
Internat. J. Math. & Math. Sci.
Vol. 22, No. 2 (1999) 387–389
S 0161-1712〈99〉22387-3

© Electronic Publishing House

LIMIT SETS IN PRODUCT OF SEMI-DYNAMICAL SYSTEMS

RAMJEE PRASAD BHAGAT

(Received 12 November 1996 and in revised form 9 March 1998)

Abstract. Continuing the study of the properties of Poisson stability and distality [4], we
mention the conditions under which Ωx(x) = ΠΩα(xα),α ∈ I and thus, the product of
Poisson stable motions remains Poisson stable in the product system.
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1. Introduction. We deal mainly with the product of w-limit sets in the product
space of semi-dynamical systems (s.d.s.). In [1], Prem Bajaj has shown that the prod-
uct of semi-dynamical systems is a semi-dynamical system. He has also shown that
ΠΩα(xα),α∈ I contains thew-limit set Ωx(x) of x in the product system. In general,
equality does not hold in the above. Indeed Ωx(x) may be empty. He has given two
theorems: one in which Ωx(x) is nonempty and the other indicating a case of equality
viz. Theorems 2.3 and 2.4.
In this paper, continuing the study of the properties of Poisson stability and distality

[4], we mention the conditions under which Ωx(x) = ΠΩα(xα), α ∈ I, x = {xα} and
therefore, the product of Poisson stable motions, under these conditions, is Poisson
stable.

2. Definitions and notations

Definition 2.1. A continuous mapping π : X×R+ → X on a topological space X
is said to define a semi-dynamical system (X,π) if π(x,0) = x and π(π(x,t),s) =
π(x,t+s) for every x ∈X and t,s ∈R+. (R+ denotes the set of nonnegative reals.)

Definition 2.2. Let (Xα,πα), α ∈ I be a family of dynamical systems. Let X =
ΠXα be the product space. Let x ∈ X and x = {xα}. Define a map π from X ×R
into X by π(xαt) = (xαt), α ∈ I, then (X,π) is a dynamical system. The dynamical
system (X,π), obtained above, is called the direct product or the product of the family
(Xα,πα), α∈ I.
We take the usual definitions of positive limit setΩx , positive distal, positive Poisson

stable, and positive Lagrange stable motions. As usual, we drop the word positive and
we use the notations of [1, 4].

3. Main results

Proposition 3.1. Let (Xα,πα), α∈ I, be a family of {Lagrange stable} {distal} s.d.s.
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and (X,π) the product s.d.s. Let x ∈ X and x = {xα}, then (X,π) is {Lagrange stable}
{distal}.

Proposition 3.2. If a Lagrange stable motion is Poisson stable and distal, then
ClΥ(x)= Υ(x)=Ωx .

Proof. The proof follows from [4, Thm. 2.1].

Theorem 3.3. Let (Xα,πα), α∈ I, be a family of dynamical systems and (X,π) the
product of the dynamical systems. Let x ∈ X and x = {xα}. Then Ωx(x) ⊆ ΠΩα(xα),
where Ωα(xα) is the positive limit set of xα in the dynamical systems (Xα,πα). (The
two π ’s have distinct meanings according to the context.)

Since, in general, the equality does not hold and Ωx may be empty, the Poisson
stability in the constituent dynamical system may be lost from the product of the
dynamical systems. Here, we find the conditions under whichΩx(x)=ΠΩα(xα),α∈ I
and thus, the product of Poisson stable motions remains Poisson stable in the product
system.

Theorem 3.4. If a compact motion is Poisson stable and distal, then it is a compact
recurrent motion.

Proof. Let the motionπ(x,t) be Poisson stable and distal, then its trajectory Υ(x)
is closed. Therefore,

Υ(x)= ClΥ(x)=Ωx. (3.1)

As the motion is compact, each of the above sets is compact and minimal and thus,
by Birkhoff recurrence theorem, π(x,t) is compact and recurrent.

Theorem 3.5. Let (X,π) be a semi-dynamical system. Let π be a Lagrange stable,
then π is distal if and only if, for every net ti in R+, the phase space

X = {z ∈X : xtj �→ z for some x ∈X and some subnet tj of ti
}

(3.2)

[2, Thm. 2.6].

Theorem 3.6. Let (X,π) be Lagrange stable and distal s.d.s. then every net in the
trajectory Υ(x) of the Poisson stable motion π(x,t) is a Cauchy net.

Proof. Let Υ(x) be the trajectory of the Poisson stable motion π(x,t) in s.d.s.
(X,π) which is Lagrange stable and distal. Let xtn be a net in Υ(x) which is compact
(Proposition 3.2). Therefore, xtn has a subnet, say xtm with xtm → z, i.e., z is a cluster
point of xtn. Hence, xtn is a Cauchy net.

Theorem 3.7. Let (xα,πα), α ∈ I, be a family of Lagrange stable and distal s.d.s.
and (X,π) be the product s.d.s. Let x ∈ X and x = {xα}. A motion π(x,t) is Poisson
stable in (X,π) if and only if πα(xα,t) is Poisson stable in (Xα,πα) for each α∈ I.

Proof. Let (xα,πα), α∈ I, be a Lagrange stable and distal s.d.s. Let π(xα,t)= xαt
be a Poisson stable motion in (Xα,πα), α ∈ I, then its trajectory Υα(xα) is compact
and the net xαtn, α ∈ I, is a Cauchy net in Υα(xα) (Theorem 3.6). Now, the Cauchy
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nets xαtn,α∈ I yield the Cauchy net xtn in Υ(x) in (X,π) [3, p. 194]. As the product
of compact sets is a compact set, Υ(x) is compact and xtn is a net in compact Υ(x).
Thus, it has a subnet xtm → z, i.e., z is a cluster point of xtn. Hence, xtn is frequently
in every neighborhood U of z. Given a neighborhood U of z for every i∈A, there is a
j ∈A, i≥ J such that xti ∈U however ti→+∞. Hence, π(x,t) is Poisson stable. The
converse follows from [3, Thm. 25, p. 194] which states that a net in the product is
a Cauchy net if and only if its projection into each coordinate space is a Cauchy net.

Theorem 3.8. Let (Xα,πα), α ∈ I, be a family of Lagrange stable distal s.d.s. Let
x ∈ X, x = {xα}, and (X,π) the product s.d.s. Let Υα(xα), α ∈ I, be the product of
trajectries. Then ΠΥα(xα)= Υ(x). Moreover,

ΠΩα(xα)=Ωx(x). (3.3)

Proof. Since each Υα(xα), α∈ I, is closed and compact,

ClΠΥα(xα)=ΠClΥα(xα)= ClΥ(x), (3.4)

ΠΥα(xα)= Υ(x). (3.5)

Moreover,

ΠΩα(xα)=Ωx(x). (3.6)
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