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ABSTRACT. New sufficient conditions for strong approximation of copulas, generated by
sequences of partitions of unity, are given. Results are applied to the checkerboard and
Bernstein approximations.
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1. Introduction. A copula is a distribution function of a doubly stochastic measure
u on the unit square [0,1]?, i.e., C(x,y) = u([0,x] x [0, y]) for x,y € [0,1]. Copulas
are of interest because they link joint distributions to marginal distributions. Sklar
showed in [8, 9] that, for any real-valued random variables X; and X, with joint dis-
tribution Fj», there is a copula C such that

Fia(x1,x2) = C(F1(x1),F2(x2)), (1.1)

where F; and F, denote the cumulative distribution functions of X; and X, respec-
tively.

Copulas are Lipschitz functions and the set of copulas is a convex compact subset
of the space of continuous functions with uniform norm. Therefore, a natural way
of approximating copulas is approximation in the topology of uniform convergence.
The copula captures information about the dependence structure of X; and X». It
is surprising that any copula, even the copula which relates a pair of independent
random variables, can be approximated arbitrarily closely in the uniform sense by
copulas which correspond to the deterministic dependence between a pair of random
variables. Li, Mikusinski, Sherwood, and Taylor, in their work [5, 6], proposed another
type of convergence of copulas. Namely, since the set of copulas is isomorphic to the
set of Markov operators on L®[0, 1], a strong convergence of copulas is defined by the
strong convergence of the corresponding Markov operators. This convergence does
not lead to the paradox mentioned above.

In [5, 6], Li, Mikusinski, Sherwood, and Taylor discussed sequences of approxima-
tion copulas given by partitions of unity. The aim of this paper is to give sufficient
conditions for these sequences to be convergent in the strong sense. The convergence
in the strong operator topology of L (p > 1) is also discussed.

The paper is organized as follows: Section 2 contains preliminary definitions and re-
sults. In Section 3, we formulate and prove theorems concerning the convergence of
Markov operators. In Section 4, Corollary 4.5 gives sufficient conditions for the strong
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convergence of Markov operators related to partitions of unity. In Section 5, we give
three examples of approximation: the checkerboard, Bernstein, and tent approxima-
tions. Similar results for the checkerboard and Bernstein approximations were proved
in [6] by different methods.

2. Preliminaries. A copula is a function C : [0,1]% — [0,1] satisfying the bound-
ary conditions C(x,0) = C(0,y) =0, C(x,1) = x, C(1,y) = », and the monotonicity
condition

C(x2,¥2) —C(x2,¥1) —C(x1,¥2) + C(x1,¥1) =0 (2.1)

for all x1,y1,x2,¥2 € [0,1] satisfying x; < x» and y; < y».
We say that T:L*°[0,1] — L*°[0,1] is a Markov operator if it satisfies the following
three conditions

T(f)=f if f(x)=1; (2.2)
T(f)=0 for f=0; (2.3)

1 1
JO Tf(t)dt = JO ft)dt forall feL™. (2.4)

A Markov operator is bounded and the norm of T in L® is 1. We remark that T can
be extended to L? (p > 1) and it is easy to verify (by (2.2) and (2.4)) that the norm of
T in L! is 1. Therefore, by the Riesz-Thorin interpolation theorem, the norm of T in
L? is also 1. The set of copulas is isomorphic to the set of Markov operators T on
L>[0,1] via the correspondence

d 1
(Tef)(x) = EJO Calx,H)f (D)t 2.5)

Crix,y) = jo (TXt01) (5)ds, (2.6)

where C, =0C/0y.

We say that C,, converges to C in the strong sense if T¢,, converges to T¢ in the strong
operator topology of L!. This strong convergence has a probabilistic interpretation.
Let T be a Markov operator. T corresponds to some doubly stochastic measure on
[0,1]2 so that we may regard [0,1]? as a probability space. Then

Tf(x)=E[f(Y):X=x] ae, (2.7)

that is, T f (x) is the mean value of f(Y) given that X = x, where f is a real-valued
function on [0,1] and X, Y are random variables on [0, 1]? defined by X (u,v) = u and
Y (u,v) = v. Therefore, strong convergence for copulas amounts to convergence of
conditional expectations.

3. Convergence of Markov operators. We study the following situation. Let k,, :
[0,1]%2 — R be a sequence of nonnegative measurable functions satisfying the follow-
ing two conditions
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Jol kn(x,y)dx =1 forae.ye[0,1]; 3.1)
Jol kn(x,y)dy =1 fora.e. x€[0,1]. 3.2)
It is easy to verify that the operators Py, P;f : L*[0,1] — L*[0,1] defined by
Puf ) = [ Rale, ) S (), (3.3)
Py f(y) = Jol kn(x, ) f (x)dx (3.4)

are Markov operators. Now, we formulate two theorems.

THEOREM 3.1. Let k,, : [0,1]2 — R be a sequence of nonnegative measurable func-
tions satisfying (3.1), (3.2), and

lim IJ kn(x,y)dxdy =1 foreverye >0, 3.5)
Ale)

n—oo

where A(e) = {(x,y) € [0,1]%: |x —y| < &}. Then P, — I and P} — I in the strong
operator topology of L', where I is the identity operator.

THEOREM 3.2. Let ky, : [0,1]%> — R be a sequence of nonnegative measurable func-
tions satisfying (3.1), (3.2), and, for every € > 0,

lim kn(x,y)dx =1 fora.e.yc[0,1], (3.6)
n=JA(s,y)
lim kn(x,y)dy =1 fora.e. x €[0,1], 3.7)
n=o JA(e,y)

where A(g,z) = (z—¢€,z+¢€)N[0,1]. Then P, — I and P, — I in the strong operator
topology of L?,p € [1, ), where I is the identity operator.

Observe that every sequence of functions satisfying assumptions (3.6) and (3.7) of
Theorem 3.2 also satisfies condition (3.5) of Theorem 3.1. Usually, it is easier to verify
condition (3.5).

Now, we prove Theorem 3.1 and 3.2. First, we recall the following lemma, given in
[6, Lem. 3.1].

LEMMA 3.3. LetP,,n =1,2,...,andP be Markov operators. Then the following three
statements satisfy: (i) = (ii) < (iii).
(i) For f(x) = x[oa1(x) and for a.e. A € [0,1],

7llip[oloPn(f)(x) =P(f)(x) a.e. on[0,1]. (3.8)
(i) For f(x) = x[oa1(x), for a.e. A €[0,1], and for every p € [1,),
lim [|Pn (f) = P()],, = 0. (3.9)
(iii) P, — P in the strong operator topology of L? for every p € [1,0), i.e.,

Lim [|Pp(f) = P(f)l[, =0 forevery f € L. (3.10)



262 TOMASZ KULPA

PROOF OF Theorem 3.2. According to Lemma 3.3, we need only to show that for
a.e.A €[0,1]

lim Py (x10a1) () = I(X10a1) (%) = Xroa1 (%) a.e. (3.11)

Applying Definition (3.3), we obtain

1
lim Py, (X10,1) (x) = lim Jo kn (x, %) X100 (¥)dy

A (3.12)
= limJ kn(x,y)dy.
n—oo 0
Let x < A and € = A —x. From (3.2) and (3.7), it follows
1 A
1= J kn(x,y)dy = J kn(x,y)dy = J kn(x,y)dy — 1. (3.13)
0 0 Alg,x)

For x > A and € = x — A, we have

A
04 kn<x,y>dysf K (x,7)dy = 1—j kn(x,3)dy — 0. (3.14)
0 [ A(g,x)

0,11\A(&,x)

This shows that

A
}lifglopn(X[o,A])(X) = 711111;10 Jo kn(x,y)dy = xpoa1(x) fora.e. x €[0,1]. (3.15)

Thus, P, — I in the strong operator topology of L?. The proof that P, — I is analogous.
O

PrROOF OF Theorem 3.1. We only show that P, — I in the strong operator topology
of L'. The proof that P} — I is analogous. Let @y, (x) = fA(E,X) kn(x,y)dy. First, we
claim that @y ¢ — X[0,17 in L! norm. Since

1
0<@pe(x)= JA )kn(x,y)dy < L kn(x,y)dy =1 a.e., (3.16)
X

(&,
we have
1
|®n,e —xro,1ll; = JO | @ne(x) = X10,1(x) | dx
1
= I—J J kn(x,y)dy dx (3.17)
0 JA(g,x)
=1—JJ kn(x,y)dydx — 0.
A(g,x)
This implies that, for A € [0,1],
A
JO [ X101(%) — @p,e(x) |dx — 0. (3.18)

Now, we show that P, — I. Let f(x) = X[0,1(x), then
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1
1PnCF = A1l = 1P (X101 G0 = X0 () | dx

-,

= JOA (1 - J: kn(x,y)dy)dx + J: Lj\ kn(x,y)dydx

= Jn,l +Jn,2-

We claim that J,; — 0 and J, 2 — 0. For € € (0,A], we have

1
JO kn(x, ) X10A1()dY — X10,a1(x) ’ dx

(3.19)

0 Jni1 = jOA (1 —j: kn(x,)dy ) dx

A A
= A—J J kn(x,y)dydx
0 Jo

IA

A—¢ A
A—J J kn(x,y)dydx (3.20)
o Jo

IA

A-¢

/\—J J kn(x,y)dydx
0 A(g,x)
A-¢

—et fo (Xion—e] (X) — Qe (x)) dx < 2¢

for sufficiently large n because of (3.18). Now, choose ¢ € (0,1 —A]. Observe that

1 A
02 = L JO Kn (x, ) dy dx

A+e A 1 A
[ keyayaxs [ | kateyidydx
A 0 A+eJO (3_21)

A+e 1
sj j kn<x,y>dydx+” kn (¢, ) dy dx
A 0 [0,1]2\A(e)

= s+1—JJ kn(x,y)dydx <2¢
A(e)

for sufficiently large n. The set of characteristic functions of intervals [0,A], A € [0,1],
is alinearly dense subset of L!. Since P,,,n = 1, 2,..., are linear contractions, P,, (f) — f
for every f € L1([0,1]). This completes the proof in view of Lemma 3.3. O

4. Partition of unity operators. In some applications, we are interested in approx-
imations of copulas by simple ones. One type of approximation is related to the par-
titions of unity. We recall the definition

DEFINITION 4.1. A collection of functions ¢1,...,¢, € L1([0,1]) is called a parti-
tion of unity if

¢$i=0 fori=1,...,nm; (4.1)
1
J <l>i(x)dx:l fori=1,...,m; 4.2)
0 n

> ¢i(x) =1 forevery x € [0,1]. 4.3)
i-1



264 TOMASZ KULPA

This approximation of copulas using the sequence of partitions of unity is given in
[5, Thm. 6].

PROPOSITION 4.2. Let ¢p1,...,¢, € L1([0,1]) be nonnegative functions. The follow-
ing statements are equivalent
(i) ¢1,...,Pn is a partition of unity.
(ii) For every copula C, the operator T,,(C) : L' — L' defined by

n 1
T =12 3 8y (O [ by f DIy )pitx) 4.4)

ij=1
is a Markov operator, where

er=c(fd) e (LA e (LY. ao

Now, we make a simple observation.

PROPOSITION 4.3. Let p1.n, P2.n,---,Pun € L1 ([0,11) be a partition of unity and

kn(x,) =1 bin(X)Xin(>), (4.6)
i=1

where Xin is the characteristic function of interval [(i — 1)/n,i/n]. Then for every
copula C,

Ta(C) =PypoTcoPr. (4.7)

PROOE. Itis easy to verify that k,, satisfies conditions (3.1) and (3.2). So P, and P;*
are Markov operators. Fix f € L1([0,1]), then from (3.3) and (3.4), it follows that

PyoTcoPy (f)(x)

1 n
= (PnoTc) (L n,Z1 dz,-,n(s)xi,n(x)f(s)ds)

d 1 n 1
— P, (dx JO Calx, t)n;xj,nu) fo qu,n(s)f(s)dsdt)

n 1
2. Xjn(t) L bin(s)f(s)dsdtdy

=1

1 n d 1
_ JO nizzlcpi,n(x)xi,n(y)@jo Coy,tin

i/n d im

=n? i d)i,n(x)(JOl ¢J:"(S)f(s)dS>J

4 Co(y,t)dtd
Pt @nmdy Jinm 2 Y

n 1
=n® 3 Ai,J(C)¢i,n(X)JO din(s)f(s)ds.
i,j=1
(4.8)

This shows that T;,(C) = Py, o T¢ o P¥, which completes the proof. O

We are interested in the question of when T, (C) — T¢ in the strong operator topol-
ogy of L and also we ask when T, (C) — T¢ in the strong operator topology of L for
all p € [1,). Since ||P,|l <1 and ||P}|| < 1, the next result follows immediately from
(4.7).
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COROLLARY 4.4. Letp €[1, o) be given. Suppose that the operators Py, P} are gen-
erated by kernels k,, given by (4.6). Assume that P, — I and P} — I in the strong
operator topology of LP. Then T,,(C) — T¢ in the strong operator topology of L?.

Now, we can formulate sufficient conditions for approximation by copulas corre-
sponding to Markov operators generated by partitions of unity. Using definition (4.6),
we can write the assumption (3.5) of Theorem 3.1 as

li in in(y)dxdy =1, 4.9
fmn 3 [ [ bnGxinaxdy (4.9

and the assumption (3.6) and (3.7) of Theorem 3.2 as

lim nj Pny1rin(x)dx =1 forae. y €[0,1], (4.10)
n-—oo A(g,x)
n
limnzd)i,n(X)J Xin(¥)dy =1 fora.e. x €[0,1], (4.11)
noe A(g,x)

where [z] denotes the largest integer not larger than z.
The following corollary is a consequence of Theorem 3.1 and 3.2, Proposition 4.3
and Corollary 4.4.

COROLLARY 4.5. Let ¢p1p,...,Pnn be a partition of unity for n = 1,2,... and let
T, (C) be a sequence of Markov operators given by (4.4).
(i) If (4.9) holds, then for every copula C, T,,(C) — T¢ in the strong operator topology
of L.
(ii) If (4.10) and (4.11) hold, then for every copula C, T,,(C) — T¢ in the strong oper-
ator topology of L for every p € [1,).

5. Applications
1. A CHECKERBOARD APPROXIMATION. Let C be a copula and let n € N. Define
. L x y
CalO)x,) =12 3 A(C) | Xin()ds | Xim(D1. 5.1)
i,j=1

We call C,,(C) a checkerboard approximation to C. The associated Markov operator
can be written as

n 1
(Teuie )X =12 3 A (OXin(X) || Xjn ) F (). (5.2)
ij=1

It is easy to see that Xiu,...,Xn,n iS @ partition of unity for all n € N. If T,,(C) is the
Markov operator corresponding to this partition of unity, then T,,(C) = T¢ () holds.
An associated sequence of kernels k,, is given by

kn(x,2) =1 Xin(X)Xin (V). (5.3)

i=1

We show that the kernels k, satisfy the assumptions of Corollary 4.5. First, we
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check (4.9).Fixe>0andn>1/¢

i/n

n n i/m n 1
nZJJ xi,n(x)xi,n(y)dxdy:nz dxj_ dy:nz —=1 (54)
=17 JA@® i=1 -1 n=1 1t

(i-1)/n i
Now, we check (4.10). Fix y € [0,1]\Q.Forn > 1/¢,we have [[ny]/n,([ny]+1)/n] C
A(e,y) and

([nyl+1)/n

nJ x[ny]ﬂ,n(x)dx:nj dx =1. (5.5)
Alg,y) [nyl/n

Since kernels k; are symmetrical, (4.11) also holds. Consequently, T, ) — Tc in the
strong operator topology of L? for every p € [1, ).

2. BERNSTEIN APPROXIMATION. We recall that Bernstein polynomials are defined
with the help of the following expressions

-1
bin(x) = (:, 1) xF1a-x)"* fork=1,...,n. (5.6)
The polynomials b ,...,b,,, form a partition of unity for n = 1,2,.... We approxi-
mate any copula C by
, & x y
B, (C)(x,y) = n? Z Ai,j(C)JO bi,n(s)dsjo b;n(t)dt, n=1,2,.... (5.7)

ij=1
The associated kernels k,, are given by
n
kn(x,7) =1 bin(X)Xin(y), (5.8)
i=1
and the corresponding Markov operator by
n 1
Tonie) () =12 3 8i5(Obin(x) | bin (). (5.9)
i,j=1

We show that the kernels (5.8) satisfy conditions (4.10) and (4.11) of Corollary 4.5.
It is easy to verify that

m 7
Nhpp(x) = — (z lok,ml(x)) form=1,...,n. (5.10)
k=1
Hence,
x m
nJO D (£)dt = 1= by a1 (x). (5.11)
k=1

It suffices to show (4.10) for small €. Fix v € [0,1]\Q and ¢ € (0,y). Using (5.11), we
obtain

[nyl+1 [nyl+1

n binyrlein(x)dx = > binii (¥ =8 — D bine1(y+e). (5.12)
A(g,y) k=1 k=1
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Let &, be a sequence of independent random variables such that Prob(&, = 1) = x
and Prob(§, =0)=1-xandletS, =& +---+&,. Then

[nyl+1

> bin+1(x) =Prob (S, < [ny]+1) =Prob (S—" < M) (5.13)
= n n
From the law of large numbers, it follows that
! 1, x<,
lim > bgne1(x) = «= (5.14)
nee k=1 0! x>y,

and (4.10), now, follows from (5.12) and (5.14). To check (4.11), we need the well-known
Bernstein theorem (cf. [1, Ch. 1, Thm. 6.3]).

LEMMA 5.1 (Bernstein). For every continuous function f :[0,1] — R

n-1

Xf( -1 )bi,n<x> = f(x) (5.15)
i=1

uniformly on [0,1].

Fix x € [0,1] and € > 0. Let J(&,x,n) = {ie {1,....,.n}:[(i—-1)/n,i/n] C A(s,x)}.
We have

n
nYbin(0 [ XAy T bialx). (5.16)
i=1 Alex) ieJ(ex,n)
Letn<e¢ K(n,x,n)={ief{l,....n}:(i-1)/(n-1) € A(n,x)}, and f:[0,1] — [0,1]
be a continuous function such that f(t) = 0fort € [0,1]\A(n,x) and f(x) = 1. Using
Lemma 5.1, we obtain

éf(;:ﬁ)bi,n(t):‘f(t), (5.17)
which gives, for t = x,
i‘if(;l__ll)bi,n(X) — 1. (5.18)
From (4.1), we get
if (;__11 ) bin(x) < 3 binx)< 3 bin(x) (5.19)
i=1 i€k (n,x,n) ieJ(e.x,n)

for sufficiently large n. Combining this with (5.16) and (5.18), we get (4.11). This shows
that T, () — T¢ in strong operator topology of L? for every p € [1, ).

3. A TENT APPROXIMATION. We define a sequence of tent functions by
bin(x) =max{0,1- [nx—i+}|} fori=2,..,n-1, (5.20)

b1 (x) =max{0,min{1,3 -nx}}, bnn(x)=pra(1-x). (5.21)
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It is easy to verify that ¢} ,, b2 n,..., Pnn form a partition of unity for n = 2,3,.... We
approximate a copula C by

n x y
Du(O)(x,) =12 S Ai,j(C)JO qbi,n(s)dsjo Gin(Odl, N=23,....  (5.22)

ij=1

The associated kernels k,, are given by (4.6) and the corresponding Markov operators
by

n 1
Towioy (f)x) =n? S Ai,j<c>¢i,n<x>j0 bim N f()d. (5.23)

ij=1

We show that the kernels (4.6) of this approximation satisfy conditions (4.10) and
(4.11) of Corollary 4.5. Fix y € [0,1]\Q, € € (0,y) and n > 2/¢. Since

[Z[ny] -1 2[ny]l+3
n 2n

] C A(g,y), (5.24)

we have

nJ ¢[ny]+1,n(x)dx: 1, (5.25)
Alg,y)

which gives (4.10). Now, fix x € [0,1]\Q, € € (0,x) and n > 2/¢. Observe that ¢, ,, (x) #
0 only for i; = [nx + (1/2)] and i» = [nx + (3/2)]. Also, we have [(i—1)/n,i/n] C
A(eg,x) for i =1, and i = ip. Hence,

n
n> $in(x) JA( )Xi,n(y)dy = Prnx+1/2)1n(X) + Prnx+3/2)10(x) =1, (5.26)
i=1 il

which implies (4.11). From Corollary 4.5, it follows that Tp, () — T¢ in the strong
operator topology of L? for every p € [1, ).
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