

SOME RESULTS ON $[n, m]$ -PARACOMPACT AND $[n, m]$ -COMPACT SPACES

HASAN Z. HDEIB

Department of Mathematics
Faculty of Science
Jordan University
Amman, JORDAN

YUSUF ÜNLÜ

Cukurova Universitesi
Matematik Bolumu
P.K. 171
Adana, TURKEY

(Received February 9, 1988 and in revised form March 20, 1996)

ABSTRACT. Let n and m be infinite cardinals with $n \leq m$ and n be a regular cardinal. We prove certain implications of $[n, m]$ -strongly paracompact, $[n, m]$ -paracompact and $[n, m]$ -metacompact spaces. Let X be $[n, \infty]$ -compact and Y be a $[n, m]$ -paracompact (resp. $[n, \infty]$ -paracompact), P_n -space (resp. ωP_n -space). If $m = \sum_{k < n} m^k$ we prove that $X \times Y$ is $[n, m]$ -paracompact (resp. $[n, \infty]$ -paracompact)

KEY WORDS AND PHRASES: Strongly paracompact and metacompact spaces.

1990 AMS SUBJECT CLASSIFICATION CODES: Primary 54D20.

1. INTRODUCTION

Throughout this paper m and n will denote infinite cardinals with $n \leq m$ and n will be a regular cardinal. A space X is called $[n, m]$ -compact (see Alexandroff [1]) if every open cover α of X with $|\alpha| \leq m$ has a subcover of cardinality $< n$. For a set A , we denote by $|A|$, the cardinality of A . A family α of subsets of X is a *locally- n* (*point- n*) family (Mansfield [2]) if for every $x \in X$, there is an open neighborhood of x in X which meets $< n$ members of α (resp. x belongs to $< n$ members of α). An *open refinement* of a cover α of a space X is an open cover β such that each member of β is contained in some member of α . A space X is $[n, m]$ -paracompact (resp. $[n, m]$ -metacompact) if every open cover α of X with $|\alpha| \leq m$ has a locally- n (resp. point- n) open refinement. X is $[n, m]$ -strongly paracompact if every open cover of X with $|\alpha| \leq m$, has an open refinement β such that for each $B \in \beta$,

$$|\{C \in \beta : C \cap B \neq \emptyset\}| < n.$$

Originally, Singal and Singal introduced the concept of (m, k) -paracompactness in [3]. Our notation is slightly different than theirs. However, we note that a space X is (m, k) -paracompact, as defined in [3], if and only if X is $[k^+, m]$ -paracompact. A space X is $[n, \infty]$ -compact (resp. $[n, \infty]$ -paracompact, $[n, \infty]$ -metacompact, $[n, \infty]$ -strongly paracompact) if X is $[n, m]$ -compact (resp. $[n, m]$ -paracompact, $[n, m]$ -metacompact, $[n, m]$ -strongly paracompact for each cardinal $m \geq n$). A space X is a P_n -space [4] if for every family α of open subsets of X with $|\alpha| < n$, $\bigcap \alpha$ is open in X . We observe that the class of P_{ω_0} -spaces is the class of all topological spaces, where ω_0 denotes the first infinite cardinal number. Also we observe that if P is any of "compact", "paracompact", or "metacompact", then the class of $[\omega_0, \infty] - P$ spaces is the same as the class of P spaces in the ordinary sense.

Morita [5] studied m -paracompact spaces. A space X is m -paracompact if and only if X is $[\omega_0, m]$ -paracompact. Morita proved that if Y is an m -paracompact space and X is a compact space, then $X \times Y$ is m -paracompact. In case $m = \sum_{k < n} m^k$, we generalize Morita's result by showing that if X is an $[n, \infty]$ -compact space and Y is $[n, m]$ -paracompact, P_n -space, then $X \times Y$ is $[n, m]$ -paracompact. We note that for $n = \omega_0$ this result implies Morita's result. A subset W of a topological space Y is called n -open (Hdeib [6]) if for each $y \in W$ there exists an open set V in Y such that $y \in V$ and $|V \setminus W| < n$. A subset F of Y is called n -closed if $Y \setminus F$ is n -open. A space Y is called a *weak P_n -space* [6] or wP_n -space if $\cap \alpha$ is n -open for every family α of open subsets of Y with $|\alpha| < n$. We prove that if X is a $[n, \infty]$ -compact space and Y is an $[n, \infty]$ -paracompact, wP_n -space, then $X \times Y$ is $[n, \infty]$ -paracompact. This result is a variation of our generalization of Morita's result.

It is well known (Dungundji [7]) that if a space X is locally compact and Hausdorff, then X is paracompact if and only if X is a disjoint topological sum of σ -compact spaces. We prove that if $n > \omega_0$, then a locally $[n, \infty]$ -compact, regular space X is $[n, \infty]$ -paracompact if and only if X is a disjoint topological sum of $[n, \infty]$ -compact spaces. A space X is, by definition, locally $[n, \infty]$ -compact if for each point $x \in X$ and an open neighborhood G of x , there exists an $[n, \infty]$ -compact neighborhood H of x such that $H \subseteq G$.

In this paper we also prove certain implications concerning $[n, m]$ -paracompact, metacompact, strongly paracompact spaces.

For a space X , the *density* $d(X)$ of X is defined as the smallest cardinal number that is the cardinal number of a dense subset of X . For terminology not defined here see Engelking [8].

2. $[n, m]$ -PARACOMPACT SPACES

It is clear that each $[n, m]$ -strongly paracompact space is $[n, m]$ -paracompact which in turn is $[n, m]$ -metacompact. However, in general, the converses of these implications do not hold.

The following two theorems are interesting in this respect.

THEOREM 2.1. Let γ be an open cover of a space X such that $|\gamma| \leq m$ and $d(A) < n$ for each $A \in \gamma$. Then X is $[n, m]$ -strongly paracompact if and only if X is $[n, m]$ -metacompact.

PROOF. We only need to prove "if" part. Let X be $[n, m]$ -metacompact. Let α be an open cover of X with $|\alpha| \leq m$. Let $\beta = \{A \cap W : A \in \gamma \text{ and } W \in \alpha\}$. Then $|\beta| \leq m$, β is an open refinement of α and $d(B) < n$ for each $B \in \beta$. Since X is $[n, m]$ -metacompact, then there exists a point- n open refinement λ of β . Each $L \in \lambda$ is contained in some $B_L \in \beta$. Since L is open and $d(B_L) < n$, then $d(L) < n$. Let $L \in \lambda$ and D be a dense set in L such that $|D| < n$. Let $\Delta = \{A \in \lambda : A \cap L \neq \emptyset\}$. Since D is dense in L , then $A \in \Delta$ if and only if $A \cap D \neq \emptyset$. Thus $\Delta = \{A \in \lambda : A \cap D \neq \emptyset\}$. For $d \in D$ let us set $\Delta_d = \{K \in \lambda : d \in K\}$. Then $|\Delta_d| < n$ since λ is point- n . Hence

$$|\Delta| \leq \sum_{d \in D} |\Delta_d| < n.$$

Since $|D| < n$ and n is a regular cardinal, it follows that X is $[n, m]$ -strongly paracompact.

COROLLARY 2.1 (Traylor [9]). Let X be a regular space with an open cover γ such that $d(G) \leq \omega_0$ for all $G \in \gamma$. Then X is strongly paracompact if and only if X is metalindelöf.

PROOF. The proof follows from Theorem 2.1 and Theorem 3, page 229 in [8].

THEOREM 2.3. Let X be a locally $[n, \infty]$ -compact space. Then X is $[n, \infty]$ -paracompact if and only if X is $[n, \infty]$ -strongly paracompact.

PROOF. We only need to prove "only if" part. Let X be $[n, \infty]$ -paracompact. Let α be an open cover of X . Since X is locally $[n, \infty]$ -compact then there exists a cover σ of X such that

- (i) σ refines α
- (ii) $\beta = \{\text{int } H : H \in \sigma\}$ is a cover of X ,

(iii) if $H \in \sigma$, then H is $[n, \infty]$ -compact

Since X is $[n, \infty]$ -paracompact, then β has a locally- n open refinement γ . Now, let $G \in \gamma$ and

$$\Delta = \{L \in \gamma : G \cap L \neq \emptyset\}.$$

Since γ refines β , then $G \subseteq \text{int } H \subseteq H$ for some $H \in \sigma$. For each $x \in H$, there is an open set W_x containing x such that W_x meets $< n$ members of γ . We have

$$H = \bigcup \{W_x \cap H : x \in H\}.$$

Since H is $[n, \infty]$ -compact, then there exists a subset T of H such that $|T| < n$ and

$$H = \bigcup \{W_x \cap H : x \in T\}.$$

For $x \in T$. Let us set

$$\Delta_x = \{L \in \gamma : W_x \cap L \neq \emptyset\}.$$

We see that

$$\Delta \subseteq \{\Delta_x : x \in T\}.$$

Hence

$$|\Delta| \leq \sum_{x \in T} |\Delta_x| < n.$$

Since $|T| < n$, $|\Delta_x| < n$ for each $x \in T$ and n is a regular cardinal.

COROLLARY 2.4. Let X be a regular, locally Lindelöf space. Then X is strongly paracompact if and only if X is paralindelöf

PROOF. The proof follows from Theorem 2.3 and Theorem 3, page 229 in [8].

It is well known in [7] that if X is a locally compact Hausdorff space, then X is paracompact if and only if X is a disjoint topological sum of σ -compact spaces. It is natural to ask when X is a locally $[n, \infty]$ -compact, $[n, \infty]$ -paracompact space, whether X is a disjoint topological sum of σ - $[n, \infty]$ -compact spaces. The result above is the answer to the case when $n = \omega_0$ and X is Hausdorff. So we are only interested in the case when $n > \omega_0$. The following theorem provides the answer to this question

THEOREM 2.5. Let $n > \omega_0$ and X be a locally $[n, \infty]$ -compact regular space. Then X is $[n, \infty]$ -paracompact if and only if X is a disjoint topological sum of $[n, \infty]$ -compact spaces

PROOF. It is obvious that if X is a disjoint topological sum of $[n, \infty]$ -compact spaces, then X is $[n, \infty]$ -paracompact. Thus let us assume that X is $[n, \infty]$ -paracompact. Let

$$\alpha = \{U : U \subseteq X \text{ and } U \text{ is } [n, \infty]\text{-compact}\}.$$

Then $\beta = \{\text{int } U : U \in \alpha\}$ is an open cover of X since X is locally $[n, \infty]$ -compact. Since X is regular, then there is an open cover γ of X such that $\bar{\gamma} = \{c\ell G : G \in \gamma\}$ refines β . Since X is a locally $[n, \infty]$ -compact, $[n, \infty]$ -paracompact space, then by Theorem 2.3, X is $[n, \infty]$ -strongly paracompact. Hence there exists an open refinement σ of γ such that for each $L \in \sigma$ the set $\Delta_L = \{H \in \sigma : L \cap H \neq \emptyset\}$ has cardinality n . For a positive integer t , a chain of length t in σ is a sequence L_1, \dots, L_t in σ such that $L_i \cap L_{i+1} \neq \emptyset$ for $1 \leq i \leq t-1$. If $t = 1$ we simply require $L_1 \neq \emptyset$. For $x, y \in X$ we define $x \sim y$ if there is a chain L_1, \dots, L_t in σ such that $x \in L_1$ and $y \in L_t$. Clearly " \sim " is an equivalence relation since σ is an open cover of X . Let R be an equivalence class and $a \in R$. If $y \in R$, then there is a chain L_1, \dots, L_t in σ such that $a \in L_1$ and $y \in L_t$. Clearly each point in L_t is equivalent to a with respect to " \sim ", hence $L_t \subseteq R$. So R is open. Let $z \in c\ell R$. There exists $L \in \sigma$ such that $z \in L$. Since $z \in c\ell R$, then $L \cap R \neq \emptyset$. Thus if $w \in L \cap R$, then $z \sim w$, i.e., $z \in R$. This shows that R is also closed. Let $a \in L$ and $L \in \sigma$. We know that $L \subseteq R$. For a positive integer t , let

$$\mu_t = \{H \in \gamma : \text{there is a chain } L_1, \dots, L_t \text{ in } \sigma \text{ such that } L = L_1 \text{ and } L_t = H\}.$$

Clearly $\mu_1 = \{L\}$. Thus $|\mu_1| < n$. Assume that $|\mu_t| < n$. If $K \in \mu_{t+1}$, then there is a chain $L_1, L_2, \dots, L_t, L_{t+1}$ in σ such that $L = L_1$ and $K = L_{t+1}$. Then $L_t \in \mu_t$. Thus

$$\mu_{t+1} \subseteq \bigcup \{\Delta_H : H \in \mu_t\}.$$

Hence

$$|\mu_{t+1}| \leq \sum_{H \in \mu_t} |\Delta_H| < n,$$

since $|\mu_t| < n$ and n is a regular cardinal. This inductive argument shows that $|\mu_t| < n$ for all $t \geq 1$. We show that $R = \bigcup \{R_t : t \geq 1\}$ where $R_t = \bigcup \{clH : H \in \mu_t\}$. If $H \in \mu_t$, then by the definition of " \sim " we get $H \subseteq R$. Since R is closed, then $clH \subseteq R$. So $R \supseteq \bigcup R_t$. Conversely let $y \in R$. Then there is a chain L_1, \dots, L_t in σ such that $a \in L_1$ and $y \in L_t$. Since $a \in L_1 \cap L$, then L, L_1, \dots, L_t is a chain in σ . Thus $L_t \in \mu_{t+1}$; and consequently $y \in \bigcup R_t$. This proves the result

Now, if $H \in \sigma$, then $H \subseteq clE \subseteq U$ for some $G \in \gamma$ and $U \in \alpha$. Thus clG and consequently clH is $[n, \infty]$ -compact. Since $|\mu_t| < n$ when t is a positive integer, then R_t is also $[n, \infty]$ -compact. Since $n > \omega_0$, then $R = \bigcup R_t$ is also $[n, \infty]$ -compact. This proves the theorem since X is the disjoint topological sum of the equivalence classes of " \sim ".

3. PRODUCT THEOREMS

In this section we prove theorems concerning $[n, m]$ -paracompact of a product space $X \times Y$. Our first theorem is a generalization of a result by Morita [5] which states that if X is a compact space and Y is an m -paracompact space, then $X \times Y$ is an m -paracompact space.

THEOREM 3.1. Let the cardinal m satisfy $m = \sum \{m^k : k \text{ is a cardinal and } k < n\}$. Let X be an $[n, \infty]$ -compact space and Y be an $[n, m]$ -paracompact P_n -space. Then $X \times Y$ is $[n, m]$ -paracompact

PROOF. Let α be an open cover of $X \times Y$ with $|\alpha| \leq m$. For each subset β of α with $|\beta| < n$, let $W_\beta = \{y \in Y : X \times \{y\} \subseteq \bigcup \beta\}$. Let $\beta \subseteq \alpha$ and $|\beta| < n$. Then W_β is open in X . For let $y \in W_\beta$. Then $X \times \{y\}$ is contained in $G = \bigcup \beta$. For each $x \in X$, there exists a basic open set $B_x \times C_x$ in $X \times Y$ such that $(x, y) \in B_x \times C_x \subseteq G$. Now $\{B_x : x \in X\}$ is an open cover of X . Thus there is a subcover $\{B_x : x \in S\}$ where $|S| < n$. $C = \bigcap \{C_x : x \in S\}$ is open in Y , since Y is a P_n -space and $y \in G$. Moreover, $X \times C \subseteq \bigcup \{B_x \times C : x \in S\} \subseteq G$. It follows that $y \in C \subseteq W_\beta$. So W_β is open. Let us set

$$\Lambda = \{W_\beta : \beta \subseteq \alpha \text{ and } |\beta| < n\}.$$

Let $y \in Y$. For each $x \in X$, there exists $A_x \in \alpha$ such that $(x, y) \in A_x$. There is a basic open set $D_x \times E_x$ in $X \times Y$ such that $(x, y) \in D_x \times E_x \subseteq A_x$. Now, $\{D_x : x \in X\}$ is an open cover of X . Thus it has a subcover $\{D_x : x \in T\}$ such that $|T| < n$.

Let $\beta = \{A_x : x \in T\}$. Then $|\beta| < n$ and $X \times \{y\} \subseteq \bigcup_{x \in T} D_x \times \{y\} \subseteq \bigcup \beta$. Thus $y \in W_\beta$. This shows that Λ is an open cover of Y . Further notice that

$$|\Lambda| \leq \sum_{k < n} m^k = m.$$

Thus there exists a locally- n open refinement μ of Λ since Y is $[n, m]$ -paracompact. For each $M \in \mu$ we pick $\beta_M \subseteq \alpha$ such that $|\beta_M| < n$ and $M \subseteq W_{\beta_M}$. For $A \in \beta_M$ we define $G(M, A) = (X \times M) \cap A$. Let $\rho = \{G(M, A) : M \in \mu, A \in \beta_M\}$. If $(x, y) \in X \times Y$, then $y \in M \subseteq W_{\beta_M}$ for some $M \in \mu$. Since $y \in W_{\beta_M}$, then $X \times \{y\} \subseteq \bigcup \beta_M$. Thus $(x, y) \in A$ for some $A \in \beta_M$. Hence $(x, y) \in G(M, A)$.

This shows that ρ is an open cover of $X \times Y$. Clearly ρ refines α . Let $(x, y) \in X \times Y$. There exists an open set N in Y such that $y \in N$ and N meets $< n$ members of μ . Let $\mu' = \{M \in \mu : N \cap M \neq \emptyset\}$. Thus we have $|\mu'| < n$. If $M \notin \mu'$, then $(X \times N) \cap G(M, A) = \emptyset$ for all $A \in \beta_M$. Thus the open neighborhood $X \times N$ of (x, y) can only meet those $G(M, A)$ with $M \in \mu'$ and $A \in \beta_M$. The cardinality of such $G(M, A)$'s is at most $\sum_{M \in \mu'} |\beta_M|$ which is less than n since $|\mu'| < n$, $|\beta_M| < n$ for each $M \in \mu'$ and n is a regular cardinal. Hence ρ is a locally- n family.

In Theorem 3.1 if we assume the stronger condition that Y is $[n, \infty]$ -paracompact then we can show that $X \times Y$ is $[n, \infty]$ -paracompact if we only assume that Y is a wP_n -space. Before we prove this result we first prove two theorems which are interesting in their own rights.

Let A and B be topological spaces and $f : A \rightarrow B$ be a function. f is called n -closed if for every closed subset F of A , $f(F)$ is an n -closed subset of B .

THEOREM 3.2. Let X be an $[n, \infty]$ -compact space and Y be a wP_n -space. Then the projection mapping $P : X \times Y \rightarrow Y$ is an n -closed map.

PROOF. Let F be closed in $X \times Y$ and y be in $U = Y \setminus P(F)$. Then $(x, y) \notin F$ for each $x \in X$. Hence there are open sets U_x in X and V_x in Y , for each $x \in X$, such that $(x, y) \in U_x \times V_x$ and $F \cap (U_x \times V_x) = \emptyset$. $\alpha = \{U_x : x \in X\}$ is an open cover of X . Since X is $[n, \infty]$ -compact, then there exists a subset T of X such that $|T| < n$ and $\beta = \{U_x : x \in T\}$ covers X . $W = \bigcap \{V_x : x \in T\}$ is n -open in Y since Y is a wP_n -space and $y \in W$. Hence there exists an open set V in Y such that $y \in V$ and $|V \setminus W| < n$. Now, we have $X \times W \cap F = \emptyset$. Hence $W \subseteq U$. Thus $|V \setminus U| < n$. It follows that U is n -open. Thus P is n -closed.

THEOREM 3.3. Let $f : Z \rightarrow Y$ be a continuous, n -closed mapping such that $f^{-1}(y)$ is $[n, \infty]$ -compact for such $y \in Y$. If Y is $[n, \infty]$ -paracompact (resp. $[n, \infty]$ -compact) then Z is also $[n, \infty]$ -paracompact (resp. $[n, \infty]$ -compact).

PROOF. We will only prove the case when Y is $[n, \infty]$ -paracompact. The $[n, \infty]$ -compact case can be proved similarly.

Let α be an open cover of Z . For each $y \in Y$ let α_y be a subcollection of α such that $|\alpha_y| < n$ and $f^{-1}(y) \subseteq \bigcup \alpha_y$. Such a subcollection exists since $f^{-1}(y)$ is $[n, \infty]$ -compact. For $y \in Y$, let $G_y = \bigcup \alpha_y$, and $W_y = Y \setminus f(Z \setminus G_y)$. Then $y \in W_y$ and W_y is n -open since f is an n -closed map. Thus for each $y \in Y$, there is an open set V_y in Y such that $y \in V_y$ and $|V_y \setminus W_y| < n$. $\gamma = \{V_y : y \in Y\}$ is an open cover of Y and Y is $[n, \infty]$ -paracompact. Hence there exists a locally- n open refinement $\{T_i : i \in I\}$ of γ . For each $i \in I$, pick $y_i \in Y$ such that $T_i \subseteq V_{y_i}$. For $y \in Y$ let

$$\beta_y = \alpha_y \cup (\bigcup (\alpha_t : t \in V_y \setminus W_y)).$$

Then

$$|\beta_y| \leq |\alpha_y| + \sum \{|\alpha_t| : t \in V_y \setminus W_y\} < n,$$

since n is a regular cardinal. Moreover $f^{-1}(T_i) \subseteq \bigcup \beta_{y_i}$ since $T_i \subseteq V_{y_i}$. Let

$$\sigma = \{H \cap f^{-1}(T_i) : H \in \beta_{y_i}, i \in I\}.$$

Then clearly σ is an open refinement of α . Let $x \in Z$ and $y = f(x)$. There is an open set N in Y and a subset J of I such that $|J| < n$, $y \in N$ and $N \cap T_i = \emptyset$ for all $i \in I \setminus J$. Let $M = f^{-1}(N)$ and $\Lambda = \{H \cap f^{-1}(T_i) : H \in \beta_{y_i}, i \in J\}$. Then $x \in M$ and $|\Lambda| \leq \sum_{i \in J} |\beta_{y_i}| < n$ since n is a regular cardinal. Moreover, if $L \in \sigma \setminus \Lambda$, then $L \cap M = \emptyset$. Hence σ is a locally- n family.

As a corollary of Theorem 3.2 and Theorem 3.3 we obtain the following variation of Theorem 3.1

THEOREM 3.4. Let X be an $[n, \infty]$ -compact space and Y be an $[n, \infty]$ -paracompact (resp $[n, \infty]$ -compact) wP_n -space, then $X \times Y$ is $[n, \infty]$ -paracompact (resp $[n, \infty]$ -compact)

ACKNOWLEDGMENT. This work was partially supported by Yarmouk University

REFERENCES

- [1] ALEXANDROFF, P., Some recent results in the theory of topological spaces obtained within the last twenty years, *Russian Math. Surveys* **15** (1960), 23-83.
- [2] MANSFIELD, M.J., Some generalizations of full normality, *Trans. Amer. Math. Soc.* **86** (1957), 489-505.
- [3] SINGAL, M and SINGAL, A., On (m,n) -paracompact spaces, *Annales de la Soc. sc. Bruxelles* **83 II** (1969), 215-228
- [4] COMFORT, W.W. and NEGREPONTIS, S., *The Theory of Ultrafilters*, Springer Verlag, New York, 1974
- [5] MORITA, K., Paracompactness and product spaces, *Fund. Math.* **50** (1961), 223-236
- [6] HDEIB, H., *Ph.D. Thesis*, State University of New York at Buffalo, 1979
- [7] DUGUNDJI, J., *Topology*, Allyn and Bacon Inc., Boston, 1966.
- [8] ENELKING, R., *Outline of General Topology*, North Holl and Amsterdam, 1979.
- [9] TRAYLOR, D.R., Concerning metrizability of pointwise paracompact Moore spaces, *Canada J. Math.* **16** (1964), 407-411.

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es