

LIMIT SETS IN PRODUCT OF SEMI-DYNAMICAL SYSTEMS

RAMJEE PRASAD BHAGAT

(Received 12 November 1996 and in revised form 9 March 1998)

ABSTRACT. Continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which $\Omega_X(x) = \Pi\Omega_\alpha(x_\alpha)$, $\alpha \in I$ and thus, the product of Poisson stable motions remains Poisson stable in the product system.

Keywords and phrases. Semi-dynamical system, Lagrange stability, distality, limit sets.

1991 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. We deal mainly with the product of w -limit sets in the product space of semi-dynamical systems (s.d.s.). In [1], Prem Bajaj has shown that the product of semi-dynamical systems is a semi-dynamical system. He has also shown that $\Pi\Omega_\alpha(x_\alpha)$, $\alpha \in I$ contains the w -limit set $\Omega_X(x)$ of x in the product system. In general, equality does not hold in the above. Indeed $\Omega_X(x)$ may be empty. He has given two theorems: one in which $\Omega_X(x)$ is nonempty and the other indicating a case of equality viz. Theorems 2.3 and 2.4.

In this paper, continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which $\Omega_X(x) = \Pi\Omega_\alpha(x_\alpha)$, $\alpha \in I$, $x = \{x_\alpha\}$ and therefore, the product of Poisson stable motions, under these conditions, is Poisson stable.

2. Definitions and notations

DEFINITION 2.1. A continuous mapping $\pi : X \times \mathbb{R}^+ \rightarrow X$ on a topological space X is said to define a semi-dynamical system (X, π) if $\pi(x, 0) = x$ and $\pi(\pi(x, t), s) = \pi(x, t+s)$ for every $x \in X$ and $t, s \in \mathbb{R}^+$. (\mathbb{R}^+ denotes the set of nonnegative reals.)

DEFINITION 2.2. Let (X_α, π_α) , $\alpha \in I$ be a family of dynamical systems. Let $X = \Pi X_\alpha$ be the product space. Let $x \in X$ and $x = \{x_\alpha\}$. Define a map π from $X \times \mathbb{R}$ into X by $\pi(x_\alpha t) = (x_\alpha t)$, $\alpha \in I$, then (X, π) is a dynamical system. The dynamical system (X, π) , obtained above, is called the direct product or the product of the family (X_α, π_α) , $\alpha \in I$.

We take the usual definitions of positive limit set Ω_X , positive distal, positive Poisson stable, and positive Lagrange stable motions. As usual, we drop the word positive and we use the notations of [1, 4].

3. Main results

PROPOSITION 3.1. Let (X_α, π_α) , $\alpha \in I$, be a family of {Lagrange stable} {distal} s.d.s.

and (X, π) the product s.d.s. Let $x \in X$ and $x = \{x_\alpha\}$, then (X, π) is {Lagrange stable} {distal}.

PROPOSITION 3.2. *If a Lagrange stable motion is Poisson stable and distal, then $\text{Cl}Y(x) = Y(x) = \Omega_x$.*

PROOF. The proof follows from [4, Thm. 2.1]. \square

THEOREM 3.3. *Let (X_α, π_α) , $\alpha \in I$, be a family of dynamical systems and (X, π) the product of the dynamical systems. Let $x \in X$ and $x = \{x_\alpha\}$. Then $\Omega_x(x) \subseteq \Pi\Omega_\alpha(x_\alpha)$, where $\Omega_\alpha(x_\alpha)$ is the positive limit set of x_α in the dynamical systems (X_α, π_α) . (The two π 's have distinct meanings according to the context.)*

Since, in general, the equality does not hold and Ω_x may be empty, the Poisson stability in the constituent dynamical system may be lost from the product of the dynamical systems. Here, we find the conditions under which $\Omega_x(x) = \Pi\Omega_\alpha(x_\alpha)$, $\alpha \in I$ and thus, the product of Poisson stable motions remains Poisson stable in the product system.

THEOREM 3.4. *If a compact motion is Poisson stable and distal, then it is a compact recurrent motion.*

PROOF. Let the motion $\pi(x, t)$ be Poisson stable and distal, then its trajectory $Y(x)$ is closed. Therefore,

$$Y(x) = \text{Cl}Y(x) = \Omega_x. \quad (3.1)$$

As the motion is compact, each of the above sets is compact and minimal and thus, by Birkhoff recurrence theorem, $\pi(x, t)$ is compact and recurrent. \square

THEOREM 3.5. *Let (X, π) be a semi-dynamical system. Let π be a Lagrange stable, then π is distal if and only if, for every net t_i in \mathbb{R}^+ , the phase space*

$$X = \{z \in X : xt_j \rightarrow z \text{ for some } x \in X \text{ and some subnet } t_j \text{ of } t_i\} \quad (3.2)$$

[2, Thm. 2.6].

THEOREM 3.6. *Let (X, π) be Lagrange stable and distal s.d.s. then every net in the trajectory $Y(x)$ of the Poisson stable motion $\pi(x, t)$ is a Cauchy net.*

PROOF. Let $Y(x)$ be the trajectory of the Poisson stable motion $\pi(x, t)$ in s.d.s. (X, π) which is Lagrange stable and distal. Let xt_n be a net in $Y(x)$ which is compact (Proposition 3.2). Therefore, xt_n has a subnet, say xt_m with $xt_m \rightarrow z$, i.e., z is a cluster point of xt_n . Hence, xt_n is a Cauchy net. \square

THEOREM 3.7. *Let (X_α, π_α) , $\alpha \in I$, be a family of Lagrange stable and distal s.d.s. and (X, π) be the product s.d.s. Let $x \in X$ and $x = \{x_\alpha\}$. A motion $\pi(x, t)$ is Poisson stable in (X, π) if and only if $\pi_\alpha(x_\alpha, t)$ is Poisson stable in (X_α, π_α) for each $\alpha \in I$.*

PROOF. Let (x_α, π_α) , $\alpha \in I$, be a Lagrange stable and distal s.d.s. Let $\pi(x_\alpha, t) = x_\alpha t$ be a Poisson stable motion in (X_α, π_α) , $\alpha \in I$, then its trajectory $Y_\alpha(x_\alpha)$ is compact and the net $x_\alpha t_n$, $\alpha \in I$, is a Cauchy net in $Y_\alpha(x_\alpha)$ (Theorem 3.6). Now, the Cauchy

nets $x_\alpha t_n, \alpha \in I$ yield the Cauchy net xt_n in $Y(x)$ in (X, π) [3, p. 194]. As the product of compact sets is a compact set, $Y(x)$ is compact and xt_n is a net in compact $Y(x)$. Thus, it has a subnet $xt_m \rightarrow z$, i.e., z is a cluster point of xt_n . Hence, xt_n is frequently in every neighborhood U of z . Given a neighborhood U of z for every $i \in A$, there is a $j \in A, i \geq j$ such that $xt_i \in U$ however $t_i \rightarrow +\infty$. Hence, $\pi(x, t)$ is Poisson stable. The converse follows from [3, Thm. 25, p. 194] which states that a net in the product is a Cauchy net if and only if its projection into each coordinate space is a Cauchy net. \square

THEOREM 3.8. *Let (X_α, π_α) , $\alpha \in I$, be a family of Lagrange stable distal s.d.s. Let $x \in X$, $x = \{x_\alpha\}$, and (X, π) the product s.d.s. Let $Y_\alpha(x_\alpha)$, $\alpha \in I$, be the product of trajectories. Then $\Pi Y_\alpha(x_\alpha) = Y(x)$. Moreover,*

$$\Pi \Omega_\alpha(x_\alpha) = \Omega_x(x). \quad (3.3)$$

PROOF. Since each $Y_\alpha(x_\alpha)$, $\alpha \in I$, is closed and compact,

$$\text{Cl} \Pi Y_\alpha(x_\alpha) = \Pi \text{Cl} Y_\alpha(x_\alpha) = \text{Cl} Y(x), \quad (3.4)$$

$$\Pi Y_\alpha(x_\alpha) = Y(x). \quad (3.5)$$

Moreover,

$$\Pi \Omega_\alpha(x_\alpha) = \Omega_x(x). \quad (3.6)$$

\square

REFERENCES

- [1] P. N. Bajaj, *Products of semi-dynamical systems*, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund) (Berlin), Lecture Notes in Math, vol. 318, Springer, Verlag, 1973, pp. 23–29. MR 53 1549. Zbl 258.54042.
- [2] N. P. Bhatia and M. Nishihama, *Distal semidynamical systems*, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) (New York), vol. II, Academic Press, 1976, pp. 187–190. MR 58 31006. Zbl 359.54033.
- [3] J. L. Kelley, *General topology*, Springer-Verlag, New York, Berlin, 1975. MR 51 6681. Zbl 518.54001.
- [4] S. S. Prasad and A. Kumar, *Stable P and distal dynamical systems*, Internat. J. Math. Math. Sci. 7 (1984), no. 1, 181–185. MR 85e:34045. Zbl 562.54061.

BHAGAT: DEPARTMENT OF MATHEMATICS, A. S. COLLEGE BIKRAMGANJ, PIN 802212, ROHTAS, BIHAR, INDIA

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br