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ABSTRACT. We establish a generalized version of the classical Poisson summation formula. This
formula incorporates a special feature called “compression”, whereby, at the same time that the
formula equates a series to its Fourier dual, the compressive feature serves to enable both sides of

the equation to converge.
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1. INTRODUCTION.

Throughout this article, all functions f: R‘— € are to be understood as Lebesgue measurable,
and defined almost everywhere in R?. Given z,y € R?, let zy denote the dot product z - y, and
let z2 denote z - z. A function f: R*—C is said to be ezponentially bounded if or some M > 0,
k> 0, and almost all z € R®:

|f(@)| < MMl (1.1)

Evidently, if f: R*— C is exponentially bounded, then the function z — f(z)exp(—m6z?) belongs
to L'(R?) for every § > 0. If, moreover, the limit

§—0

I = lim / f(z)e ™ dz
Rd

exists and is finite, then we denote this limit by the symbol

I= /R:f(:t)dx

and call it the compressed integral of f over R?. Similarly, if c,, n € Z¢, is a sequence of complex
numbers that grows no faster than an exponential, and if the limit
S = lim Z cne_"&'l2

§—0+ /
neZ
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exists and is finite, then we denote this limit by the symbol

*

S = ch

nez

and call it the compressed series of c,.

Provided the implied limit exists, a compressed version of the Fourier transform is defined by

P = [ f@)e s (12)
Rd
The local averaging operator A, defined on measurable functions f:R%— C, acts by the formula:
A(f)(zo) = lim s'dn/ f(z + zo)e ™ /7 dz (1.3)
0t llzll<r

If f is essentially bounded in a neighborhood of zo, then this limit, if it exists, is independent of
r > 0 (proof below). If the limit exists, then f is said to be averageable at zo.

In terms of the above symbolism, the formula that we wish to establish is

Y AN =) F(f)(n)
nez? nez?
This formula will be shown to be valid for the class of everywhere averageable compressible functions
(see Section 4 for the definition of “compressible”).
2. AVERAGEABLE FUNCTIONS.
Given zo € R? and r > 0, let B,(zo) denote the open ball of radius r centered at zo. A
Lebesgue measureable function f:R*—C is said to be averageable at zo € R? provided that for

some r > 0 the function f is essentially bounded in B,(zo) and provided that the limit

e—0+

A(f) (z0) = lim e~ A et e 2.1)
z||<r

exists. By “essentially bounded” we mean bounded relative to the L®-norm on B.(z¢), so that f
may be averageable at zq even if f(zo) is undefined.

In this section we state and prove some basic facts about averageable functions and the local
averaging operator A. These facts will be used later.

LEMMA 2.1. Suppose f:R?—C is essentially bounded in a neighborhood V of zo. Let
Vo = V — o denote the corresponding neighborhood of the origin in R%. If B,(0)C V;, then

e—0

lim e"m/ f(zo+z)e ™ /5 dz = 0
Von{ll=lI>r}

PROOF. Let
I = 6""/2/ flzo+ :l:)e'”z/‘ dr
Vor{llzl|>r}

Choose M > 0 such that [f(z)] < M for almost all z € V. Then

.| < Me™/? / e ™ de < Mem%? / e dr = M / e dr
Vorlll>r} lsll>r lleli>r/ V&

which tends to zero as e—0 because exp(—7z?) is integrable over R*. =
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COROLLARY 2.2. Suppose f is averageable at z¢ and essentially bounded in a neighborhood
V of zo. Let Vo =V — z4 denote the corresponding neighborhood of the origin in R?. Then
A(f) (z0) = lim e [ flz+zo)e ™ da
&= VO
PROPOSITION 2.3. Suppose g : R®—C is continuous at zo and f:R?—C is averageable at

zo. Then the product fg is averageable at zo, and

A(fg)(z0) = g(z0) A(f)(z0)

PROOF. Shifting f and g by zo, we may suppose that zo = 0. Moreover, by treating the real
and imaginary parts of f and g separately, we may suppose that f and g are both real. Choose
r1 > 0 such that f(z) is essentially bounded in ||z|| < r;,say by M > 0. Let A > 0. Since g is
continuous at 0 we can find ro < r; such that |g(z) —¢(0)] < A for all ||z]| < ro. Thus, for almost
all ||z]| < ro, we have

lg(z)f(z) = 9(0) ()] < Alf(z)] < AM
which implies
9(0)f(z) =AM < g(z)f(z) < g(0)f(z) + A\M
Then
9(0)A(f)(0) = AM < A(gf)(0) < g(0)A(£)(0) + AM
which proves the proposition by letting A—0. =

The next proposition asserts that the uniform limit of a family of averageable functions is itself
an averageable function.

PROPOSITION 2.4. Let V be a neighborhood of 0 € R?, and let Fs : R*—=C (6§ > 0)
be a family of functions each of which is essentially bounded in V' and averageable at 0. Suppose

Fy: R%>C is essentially bounded in V and satisfies the condition

lim esssup | Fs(z) — Fo(z)| = 0
zeV

6§—0

Then Fj is averageable at 0, and
lim A(F5)(0) = A(Fo)(0)

PROOF. As in the proof of the previous proposition, it suffices to consider the case where all
functions are real-valued, since otherwise, by linearity, we could treat their real and imaginary parts

separately. For convenience of notation, let
A(F) = E_d/Z/ F(z)e ™/ dg
v
and let

M(6) = esssup |Fs(z) — Fo(z)|

€V
then

| Ae(Fs — Fo)l

IN

6_d/2/ |F5(z) — Fo(x)|e'"2/‘ dz
v

M(8) e / e dg

v

IN
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so that
[Ae(F5) — Ac(Fo)l < M(6)Ac(1)

which implies

A(F5) = M(6) A1) < A(Fo) < A(Fs) + M(6)A.(1)

Letting e—0, we get
A(Fs) — M(6) < limig1f.As(Fo) < limsup A.(Fo) < A(Fs) + M(6)
s e—0

whereupon the proposition follows by letting é—0. =

The final proposition of this section asserts that the local average of a sum of averageable
functions equals the sum of their local averages (i.e. A > =3 A), provided that the convergence
of the sum is sufficiently well-controlled.

PROPOSITION 2.5. Let f, : R*“>C (n € Z%) be a family of functions each of which is
averageable at o and essentially bounded in a neighborhood V of zo. Let M, = esssup ¢y |fa(z)],

and suppose that > M, converges. Let
F(z) = Y fulz)
nEZd
Then F is averageable at zq, and
A(F)(z0) = > A(fa)(20)
nez®

PROOF. Let V5 =V — o (i.e. the translation of V to the origin), and let

A(F)(zo) = €% | F(z+ .1:0)(-:'“2/€ dz
Vo

= & / Y fale +20) | e e da
Vo nez?

By hypothesis, the series in the integrand is uniformly convergent and bounded in V5. Thus we

may reverse the order of integration and summation to obtain

A(E) = X [ ozl

nez?

> Ac(f) (o) (22)

nez®

Now we want to let €e—0, and we want to be able to push this limit through the last sum. To do
this we have to show that this sum converges uniformly in €. Consider the absolute value of the

terms:

e | fu(z+ xo)e"""z/‘ dz
Ve

< Me4? ] e "l dz

Vo

|Ac(fn) (xO)l

IN

e [ e =,
R
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By the Weierstrass Comparison Test, the sum (2.2) converges uniformly in ¢, so that, as €¢—0, we
get
A(F)(z0) = 3 A(fa) (20)

nez?
n

3. POLYGONALLY CONTINUOUS FUNCTIONS.

By Proposition 2.3 we know that if f: R%—C is continuous then f is averageable, and A(f) =
f. We turn now to the construction of a basic class of discontinous averageable functions. Although
still very small relative to the class of all averageable functions, this class of functions, called
“polygonally continuous”, will be large enough to meet all our requirements.

Given zo € R? and 7 > 0, let B.(zo) denote the open ball of radius r centered at zo. The
open set S formed by the intersection of B,(zp) with a finite number of open half-spaces each
tangent to z¢ is referred to as an open polygonal cone or polygonal sector of radius r centered at
Zo.

By definition, the content «(S) of a polygonal sector S is the ratio of the volume of S to the
volume of the ball B,(z¢) in which it resides. If the ball B,(zo) is partitioned (except for a set of

measure zero ) as a finite disjoint union of polygonal sectors, say
B.(z¢) ~ S1U---USyN (3.1)
then by definition of «(S) we have
K(S1)+---+k(Sn) =1 (32)
LEMMA 3.1. Let S be a polygonal sector centered at 0, then
K(8) = lim e™*/? / e /e dg

S

PROOF. This is clear from the radial symmetry of the integral

/ e e dy = n(S)“l/e""z/‘ dz
B-(0) s

where r is the radiusof S. =

Let zo € RY. A function g : R?*—C will be called polygonally continuous at zo provided that
for some r > 0 the ball B,(zo) is decomposible ( except for a set of measure zero) as a finite
disjoint union of polygonal sectors S, such that for each j the restriction of g to S, admits an
extension g, to S, U {zo} which is continuous at zo. Thus, whenever z—zo from within the

sector S, we have
lim g,(z) = g;(z0) (3.3)

PROPOSITION 3.2. If g: R*-C is polygonally continuous at zo, then g is averageable at
To. Suppose B,(zg) ~ S; U---U Sy (decomposition into polygonal sectors) and let g, be as in
formula (3.3). Then
N
A(g)(0) = 3 _ g,(z0)s(5))

=1
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PROOF. Given 6 > 0, choose r small enough such that |g,(z + zo) — g,(z0)| < & for all z

within each of the sectors S, of radius r. Then

A(g)(zo) = e / o(z + z0)e™ ™/ dz
B.(0)

N

3" g,(z0) 2 / eV dx + 0(6)

SJ —Zo

I

1=1
Letting €—0 and using Lemma 3.1 we get

N

A(g)(z0) = Y g,(0)x(S,) + O(6)

=1
Letting 6—0 completes the proof. m
4. A FORMULA CONNECTING A and 6.
Given € >0, and z € R?, let 0(e,z) denote the principal ( positive definite) theta function
in R? :
O(e,z) = Y eTmeniamne (4.1)
nez?
This theta function satisfies the well-known functional equation

O(e,z) = e'd/ze"z/‘e(e'l,ie'lz) (4.2)

= Y e
nez?

= W2 e 4 R(e,z)

where
R(e,z) = €72y " emm(n+e)’le (4.3)
n#0
Let E¢ = -5 %)d denote the central unit hypercube in R?. Note that if € E* and n € Z¢,

n# 0, then ||n + z| > 1|In||, so that

IR(e,2)| < 2 3 /e (4.4)
n#0

which tends rapidly to 0 as é—0. Thus we obtain

lim sup |R(e,z)] = 0 (4.5)
e—0 z€E4

PROPOSITION 4.1. Suppose that F : R%—C is averageable at zo and essentially bounded in
2o+ E?. Then
A(F) (zo) = lim / Flz + 20) 8(e, z) dz
[tand Ed
PROOF. Let I, denote the integral

I, = / F(z + z0)0(e, z) dz
Ed
By formula (4.2) we have

I, = 6-.1/2/ F(z + zo)e™ ™/ d:c+/ F(z 4+ zo)R(e, z) dz
E¢ E¢
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Since F is averageable at z¢, the limit as é—0 of the first term on the right exists and equals
A(F) (z0); furthermore (4.5) together with the boundedness of F' and the compactness of E*
immediately imply that the second term vanishes as e—0. =
5. COMPRESSIBLE FUNCTIONS.
Our aim in this section is to gain some aquaintance with a class of functions f:R*—C for
which the formula . .
YAN R =D F () (5.1)
nez? nez*
will turn out to be valid. The proof of this formula is deferred until next section.
As the reader may recall, a function f:R?—C is said to be exponentially bounded if the
condition
(@)l < MeH= (5.2)

is satisfied for some M >0, k> 0, and almost all z € R?.
Given an exponentially bounded function f:R*—C, § >0, and z € E¢ = (-1, %)d , consider

the sum

Si(f)(2) = 3 f(n+z)e o0+ (5.3)
nez®

By the growth condition (5.2), the absolute value of the n-th term of this series does not exceed

Me—ms(n+x)2+k||n+:c"

except possibly on a set of measure 0. On the other hand, if z € E? and n € Z%, then, by the

inequality
Hinll < lln+2)l < linfl + 42 (5.4)
we have
[f(n + z)|e" 0+ < Me~ % +Hinll+5E _ pp (5.5)

so that the series (5.3) is absolutely dominated almost everywhere by the convergent series > M, .
In particular, for every fixed § > 0, the series defining S5(f)(z) is essentially bounded in E¢ and
uniformly convergent outside of a set of measure zero.

Of special interest to us at this point is the behavior of the limit

So(f)(e) = lim S5(£)(2) (56)

which, for a typical exponentially bounded f, may or may not exist.

An exponentially bounded function f: R?—C will be called compressible provided that the
following special condition is satisfied by the sums Ss(f) :

Compressibility condition: There exists a function Sy(f) essentially bounded on E? such
that

lim [| $5(/) = So(/) s = 0
The formula (5.1) will be shown to be valid for the class of compressible everywhere averageable

functions f:R%—C. This will be proved in the next section. For now, let us collect some basic

facts about compressible functions.



88 N. PETULANTE

LEMMA 5.1. If f:R*—C is compressible and everywhere averageable, then for every § > 0,
the function Ss(f) is averageable at 0, and

ASo(£)(O) = lim AS:(1)(0)

S A)n)

neld

PROOF. For n€7%, z € E%, and 6 >0, let
f6,n(1') = f(n +x)e-1ré(n+z)2

By hypothesis and Proposition 2.3, fs, is averageable at 0, and

A(fé,n)(o) = _A(f)(n)e-msnz

By virtue of the inequality (5.5), and Proposition 2.5, it follows that Ss(f) is averageable at 0, and
(0) Z A —1r61z2
nez?

Finally, by the compressibility condition on f, and Proposition 2.4, we conclude that So(f) s

averageable at 0, and

A(S0(f))(0)

lim A(S4(£)) (0)

> Af)()

1l

neld
]
As in the Introduction, let
PO = [ e (5.7)
Rd
_ . —2mzt  —nbz?
= gl_r}(]) Rd{f(z)e e dr

denote the “compressed” Fourier transform of f:R*—C. For a typical exponentially bounded
function f, the limit in the definition of F*(f) may not exist. Hence the quantities F*(f)(n),
n € 7%, appearing in the formula (5.1), might be undefined. However, if f is assumed compressible,
then the following result holds:

LEMMA 5.2. If f:R%>C is compressible, then the quantities F*(f)(n), n € Z¢, exist and
satisfy the boundedness condition

|F*(f)(n)| < esssup |So(f)(z)|
z€E?

PROOF. Let

F5(f)(t)

/ f(x)e—Zmﬂ e—x612 dzr

/ f(m+1:) —2mi(m+z)t —1r6(m+z) dz
mez®



STRONG VERSION OF POISSON SUMMATION 89

For n € Z¢ we get

Z f(m + Z)@-Zannze—‘lrb'(m+z)2 dz

mez? e

/ ( Z flm+ x)e'”‘s("‘”)z) e2mnT gy
Ed a
meZ

/ Ss(f)(z) e~ dz
Ed

where the reversal of order of integration and summation is justified by uniform convergence of the

Fs(f)(n)

Il

sum representing Ss(f)(z). By the compressibility condition on f, as §—0, the bounded function
Ss(f)(z) converges in L°(E?) to the the bounded function So(f)(z). Thus

F*(f)n)

‘lsi_{% /E" Ss(f)(z)e ™" dz
/ So(f)(z)e™ ™" dz
Ed

Il

and consequently

IF*(f)(n)] < esssup |So(f)(z)]
zcE?

6. COMPRESSED POISSON SUMMATION.
THEOREM 6.1. If f:R*>C is compressible and everywhere averageable, then

Y A (n) = Y FH ) ()

nez? nez?

PROOF. Given § > 0, and € > 0, consider the integral

Li(f) = /Rd f(x)e‘"s"‘z&(e,:c) dz (6.1)

The proof of the formula is organized in three steps:
Step 1. Show that the double limits

i b L) and. Jm Tl )

exist and are equal.
Step 2. Show that

lim lim Is..(f Z A(f) (n)
nez’
Step 3. Show that

lim lxm s (f Z}'* (Nin

e—0 6—0
nEZd

Step 1: Since f is exponentially bounded and (e, z) is bounded ( periodic ) on R?, the integral
(6.1) defining I5.(f) converges for every 6§ >0 and ¢ > 0. Starting with the pattern

-
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we get

Le(f) = Y | fn+2)e™™9 g(e,z)do

nez® B
= / ( Z f(n + z)e 0+ ) 0(e,z) dzx
= / Ss(f)(z) (e, z) dz (6.2)

where the reversal of order of integration and summation is justified by the uniform convergence
(outside a set of measure zero) of the sum representing Ss(f)(z).

For every fixed ¢ > 0 the function 6(e, z) is bounded on E?. Meanwhile, by the compressibility
condition on f, the essentially bounded function Ss(f) tends uniformly in E? as 6—0 to the

essentially bounded function So(f). Therefore
lig Lse(7) = [, Sol1)(2)0(e, ) da (63)
—0 Ed

By Lemma 5.1, So(f) is averageable at 0. Thus, by Proposition 4.1 (formula expressing A in
terms of 8 ), we obtain

lim Lim I (f) = A(So(f))(0) (6.4)
Similarly, going back to formula (5.7) and letting e—0, we get, for every fixed § >0 :
lim Is.(f) = AGSs())(0) (65)
Thus, by Lemma 5.1, we get
lim lim Is.(f) = A(Sa(/))(0) (6.6)
so that
<l$1—1-% ll_l}é I&.e:(f) = ll_{% P_{% Iﬁ,e(f) (67)

Step 2: The bulk of the work for this step has been done in the proof of Lemma 5.1. Combining
(6.4) with the formula for So(f)(0) given by Lemma 5.1, we get

lim lim Is<(f) = ) A(f)(n) (6.8)

§—0 e—0
nez*
Step 3: Substituting into formula (6.1) the expansion

—men? -
0(6,2:) = Z e Tens =2ming
nez®
we get

I5v£(f) = Ld f(x)e—rézz ( Z e—rtn2 e—Zmnx) dz . (69)

nez®
For every § > 0 the expression f(z)exp(—méz?) is essentially bounded on R (exponential bound-
edness of f). Meanwhile, for every ¢ > 0, the series representing 6(e,z) converges uniformly in

R®. Thus the order of integration and summation may be reversed to obtain

Ise(f) Z —men’ / f(z)e ™= e=2mn gy (6.10)

nez®

= Y e Ff)n)

nez?
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where, as in the proof of Lemma 5.2, we have

f(z)e—ﬂ’ﬁ.‘rz e-2‘nnr dr (611)
Rd

/ Ss(f)(z)e ™" dx
Ed

Fs(f)(n)

so that the coefficients Fs(f)(n) are uniformly bounded by esssup_cgs |Ss(f)(z)|. Hence, for
every fixed € > 0, we have
M —7\'57!2 *
lim Lse(f) = D e F () (n)
nez®
Since we have shown that the limit on the left-hand side as e—0 exists, the same is true on the

right and the limits agree. This concludes Step 3 and the proof of the theorem. m
7. AN EXAMPLE.

Let a be a real non-integer. Set

emer if >0
=) = { 0if <0
Note that f & L'(R), and hence not in the domain of conventional Poisson Summation. It is
however in the domain of compressed Poisson Summation, as this example will show.

For z € E' = [—1, 1), the critical sum S;() is given by

Ss(f)(l’) = e2mez Z e21mme—1r5(n-|'~:c)2

n>-z
As 6—0, the family {S;5(f)} converges in L*(E") to the bounded function

e2mez (] _ e2ma) -1 if z>0
So(f)(=z) = { e21na(=r(+1)(1 _el"m)—l if <0

Thus, f is compressible. Next, we must check that f is averageable everywhere in R. Following a

brief calculation, we get

er™et if ¢t >0
;i t=0
0if t<0

The compressed Fourier transform of f is given by

A(f)(@) = {

P(f)(t) = }L{% A eZmaxe—zmne_,rg,;i’ dz
N
T 2ri(t—a)

Thus, by compressed Poisson summation, we get

. - 2 .
% + lim eZmane wén = hm
5—0 2wt -0 n—a

n>1 neZ

After some simplification, this reduces to the classical formula
14 e¥me 1 1 2a
l_eZma - 7r—z<—a + gnl’_a2>

which is the Mittag-Lefller expansion of cot(ra). m
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