

CALCULATING NORMS IN THE SPACES $l^\infty(\Gamma)/c_0(\Gamma)$ AND $l^\infty(\Gamma)/c(\Gamma)$

ROMAN SZNAJDER

Department of Mathematics
Bowie State University
Bowie, Maryland 20715, U.S.A.
E-mail: rsznajde@bowiestate.edu

(Received April 24, 1997)

ABSTRACT. We explicitly compute norms in the quotient spaces $l^\infty(\Gamma)/c_0(\Gamma)$ and $l^\infty(\Gamma)/c(\Gamma)$.

KEY WORDS AND PHRASES: Quotient spaces, quotient norms, null-convergent sequences, bounded sequences.

1991 AMS SUBJECT CLASSIFICATION CODES: 46A45; 46A55.

1. INTRODUCTION

It is interesting to have an explicit formula for quotient norms in concrete Banach spaces. In this short note we calculate the norms of elements in the real quotient Banach spaces $l^\infty(\Gamma)/c_0(\Gamma)$ and $l^\infty(\Gamma)/c(\Gamma)$ where Γ is an arbitrary nonempty set. These formulas seem not to appear (e.g., as an exercise) in texts on functional analysis, but might have been known a long time ago. We consider the following three real function spaces:

$$l^\infty(\Gamma) := \{(a_\gamma)_{\gamma \in \Gamma} : \exists_{M > 0} \forall_{\gamma \in \Gamma} |a_\gamma| \leq M\}, \quad (1.1)$$

$$c_0(\Gamma) := \{(a_\gamma)_{\gamma \in \Gamma} : \forall_{\varepsilon > 0} \exists_{E \in \mathcal{F}} \forall_{\gamma \in \Gamma \setminus E} |a_\gamma| < \varepsilon\}, \quad (1.2)$$

$$c(\Gamma) := \{(a_\gamma)_{\gamma \in \Gamma} : \exists_{a \in R} (a_\gamma - a)_{\gamma \in \Gamma} \in c_0(\Gamma)\} \quad (1.3)$$

where $\mathcal{F} := \mathcal{F}(\Gamma)$ is the collection of all finite subsets of Γ . When $\Gamma = N$, these spaces are correspondingly, all bounded, null-convergent, and convergent real sequences. An element a appearing in the definition of $c(\Gamma)$ is called the limit of a function $(a_\gamma)_{\gamma \in \Gamma}$ and is defined uniquely. It is an immediate observation that $c_0(\Gamma) \subseteq c(\Gamma) \subseteq l^\infty(\Gamma)$. Moreover, the three above space become Banach spaces once equipped with the norm $\| (a_\gamma) \| := \sup_{\gamma \in \Gamma} |a_\gamma|$. Also, $[c_0(\Gamma)]^* \simeq l^1(\Gamma)$, the space of all summable functions on Γ , and $[l^1(\Gamma)]^* \simeq l^\infty(\Gamma)$ (Day [2]). See more on this in Diestel [3], and Lindenstrauss and Tzafriri [4].

Before formulating the result, we introduce a necessary notation. For a function $(a_\gamma)_{\gamma \in \Gamma}$, let

$$\limsup_{\gamma \in \Gamma} (a_\gamma) := \inf_{E \in \mathcal{F}} \left[\sup_{\gamma \in \Gamma \setminus E} (a_\gamma) \right] \quad \text{and} \quad \liminf_{\gamma \in \Gamma} (a_\gamma) := \sup_{E \in \mathcal{F}} \left[\inf_{\gamma \in \Gamma \setminus E} (a_\gamma) \right].$$

As in the case of countable sequences, $\liminf_{\gamma \in \Gamma} (a_\gamma) \leq \limsup_{\gamma \in \Gamma} (a_\gamma)$, and when the equality holds, the function $(a_\gamma)_{\gamma \in \Gamma}$ becomes an element of $c(\Gamma)$. For two Banach spaces $Y \subseteq X$, the quotient linear space X/Y is equipped with the norm

$$\| [x] \|_{X/Y} := \inf_{y \in Y} \| x - y \|.$$

Theorem 1.1. The following formulas hold true:

$$\|(a_\gamma)\|_{l^\infty(\Gamma)/c_0(\Gamma)} = \limsup_{\gamma \in \Gamma} |a_\gamma|, \quad (1.4)$$

$$\|(a_\gamma)\|_{l^\infty(\Gamma)/c_0(\Gamma)} = \frac{1}{2} \left[\limsup_{\gamma \in \Gamma} (a_\gamma) - \liminf_{\gamma \in \Gamma} (a_\gamma) \right]. \quad (1.5)$$

2. PROOFS

The proofs of the above formulas are standard and make use of basic properties of least upper bound (supremum) and greatest lower bound (infimum) of a set.

Proof of the formula (1.4). Let $(a_\gamma)_{\gamma \in \Gamma} \in l^\infty(\Gamma)$ and $(b_\gamma)_{\gamma \in \Gamma} \in c_0(\Gamma)$. By the triangle inequality for any $E \in \mathcal{F}$, $\sup_{\gamma \in \Gamma \setminus E} (|a_\gamma| - |b_\gamma|) \leq \sup_{\gamma \in \Gamma \setminus E} |a_\gamma - b_\gamma|$. Hence,

$$\limsup_{\gamma \in \Gamma} |a_\gamma| = \inf_{E \in \mathcal{F}} \left[\sup_{\gamma \in \Gamma \setminus E} |a_\gamma| \right] = \inf_{E \in \mathcal{F}} \left[\sup_{\gamma \in \Gamma \setminus E} |a_\gamma - b_\gamma| \right] \leq \sup_{\gamma \in \Gamma} |a_\gamma - b_\gamma|.$$

Taking infimum over all $(b_\gamma)_{\gamma \in \Gamma} \in c_0(\Gamma)$, we get

$$\limsup_{\gamma \in \Gamma} |a_\gamma| \leq \inf_{(b_\gamma) \in c_0(\Gamma)} \left[\sup_{\gamma \in \Gamma} |a_\gamma - b_\gamma| \right] = \|(a_\gamma)\|_{l^\infty(\Gamma)/c_0(\Gamma)}.$$

To prove the converse, for a fixed $E \in \mathcal{F}$ consider the following sequence:

$$b_\gamma^{(E)} := \begin{cases} a_\gamma & \text{for } \gamma \in E \\ 0 & \text{for } \gamma \notin E \end{cases}$$

Obviously $(b_\gamma^{(E)})_{\gamma \in \Gamma} \in c_0(\Gamma)$, moreover,

$$\sup_{\gamma \in \Gamma} |a_\gamma - b_\gamma^{(E)}| = \sup_{\gamma \in \Gamma \setminus E} |a_\gamma| \quad \text{and} \quad \inf_{(b_\gamma) \in c_0(\Gamma)} \left[\sup_{\gamma \in \Gamma} |a_\gamma - b_\gamma| \right] \leq \sup_{\gamma \in \Gamma \setminus E} |a_\gamma|,$$

so

$$\|(a_\gamma)\|_{l^\infty(\Gamma)/c_0(\Gamma)} \leq \inf_{E \in \mathcal{F}} \left[\sup_{\gamma \in \Gamma \setminus E} |a_\gamma| \right] = \limsup_{\gamma \in \Gamma} |a_\gamma|.$$

The formula (1.4) is proved.

Proof of the formula (1.5). For a given $(a_\gamma)_{\gamma \in \Gamma} \in l^\infty(\Gamma)$, in the following sequence of inequalities we make use of the formula (1.4):

$$\|(a_\gamma)\|_{l^\infty(\Gamma)/c_0(\Gamma)} = \inf_{(b_\gamma) \in c_0(\Gamma)} \left[\sup_{\gamma \in \Gamma} |a_\gamma - b_\gamma| \right] = \inf_{b \in R} \left[\inf_{(b_\gamma - b) \in c_0(\Gamma)} \left[\sup_{\gamma \in \Gamma} |(a_\gamma - b) - (b_\gamma - b)| \right] \right] =$$

$$\inf_{b \in R} \left[\inf_{(b_\gamma) \in c_0(\Gamma)} \left[\sup_{\gamma \in \Gamma} |(a_\gamma - b) - (b_\gamma - b)| \right] \right] = \inf_{b \in R} \|(a_\gamma - b)\|_{l^\infty(\Gamma)/c_0(\Gamma)} = \inf_{b \in R} \left[\limsup_{\gamma \in \Gamma} |a_\gamma - b| \right] =$$

$$\inf_{b \in R} \left[\max \left\{ \left| \limsup_{\gamma \in \Gamma} (a_\gamma - b) \right|, \left| \liminf_{\gamma \in \Gamma} (a_\gamma - b) \right| \right\} \right] = \frac{1}{2} \left[\limsup_{\gamma \in \Gamma} (a_\gamma) - \liminf_{\gamma \in \Gamma} (a_\gamma) \right].$$

The proof of the formula (1.5) is complete.

3. REMARKS

Dr. Thomas Armstrong of the University of Maryland Baltimore County has informed us that our Theorem has an analogue for spaces of measurable functions. More precisely, let $(\Omega, \mathcal{M}, \mu)$ be a measure space with a σ -finite measure μ . Define $L^\infty(\mu)$ as the space of all μ -essentially bounded measurable functions defined on Ω and

$$c_0(\mu) := \{ f : (\Omega, \mathcal{M}, \mu) \rightarrow \mathbb{R}, f \text{ is } \mu\text{-measurable and } \lim_{\substack{A \uparrow \Omega \\ \mu(A) < \infty}} \|I_{A^c} f\|_\infty = 0 \}. \quad (3.1)$$

We define the space $c(\mu)$ in a similar manner. All these spaces are equipped with the μ -essup norm. The formulas (1.4) and (1.5) are valid for quotient norms corresponding to the spaces $L^\infty(\mu)/c_0(\mu)$ and $L^\infty(\mu)/c(\mu)$. For more on the duality properties of the spaces of the above type we refer to Armstrong [1].

REFERENCES

- [1] ARMSTRONG, T.E., Infinite dimensional L -spaces do not have preduals of all orders, *Proc. Amer. Math. Soc.* 74 (1979), pp. 285-290.
- [2] DAY, M.M., *Normed Linear Spaces*, Third Ed., Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [3] DIESTEL, J., *Sequences and Series in Banach Spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, Berlin-Heidelberg-New York, 1984.
- [4] LINDENSTRAUSS, J. and TZAFIRI, L., *Classical Banach Spaces I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br