in the proof of Theorem 3.3 in [10].

LEMMA 3.2. If J is a closed ideal strictly containing K(Z) then J contains all the
operators which factor through £,.

The proof of the following theorem is a modification of that of Kalton and Werner
[10]. Here we can go around the use of uniform convexity.

THEOREM 3.3. IfJ is a closed ideal and also an M-ideal in L(Z) strictly containing
K(Z),thenJ =L(Z).

PROOF. We recall that the standard basis {e,;}}.; of £} string together to form
the standard basis {e,};;_; of Z.If {e},}5_; is the standard basis of £, then the map
en — e, gives a contraction from Z to €,. Since E = Span{ey;};_, is isometric to £,,
there exists a norm one operator A from Z to E carrying e, to e,; via e;. Thus A
factors through ¢,. By Lemma 3.2, A€ J.

Since 7 is also an M-ideal, by Proposition 2.3 in [14], there exists a net (Hy) € I
such that

limsup||+ A+ (Id—Hy) |l = 1. (3.1)

To simplify subsequent calculations, let us write the standard basis of Z as {e,;;:n €
N, 1 <l <mn}andlet {e},:n e N, 1=<1=<n} be the corresponding biorthogonal
functionals. Then Aey; = e, where m = (n—-1)n/2 +1.
Given 0 < £ < 1,
m§x||1A+(Id—Ho()||<1+e 3.2)

for infinitely many «’s. For such an « and every e,

mPXIIiAenl—(Id—Hu)enlll <1l+e. (3.3)
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Put oy = e,’jj(ld—H,x)enl. Then,

max ||+ Aen + (d-Hy)enl”

=max||+em — (Id-Hy)enl”

» k p (3.4)
= (max|omy = 11+ lotma |+ + [etmml) + D | 3 o]
B k+m \j=1

<(1+¢)P.

Since max. |&m1 = 1| = 1, it follows that Zkim(2§:1 loxi)P < (1+&)P -1 and |xmo| +
4 O | < €.Since 1+ [0 ]2 < maXa [0y £ 1] < 146, |otn1] < V2eE+62 < 24/
Thus |[|(Id - Hy)enll < ((3/8)P +(1+¢&)? —1)1/? — 0 as € — 0 uniformly in n and [. It
follows that, for any n,

1P (1d = Ho) Pl < 1Py (Id — Ho) jinll < (3vE)7 + (1 + )P =1)"'7 (3.5)

where P, is the projection on Z with range ¢!' < Z and j, is the canonical injection of
£ into Z.

By Lemma 3.2 in [10], there exists a sequence (k) such that, for the canonical pro-
jection P from Z onto (X5_, £"),,

IP—PHuP| = [[P(d—Hy)PIl <3((3v/&)" + (1 +e)” -1)"7. (3.6)

Since PHyP € J and ¢ > 0 is arbitrary small, by Lemmas 2.2 and 2.3, 5 = L(Z). O
From Lemma 3.1 and Theorem 3.3, we have the following.
COROLLARY 3.4. IfJ is a proper ideal and also an M-ideal in L(Z), then J = K(Z).

REMARK. By duality, all the lemmas, Theorem 3.3 and Corollary 3.4 hold with Z* =
-1 t%)p, 1 <p < oo, in place of Z.
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