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1. INTRODUCTION

It is interesting to have an explicit formula for quotient norms in concrete Banach spaces. In
this short note we calculate the norms of elements in the real quotient Banach spaces [*°(I")/co(T)
and [°(T')/c(T) where T is an arbitrary nonempty set. These formulas seem not to appear (e.g.,
as an exercise) in texts on functional analysis, but might have been known a long time ago. We
consider the following three real function spaces:

I°(T) := {(ay)yer : 3m>0 Vqerla,| < M}, (1.1)
co(T) := {(@y)ver : Ves>o 3ger Voen\e layl <€}, (1.2)
¢(T) := {(ay)qer : Jacr (ay — a)qer € co(T) } (1.3)

where F := F(T') is the collection of all finite subsets of . When I' = N, these spaces are corre-
spondingly, all bounded, null-convergent, and convergent real sequences. An element a appearing
in the definition of ¢(I') is called the limit of a function (a,),er and is defined uniquely. It is
an immediate observation that co(I') C ¢(I') C (). Moreover, the three above space become
Banach spaces once equipped with the norm ||(a,)|| := sup,er lay|. Also, [co(T)]* = I}(T), the
space of all summable functions on T, and [I}(T')]* ~ I°°(T') (Day [2]). See more on this in Diestel
[3], and Lindenstrauss and Tzafriri [4).

Before formulating the result, we introduce a necessary notation. For a function (a,)+er, let

e = gt gpeo] e = g g e0]

As in the case of countable sequences, liminf,er(a,) < limsup,¢r(a,), and when the equality holds,
the function (a,)yer becomes an element of ¢(I'). For two Banach spaces Y C X, the quotient
linear space X/Y is equipped with the norm

il = iag liz vl
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Theorem 1.1. The following formulas hold true:

l(@)llt(ry/eo(ry = lim sup |a, |, (1.4)
~el
1], .
lan)ll=ry/ery = 5 hl:lesrup(aw)—lu;lelrnf(aq) . (1.5)

2. PROOFS

The proofs of the above formulas are standard and make use of basic properties of least upper
bound (supremum) and greatest lower bound (infimum) of a set.
Proof of the formula (1.4). Let (a,)yer € {®(T) and (by)yer € co(I'). By the triangle inequality
for any E € F, sup,er\g(lay] —|b4]) < sup,ery\g lay — b,|. Hence,

imsuplar| = ot | sup oo = ot | sl 1| < uple, - 1.
Taking infimum over all (b,),er € co(T), we get

sup jay — b, |J = |l(aq)llieo(r/co(r)-

lim su inf
er ¥ losl < (b4)€co(T) [

To prove the converse, for a fixed E € F consider the following sequence:

pE = | O for yeE
L 0 for ¢ E

Obviously (bS'E))—,er € co(T"), moreover,
su — B = su and [su bl < su
76glav ! ﬁPgEIan (Mewa.) play — by up layl,

so

oo < inf | sup |a,|| =limsu .
[I(@)he=ry/eary < fnf Ler{;l 'v|] msup o,

The formula (1.4) is proved.
Proof of the formula (1.5). For a given (a,),er € [(T), in the following sequence of inequalities

we make use of the formula (1.4):

() o (ry/ery = (b,i)lelf(r) [76113 lay — b'yl] inf [(bv b)é’m(r) [Supl(av b) = (by — b)l”

i [ o [502 160 = 9 =811 ]| = g s = DMl = i sple

: . - R L
i [ max{ | imsuptar) b, im(ar) — 1] = 3 [imsup(er) - tiat(er)|.

The proof of the formula (1.5) is complete.

3. REMARKS

Dr. Thomas Armstrong of the University of Maryland Baltimore County has informed us that
our Theorem has an analogue for spaces of measurable functions. More precisely, let (2, M, i) be
a measure space with a o-finite measure u. Define L°(u) as the space of all y-essentially bounded

measurable functions defined on Q and
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co(w) =={f: (U M,u) >R, fis p— measurable and lim [|[Tafllc=0}.  (3.1)
AT Q
H(A) < 00
We define the space c(u) in a similar manner. All these spaces are equipped with the p-essup
norm. The formulas (1.4) and (1.5) are valid for quotient norms corresponding to the spaces
L*(u)/co(p) and L>®(u)/c(u). For more on the duality properties of the spaces of the above type
we refer to Armstrong [1].
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