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ABSTRACT. A theorem of Lorch, Muldoon and Szego states that the sequence

Ja,k+1 bt
/ 1217, (8)ldt
Jak

k=1

is decreasing for a > — 1/2, where J,(t) the Bessel function of the first kind order o and j, 4 its kth
positive root. This monotonicity property implies Szegé's inequality

T
/ t~J,(t)dt > 0,
0

when & > o and o is the unique solution of [J*?t=*J,(t)dt = 0
We give a new and simpler proof of these classical results by expressing the above Bessel function
integral as an integral involving elementary functions.

KEY WORDS AND PHRASES: Bessel functions, positive integral of Bessel functions, monotonicity
property of Bessel functions.
1991 AMS SUBJECT CLASSIFICATION CODES: 33C10, 33C45.

1. INTRODUCTION

Let J,(t) be the Bessel function of the first kind and order «, jo.1,ja2,--- its positive roots in
increasing order and j,0 = 0

In [1] Lorch, Muldoon and Szegé derived, among other things, the following.

THEOREM 1. For a > — } the sequence of areas

{ / o t"’lJa(t)ldt} (L1)
Tak k=1

is decreasing.
As it is shown in [1], this theorem is a special case of a more general result concerning cylinder
functions and its proof is based on an application of a Sturm-type oscillation theorem (formulated by
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Watson [2, p. 518], sharpened and applied in greater detail by Makai [3]) to a certain linear differential
equation of second order.

In addition, as the authors pointed out in [1], Theorem 1 gives another proof of a classical inequality
of Szego contained in the Notes which he appended to a posthumous paper of Feldheim [4] in the course
of preparing it for publication.

Szeg6 proved in [4] that

Jof 2k ,
/ £, (t)dt >0, k=2,3,.. 12)
0

where ¢ is the unique root of the transcendental equation

/ e gudt = 0, 3)

0

whose numerical value is ' = — 0.26938... .
As indicated by Szeg6, (1.2) in combination with an application of the Sonine integral (see [4, p.
279] or [2, p. 373]), yield the inequality

T
/ t7°J,(t)dt >0 forall >0, when a>d (14)
0

Szego's proof of (1.2) is rather intricate as it relies on various properties of Bessel functions as well
as of certain identities involving the Lommel functions.
It should be noted that inequality (1.4) suggests a much stronger inequality involving ultraspherical
polynomials which was recently established in [5].
Over the years, generalizations of (1.4) have been proved by several authors In particular, the
inequality
T
/ tPJ,t)dt>0, >0, f<a+l, 1.5)
0
was proved by Makai [6] for — 1 < a < 1 and B(a) < B < a + 1, where
Ja,2
/ tA@) g (t)dt = 0. 16)
0

Askey and Steinig [7] proved (1.5) for ~1<a< — % for the same range of 3. Fora= — %, (1.5)
turns out to be a classical inequality for cosine integrals. When a > ,1—,, (1.5) holds for — % <f<a+l
and this follows from a work of Gasper [8], in which an explicit expression of the integral in question as a
sum of squares of the Bessel functions with positive coefficients is proved. See also [9] for some more
recent results on positive integrals of Bessel functions.

The purpose of this note is to show that Theorem 1 can be established in a simpler manner than that
in [1] and hence to give a new and more straightforward proof of Szego's inequalities (1.2) and (1.4)

We proceed by observing that Theorem 1 is equivalent to

THEOREM 2. Fora > — ], we define

f(z,@) = '/0: t™*J,(t)dt, z>0. a7n

Then, the local minima of f(z, a), as a function of z, form an increasing sequence, i.e.
f(ju,?lra) < f(ja,u+2ya)1 e = 1v2) ... (1 8)

and its local maxima form a decreasing sequence, i.e.
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f(]a,?l—lva) > f(ja.?l+lva)1 L= 1v21 eee o (19)

It is well known that the graph of y = J,(t), (a > — 1) consists of waves alternately above and
below the axis of ¢, whose areas form a steadily decreasing sequence, t being positive. This classical
result was proved originally by Cooke in [10] and [11]. Cooke's proof is rather complicated as it depends
on some delicate estimates involving the Lommel functions and several properties of Bessel functions In
[3], Makai proved this result for |a| > 1 in a simpler way using a differential equation approach of
Sturm-Liouville type. A particularly simple proof of Cooke's Theorem has been devised by Steinig in

[12).
Ja,k+1
{ / IJa(tndt}
Jak

Since the sequence
is steadily decreasing and for a > 0, t is a positive decreasing function of ¢, we have

00

k=1
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> [ Garer Wl 2 [ et
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which establishes Theorem 1 for all & > 0. It is clear that the case a = 0 reduces to Cooke's result as
well.
In the next section we give a simple proof of Theorem 2 for the range — % <a <0 Thisis, of

course, the interesting case as the critical value o/ for which the Szego's inequalities (1.2) and (1 4) are
valid, is contained in this interval.
2. PROOF OF THEOREM 2FOR — } <a <0

For this proof we need the following elementary lemma.
LEMMA. Let0 < p <1and

sint

g(t)zm for 0<t<1.

Then we have ¢’(t) < 0 fort € (0,1). Moreover, g’(t) < 0fort € (0,1), when % <p<l
PROOF. We observe that

1-¢2
t2

-2 =

(mtcosmt —sinmt) + 2usinwt.

To prove the negativity of ¢'(t), it suffices to show that

_42
! tzt (mtcosmt —sinmt) + 2sinwt < 0,
or equivalently
1-3t2
wtetg(nt) < T @n
Now taking into account the familiar formula
> 1
mtotg(nt) =1+22 T (22)
k=1

we see that (2.1) is equivalent to
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f: :
>0
k=2 k2 —t?

which is apparently true for 0 < ¢ < 1. Hence, ¢'(t) < 0,for0 <t < 1.
Suppose that 3 < 2 < 1. A routine calculation shows that the negativity of ¢”(t), for 0 < ¢ < 1,
follows from the inequality

1-¢2)?
?(1-£)" - 2u[1+ (2p+ 1)) +2 (tT) (rtotgmt—1) — 4u(1 — t*)(rtctgmt — 1) > 0.
In view of (2.2), this is equivalent to

et + (6p+4—4p2—27r2)t2+7r2—2u—4—4(1—t2)(1—~(2u+1)t2)i 1 5o (23)

— k2 — ¢2
Since
Fisd & 1 3
—_ - z —_ <= t
6 l<k=2k2_t2<4, 0<t<1,

inequality (2.3) follows easily by an elementary computation.

The proof of the lemma is complete. [

Now, in order to prove Theorem 2 we observe that the integral in (1.7) that defines the function
f(z, a) coincides with an integral of certain elementary functions.

In fact, by Poisson's integral (cf. [2, p. 48])

2(32)° ! 2\a-} 1
= - 2 t)dt, fi - =,
Jo(2) Fas DI /0 (1-1%)" cos(2t) or a> -3

it follows easily that

SN _ 2l-e 1 sin(zt) dt
At Lm“_ﬂaﬂa+aé t g 24

forz >0anda > — %
Since the zeros of J, (t) are increasing with & [2, p. 508] and

2\? 2\7 .
J_xi(t) = (w—t) cost, J%(t) = (E) sint,

we have for —} <a <1
(z/—';—)w<ja',,<u7r, v=12,... 25)
In addition, Szego showed in [13] that, for — < a <},
Jow = Jow-1<m, v=12,...

Combining this with (2 5) we get
ja,v+2 - ja,v <2< ja,u+3 - ja,uv v=1, 2, (26)

1 1
when — 53 <a<j
Let

! sin(zt) dt
$(z,a) = /0 —t G
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Taking into consideration (2.4) and (2.6) we see that in order to prove (1.8) it suffices to show that

¢(z,a) — ¢p(x — 2m, @) >0, for 2€1r+3?7r<z<2£7r+27r, £=1,2,... 27

Similarly, (1.9) can be obtained by showing

¢(z,a) — ¢(xz — 2m,a) <0, for 2€7r+g<z<2£7r+7r, £=1,2,... (2.8)

It is evident that (2.7) is equivalent to

1 .
cos(yt)—sﬂ(—@ll—dt>0 for 2€7r+£<y<227r+7r, £=1,2,..
-a 2
0 t(1—t2)2

which, in turn, is equivalent to

Yy
/0 Ky(t)costdt >0, 2¢m+ g <y<2Ur+m, £=1,2,.. 2.9)
where
sin("?‘)
K,(t)=——5—, 0<t<y.
t? - 2)7°
We have
Y ¢ 2 y—24m
/ K, (t)costdt =Z Ky((2j—2)7r+t)costdt+/ K,(2¢m +t)costdt
0 =1 0 0
3 3
=/ Tj(t)oostdt—/ K,((2¢ + 1)7 — t) cost dt, (2 10)
0 (2¢+1)r-y
where
¢
THt) =Y {K,((25 —2)m +1t) — Ky((25 — V)m —t)
7=1
— K,((2j - I)m +t) + K, (257 — t)} + K, (2¢m + t).
We observe that the function

AL(t) = THt) — Ky((2¢ +1)m — 1)
is decreasing for (2¢ + 1)7 — y < t < 7, since it has the form
£
AY() = Qy(t) - Qy(m — 1),

where

£
QL) = K, (1) + Y {K, (277 +1) + Ky (27 — 1)}
=1

By the lemma of this section it follows that Qf, (t) is a decreasing function of ¢, therefore

¢ (T _ _ T = 2.11
Ay(t)>Ay(2)—0, +hr-y<t<Z, £=12... @11)

From this it follows that
T4(t) > 0, 0<t<—72[, £=1,2,.... (2.12)
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Finally, by (2.10), (2.11) and (2.12) we get

"

Y 2
/ K, (t)costdt > / Al(t)costdt > 0,
0 (2+1)n—-y

which gives (2.9). By a similar argument we establish (2.8) and complete the proof of Theorem2. O
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