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1. Introduction. Let M be the space of all maximal regular ideals in a commutative
H∗-algebra A and let x(M),M ∈M, denote the Gelfand transform of x, Loomis [3] (in
the sequel we use notation of Naimark [5]). Then it is easy to show (see Theorem 1
below) that the series

∑
x(M)ȳ(M) converges absolutely for all x,y ∈ A. Also, if we

assume that each minimal self-adjoint idempotent in A has norm one, then it is true
that for each bounded linear function f on A(f ∈ A∗) there exists a ∈ A such that
f(x)=∑x(M)ā(M) for all x ∈A.
In this note we show that these properties could be used to characterize commuta-

tive proper H∗-algebras of this kind. More specifically we show that each semi-single
completely symmetric, Naimark [5], Banach algebra with the above properties is a
proper H∗-algebra with respect to some Hilbertian norm which is equivalent to its
original norm. Also, there is a characterization of all proper commutativeH∗-algebras.

2. Characterizations. Let A be a complex commutative Banach algebra. We do not
assume that A has an identity and so, because of this, we have to deal with regular
maximal ideals. An ideal I in A is regular if the algebra A/I has an identity. If M
is maximal regular ideal then it is closed and the algebra A/M is isomorphic to the
complex field (Gelfand-Mazur theorem, complex case, Loomis [3, 22F]). It follows that
there exists a continuous linear functional FM , Loomis [3, 23B], such that M = {x ∈
A : FM(x)= 0}, i.e., M is the kernel (null space) of FM .
The Gelfand transform x() (we use the Naimark’s notion, Naimark [5], here) of x

is defined by setting x(M) = FM(x) (Loomis uses the notion x∧ in Loomis [3, 23B]),
where M is a regular maximal ideal in A.
The algebra A is said to be semi-simple if ∩M∈MM = (0) (as it is stated above, M

denotes the space of all maximal regular ideals as A). Equivalent condition: mapping
x→ x() is one to one. The algebra A is said to be completely symmetric, Naimark [5],
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if it has an involution x→ x∗ such that x∗(M)= x̄(M) for all M ∈M.
More details of Gelfand theory could be found in Gelfand-Raikov-Silov [2], Loomis [3],

Mackey [4], Naimark [5], Simmons [7], and others.
A proper H∗-algebra is a Banach algebra A with an involution x → x∗ and a scalar

product ( , ) such that (x,x)= ‖x‖2 and (xy,z)= (y,x∗z)= (x,zy∗) for all x,y,z ∈
A. Note that A is semi-simple. For simplicity, a nonzero self-adjoint idempotent will
be called projection (e.g., Saworotnow [6]). A projection e is minimal if it is not a sum
of two projections whose product is zero.
A completely symmetric commutative Banach algebra is a Banach algebra with invo-

lution x→ x∗ such that x∗(M)= x̄(M) for all x ∈A and M ∈M, Naimark [5, Sec. 14].

Theorem 1. Each proper commutative H∗-algebra A is completely symmetric in
the sense of Naimark [5]. Also, the series

∑
M∈M |x(M)|2 converges for each x ∈A and

if we assume that eachminimal projection inA has norm one, then each bounded linear
functional f on A(f ∈A∗) has the form f(x)=∑x(M)ā(M)(x ∈A) for some a∈A .

Proof. First and second parts of the theorem follow from Loomis [3, 27G]. For
each M ∈ M there exists a minimal projection eM such that x(M) = (x,eM)‖eM‖−2,
x =∑M∈Mx(M)×eM and eM1eM2 = 0 ifM1 ≠M2 (Loomis [3] uses notation “eα” instead
of “eM”). Note that ‖eM‖ ≥ 1 for each M ∈M(‖eM‖ = ‖e2M‖ ≤ ‖eM‖2).
It follows that ‖x‖2 = ∑M∈M |x(M)|2‖eM‖2 ≥

∑
M∈M |x(M)|2. The last part follows

from Loomis [3, 10G]: If we assume that each minimal projection has norm one, then
‖x‖2 =∑M∈M |x(M)|2 and (x,a)=

∑
M∈Mx(M)ā(M) for all x,a∈A (and there exists

a∈A such that f(x)= (x,a) for all x ∈A).
Now we have a characterization of those commutative H∗-algebra in which each

minimal projection has norm one.

Theorem 2. Let A be a semi-simple commutative completely symmetric Banach al-
gebra. Assume further that the series

∑
M∈M |x(M)|2 converges for each x ∈ A and

that for each bounded linear functional f on A there exists a ∈ A such that f(x) =∑
M∈Mx(M)ā(M) for all x ∈A. Then there exists a Hilbertian norm ‖‖2 on A, equiva-

lent to the original norm such thatA is anH∗-algebra with respect to the scalar product
( , ) associated with ‖‖2 and the original involution. Also, each minimal projection in A
has norm 1.

Proof. For each x,y ∈A, define (x,y)=∑M∈Mx(M)ȳ(M). This series converges
absolutely for all x,y ∈A, since

k∑

i=1

∣∣x(Mi
)
ȳ
(
Mi
)∣∣≤ 1

2




k∑

i=1

∣∣x(Mi
)∣∣2+

k∑

i=1

∣∣y(Mi
)∣∣2

 (2.1)

for each finite subset {M1, . . . ,Mk} of M. Hence, the inner product ( , ) is defined ev-
erywhere on A. Let ‖‖2 be the corresponding norm, ‖x‖22 = (x,x) for all x ∈A. Let us
show that A is complete with respect to ‖‖2.
First, note that the completion A′ of A with respect to ‖‖2 is a proper H∗-algebra

(since ‖x∗‖2 = ‖x‖2 for all x ∈ A). Hence, A′ is semi-simple. (It is a consequence of
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Loomis [3, 27A].) So we can apply [5, Sec. 12, Thm. 1]: there exists C > 0 such that
‖x‖2 ≤ C‖x‖ for all x ∈A.
Now, let {an} be a sequence of numbers of A such that limm,n‖an−am‖2 = 0. Then

there exists N> 0 such that ‖an‖2 ≤N for each n. For each fixed x ∈A define

f(x)= lim
m→∞

(
x,am

)
. (2.2)

From |(x,am)| < ‖x‖2‖am‖2 ≤NC‖x‖ we conclude that f is a bounded linear func-
tional on A. Hence, there exists a∈A so that f(x)=∑M∈Mx(M)ā(M) for each x ∈A.
Let us show that ‖a−an‖2→ 0. Let ε > 0 be arbitrary, taken0 so that ‖am−an‖2 < ε/2
ifm,n>n0. Let n>n0 and x ∈A be fixed. Then ‖a−an‖22 = |(a−an,a−an)| ≤ |(a−
an,a−am)|+|(a−an,am−an)| ≤ |f(a−an)−(a−an,am)|+‖a−an‖2‖am−an‖2.
Selectm>n0 so that

∣∣f (a−an
)−(a−an,am

)∣∣≤ ε
2
‖a−an‖2. (2.3)

Thus

‖a−an‖22 ≤
ε
2
‖a−an‖2+ ε2‖a−an‖2 = ε‖a−an‖2, (2.4)

and this implies that ‖a−an‖2 < ε for each n > n0. So, A is complete with respect
to ‖‖2.
It follows from [5, Sec. 12, Thm. 1] that the norm ‖‖2 and the original norm ‖‖ on

A are equivalent.
It is also easy to see that A is an H∗-algebra with respect to the scalar product ( , )

(and the original involution).
Let us show that every minimal projection in A has norm one. First note that the

product of any two distinct minimal projections e1 and e2 is zero, e1e2 = 0. It follows
from the fact that e = e1e2 is also a projection and that eei = ei, i = 1,2. This means
that if e ≠ 0, then both e = e1 and e = e2, which is impossible, since e1 ≠ e2. Thus
eM1eM2 = 0 if M1 ≠ M2 (as was remarked in a proof above). But this also means that
every minimal projection e is of the form e = eM′ for some M′ ∈ M. It follows then
that e(M′)= 1 and e(M)= 0 if M ≠M′. Thus ‖e‖22 = |e(M′)|2 = 1.

For the general case we have Theorems 3 and 4 below, which constitute a characteri-
zation of any proper commutativeH∗-algebra. The characterization is stated in terms
of multiplicative functionals (it could also be done in terms of ideals) (needless to say,
Theorems 1 and 2 could be restated in terms of multiplicative functionals also).

Theorem 3. For each proper commutative H∗-algebra A there exists a real valued
function k(q), defined on the setQ of all its continuous multiplicative linear functionals,
with the following properties :

(i) k(q)≥ 1 for each q ∈Q.
(ii) The series

∑
q∈Q |q(x)|2k(q) converges for each x ∈A.

(iii) For each f ∈ A∗ there exists α ∈ A such that f(x) = ∑q∈Qq(x)q̄(a)k(q) for
each x ∈A(A∗ denotes the dual of A).
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Proof. It is easy consequence of Loomis [3, 27G] that for each nonzero member q
of Q there exists a unique minimal projection eq such that q(x)= (x,eq)‖eq‖−2 and

x =
∑

q∈Q
q(x)eq (2.5)

for each x ∈A (note that {eq}q≠0 is an orthogonal basis for A). We define the function
k(q) by setting k(q)= ‖eq‖2 for each nonzero member q of Q and k(0)= 1. We leave
it to the reader to verify that k(q) has desired properties.

Theorem 4. LetA be a semi-simple commutative completely symmetric algebra and
letQ be the set of all its continuous multiplicative linear functionals. Assume that there
exists a real valued function k(q) on Q with properties (i), (ii), and (iii) in Theorem 3.
Then A is an H∗-algebra with respect to some Hilbert space norm ‖‖2 equivalent to

the original norm of A, and the original involution.

Proof. Define the scalar product ( , ) on A by setting

(x,y)=
∑

q∈Q
q(x)q

(
y∗
)
k(q), (2.6)

and take that corresponding norm ‖‖2 (with the property that (x,x) = ‖x‖22 ). Then
we proceed as in the proof of Theorem 2.
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