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ABSTRACT. A study is made of partial differential equations with piecewise constant arguments.
‘Boundary value problems for three types of equations are discussed delayed; alternately of advanced and
retarded type, and most importantly, an equation of neutral type (that is, including the derivative at
different values of time t).
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1. INTRODUCTION

Functional differential equations (FDE) with delay provide a mathematical model for a physical or
biological system in which the rate of change of the system depends upon its past history. The theory of
FDE with continuous arguments is well developed and has numerous applications in natural and
engineering sciences. This paper continues our earlier work in an attempt to extend this theory to
differential equations with discontinuous argument deviations. In articles [1-5], ordinary differential
equations with arguments having intervals of constancy have been studied. Such equations represent a
hybrid of continuous and discrete dynamical systems and combine properties of both differential and
difference equations. They include as particular cases loaded and impulsive equations, hence their
importance in control theory and in certain biomedical models Continuity of a solution at a point joining
any two consecutive intervals implies recursion relations for the values of the solution at such points.
Therefore, differential equations with piecewise continuous argument (EPCA) are intrinsically closer to
difference rather than to differential equations. In [6] boundary value problems for some linear EPCA in
partial derivatives were considered and the behavior of their solutions studied. The results were also
extended to equations with positive definite operators in Hilbert spaces. In [7] initial value problems were
studied for EPCA in partial derivatives. A class of loaded equations that arise in solving certain inverse
problems was explored within the general framework of differential equations with piecewise continuous
delay The purpose of the present note is to investigate the asymptotic behavior of the solutions, especially
their oscillatory properties, of a boundary value problem for some EPCA of parabolic type. For a rather
comprehensive addition to the growing body of literature on EPCA the reader is referred to [8].
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2. A COMPARISON OF TWO EPCA
The equation

u(z,t) = aPuz, (2, 1) ~ bu(z,?) @n
describes heat flow in a rod with both diffusion a®u,, along the rod and heat loss (or gain) across the

lateral sides of the rod. Measuring the lateral heat change at discrete moments of time leads to the
equation with piecewise continuous delay

uy(z,t) = a®ug,(z,t) — bu(z, [t]), 22)

which was investigated in [6]. Here [ - ] designates the greatest integer function and (z, t) € [0, 1] x [0, 00)
The problem posed in [6] for Eq. (2.2) consists of the boundary conditions

u(0,t) =0, wu(l,t)=0 23)
and the initial condition
u(z,0) = up(z), 249
and the solution is sought in the form
u(z,t) = X(z)T(t). 2.5)

Then separation of variables leads to the BVP
X' +A2X =0, X(0)=X(Q1)=0, (2.6)
with the orthonormal set of solutions
X,(z) = \/5 sin(wjz) 27
on [0, 1], and to the equation
T)(t) = - o’ 5" T,(t) — bTy([t))- 23

Let T,,(t) denote a solution of (2.8) on the interval n < ¢ < n + 1, where n is a nonnegative integer
Then

T, (t) = — a’n? 2 T,,(t) — bT;(n), 2.9)

and the general solution of this equation is

~a?n?f2(t-n
T,j(t) = Cn,e Ft-n) _ e T,j(n). (2.10)
We put here t = n and get
b
CnJ =1+ m T,-,J(’n),
that is,
Try(t) = E;(t — n)Tyy(n), .11)
where
_ax? b —a?r?
Ei(t) ="~ (1- ). 212)

Att =n + 1 we have
T,(n+1) = E,(1)T;,(n)
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and since
To,(n+1) = Thyy,(n+1),
then
Thiy,y(n+1) = E;(1)Ty(n)
and
Tyy(n) = E7(1)To,(0). (213)
Therefore,
Tr,(t) = E)(t — n)E}(1)T0,(0) (214)
and
un(z, ) = i V2 EF(1)To,(0)E, (t — n)sin(njz), (2 15)
=1

where u,(z,t) designates the solution of BVP (2.2), (2.3), (2.4) in [0,1] x [n,n +1]. Putting t = 0,
n = 0 gives

up(z) = i To,(0)/2 sin(mjz)

=1
and

1
To,(0) = V2 /0 ug(z)sin(mjz)dz.

Along with Eq. (2.2), we study the equation

u(z,t) = azuu(x,t) —bu (:c, [t + -;—}) (2 16)

under conditions (2.3), (2 4)

DEFINITION. A function u(z,t) is said to be a solution of the above BVP if it satisfies the
conditions (i) u(z,t) is continuous in G = [0, 1] x [0, 00); (ii) u; and u,, exist and are continuous in G,
with the possible exception of the points (z,n + 3), where one-sided derivatives exist (n = 0,1,2,...);
(ii) u(z, ) satisfies Eq. (2.16) in G, with the possible exception of the points (z,n+}), and conditions
2.3), (2.4).

Again, the solution is sought in form (2.5), and separation of variables generates the eigenfunctions
(2.7) and leads to the EPCA

T(t) = — 22 PT)(t) - bT]([t-!»-;-]). @17)

Eq. (2.17) is of considerable interest, since the argument deviation

1
T(t)=t- l:t+§]
changes the sign in each interval (n — j,n+31), withinteger n. Indeed, 7(¢t) < Oforn — 3 <t < nand
Tt)>0forn<t<n+ % which means that Eq. (2.17) is alternately of advanced and retarded type.
Assume that T, (t) is a solution of (2.17) on the interval [n — 1,n + 1]. Then Eq. (2.17) changes to
(2 9), with the solution (2.11). Att =n + } we have

T, (n + %) = Ej(%)ﬁu‘(n)
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and since
Tn+1‘1(t) = EJ(t -n— l)Tn+1J(n + 1),

then

1 1
Tn-‘—l‘] (n+§) = EJ( - E)Tn+1'J(n +1).

Furthermore, continuity of the solution T),(t) implies

1 1
Tnv1y <n+§) =T, (n+§>,

and therefore
1 1
E]( - §>Tn+1‘1(n+l) = EJ(E)TM(n),
whence
_ _EQ1/2)
Tn+1.](n+1) = EJ( — 1/2) TnJ(n)'
From here,
a1\ en 1
Tnj(n) = E‘7 <§)E] (— E)T()](O)
and

T, (t) = Ey(t - n)ET (%)EJ'"( - %)TOJ(O).

The solution u,(z,t) of BVP (2.17), (2.3), (2.4) in the region [0,1] x [n —

formula

(2 18)

(2.19)

1,n+1] is given by the

un(z,t) = f: V2E? (%) fom ( - %) Ty, (0)E, (¢ — n)sin(jz), (2.20)
=1

where E,(t) is defined by (2.12).
THEOREM 2.1. For

—a’n? < b < a*n? (e“27r2 + 1)/(e°27rz - 1)

(2.21)

the solution (2.15) of Eq. (2.2) tends to zero as t — oo, uniformly with respect to =
PROOF. From (2.15) it follows that the assertion is true if |E,(1)| < 1. Solving the inequalities

b
R e (P

for b proves the proposition. Furthermore, u(z,t) approaches zero with an exponential rate

THEOREM 2.2. For
b> —an?

(2.22)

the solution (2.20) of Eq. (2.16) tends to zero as t — oo, uniformly with respect to z.
PROOF. From (2.20) we see that the assertion is valid if | E;(1/2) E; ' ( — 1/2)| < 1, where E,(t) is

given by (2.12). Considering the case E,( — 1/2) > 0 gives
b> —2u,et /(e —1),

(2.23)
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with the notation
g, = a?m?? /2. (224)
From E,(1/2) < E,( — 1/2) we obtain the inequality
b> —2u, (225)
which is stronger than (2 23), and so (2 23) should be omitted Furthermore, F;(1/2) > — E,(—1/2)
implies that
b> —2u,(e" +e™)/(ef + e ~2),
and since this inequality is weaker than (2.25) it may be disregarded On the other hand, the case
E,(—1/2) < 0is equivalent to
b< —2uet /(e —1), (2.26)
and the inequality E,(1/2) > E,( — 1/2) leads to
b< —2u,

The latter inequality may be ignored because it is weaker than (2.26) From E,(1/2) < — E,(—1/2) it
follows that

b< —2u,(e" +e ™) /(et + e —2).

The latter inequality should be omitted since (2.26) is more stringent. On the other hand, (2.26) cannot
hold true for all values of j, and we must retain only (2.25). This inequality is valid for all j if (2.22) takes
place. Comparing inequalities (2.21) and (2.22) shows that the stability interval for Eq. (2.17) is larger
than the stability interval for Eq. (2.8).

THEOREM 2.3. Each solution of Eq. (2.8) has a zero in the interval [n,n + 1] if

b> a?n?/ (eﬂ’"’ - 1). 2.27)

The same is true for Eq (2.17) if
b> (am)?/ (e“2"2/2 - 1). (2.28)
PROOF. From Eq. (2.13) we have
Ty(n +1) = E}* (1)To,(0)
and
T, (n)Toy(n + 1) = B} (1)T5,(0).
Hence,
Tn,(n)Tn,(n+1) <0 if E)(1)<0.

The latter inequality is equivalent to
b> ¢1“’71'2_7'2/(e"2"2’2 - l),

which holds true for all 7 under condition (2 27). On the other hand, (2.28) is derived by examining the
inequality
E,(1/2)E,(—-1/2) <.
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Inequalities (2.27) and (2 28) represent sufficient conditions of oscillation for Eqs (2 8) and (2 17), for all
values of j simultaneously

THEOREM 2.4. Each solution of Eq. (2.8) is nonoscillatory, for all j, if b < 0 For any b > 0 and
sufficiently large j, the functions T, (t) are oscillatory.

PROOF. The inequality E,(1) > 0 is equivalent to

b< a27r2j2/(e"2"2f - 1)

and holds true for all j only if b <0 Since its right-hand side tends to zero as j — oo, the above
inequality breaks down for b > 0 and all sufficiently large j. Therefore, in this case the solutions T, (t) of
(2 8) oscillate, in sharp contrast to the functions T)(t) in the Fourier expansion for the solution of the
equation u; = a’u,, — bu without time delay.

THEOREM 2.5. Each solution of Eq. (2.17) is nonoscillatory, for all j, if

—a?n?/ (e“’"’/2 - 1) <b<0. (2.29)

For any b > 0 and sufficiently large j, the functions Tr,,(t) are oscillatory Furthermore, if
b< — a27r2m2/(e"2”2'"2/2 - 1)

then the functions T;,; (¢), ..., T,m (¢) oscillate.
PROOF. From the inequalities E,( — 1/2) > 0 and E,(1/2) > 0 it follows that

—2u,et /(e — 1) < b < 2u,/(e” - 1),
where p, is given by (2.24). The left of these inequalities holds true for all j if

> —atn (1),

and the right one is satisfied for all j if b < 0. The inequalities E,( — 1/2) < 0 and E,(1/2) < 0 are
contradictory. On the other hand, the right side of the inequality

b<2u,/(e—1)

tends to zero as j — oo, and therefore the inequality breaks down for any given b > 0 and all sufficiently
large j. Moreover, the left side of the inequality

—2ue /(e —1) < b
monotonically decreases to — oo as j — 0o. Hence, if this inequality fails for j = m, the same is true also

for j < m.
THEOREM 2.6. If, for some integer m > 1,

b = a?nPm? (e“”'”’"’ + 1) / (e“’"’"" - 1), (2.30)

then the solution T, (t) of Eq. (2.8) is a periodic function with period 2. The same is true for the solution
of Eq (2.17)if

b=2pn,(e" +e#)/(2—-e'm —e ), (2.31)
where p.,, is given in (2.24).

PROOF. Since the initial value problem for Eq. (2.8) has a unique solution on each unit interval with
integral endpoints, we have only to show that

Tn(n+2)=Tp(n), n=0,1,2,...

Consider solution (2.14) for j = m on the intervals [z, n + 1] and [n + 2,n + 3], that is,
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Tn(t) = En(t—n)EL(1)Tom(0), n<t<n+1
and
Tn(t) = En(t —n — 2)EX2(1)Tpm(0), n+2<t<n+3.
Att = n and t = n + 2 these formulas respectively yield
Tn(n) = EL(1)Tom(0) and Tin(n+2) = EX2(1)Tom(0).

Since hypothesis (2 30) implies E,,(1) =1, then T,,(n +2) = T,,(n), which proves the theorem
for Eq (2.8) The proof for Eq (217) is analogous  Condition (2.31) is equivalent to
E.(1/2) = — E,(—1/2) It remains to note that the value of b in (2.30) is positive, and the value of b
in (2.31) is negative.
3. APARABOLIC EPCA OF NEUTRAL TYPE

Consider the boundary value problem (BVP) consisting of the equation

u(z,t) = azuu(:c,t) + buy(z, [¢t]) G

and conditions (2.3) and (2.4). This equation is of neutral type since it includes the derivative u, at
different values of ¢.
Let u,(z,t) be the solution of the given problem on the interval n <t <n+ 1. Then u,(z,t)
satisfies the equation
Ou,(z,t) & u,(z, t) (
at z2

32
with boundary conditions (2.3) and the initial condition
uﬂ(x‘l n+) = un(x)Y

where u,(z) is yet unknown. The solution of (3.2) is sought in form (2.5), and separation of variables
generates BVP (2.6) with eigenfunctions (2.7) and the ODE

T,:J = — a%\?TnJ(t) + bﬁj(n‘*’)’ AJ = j. (3.3)
Then the series
un(z,t) = Y X, (2) T, (t) (3 4)
=1

represents a formal solution of problem (3.2), (2.3). Turning to Eq. (3.3), its general solution on the
intervaln <t<n+1is

- 2)‘2 - b
Tos(®) = Crge™ M + S5 Toy(n”).

Att =n*, Eq (3.3) gives
T, (n*) = — a®AXT,,(n) + bT;;(n*)
whence
a?)?
n](n+) = b_-—_JlT"’(n)’ b # 1.

Therefore,

TnJ(t) - 2/\2(1 n)+__T (n)
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At t = n, we have

b
T,,(n) = Cny+ = Tpy(n),

b-1
that is,
Cry = 2 Tom)
and
T, () = % (b - 5T, ().
Denote
—a?X2
O (35
Att =n + 1, we have
Ty(n+1) = F,(1) T (n)
and since, by hypothesis (i) of the above definition,
Ty(n+1) =T, +1),
then
Thi1,(n +1) = F(1)Ty,y(n)
and
Ty (n) = F7'(1)To,(0). (36)
Consequently,
T,,(t) = Fj(t — n)F;(1)To,(0) 37
and
®
Un(z,t) = Z; V2 F} (1), (0)F, (t — n)sin(mjz). (X))
= .

The following theorems illustrate the far more complicated solution structure of Eq. (3.1) comparing
with the diffusion equation without time delay.

THEOREM 3.1. For b > 1, each function T;,,(t) is monotone unbounded as t — + oo.

PROOF. If b>1, then (3.5) implies that F,(¢) > 1, for all t>0. Hence, F;'(1) grows
exponentially as t — + oo, and the proof follows from (3.7).

THEOREM 3.2. For

%(1 +e ) <b<, 3.9)

each function T5,,(t) is unbounded and oscillating.
PROOF. From inequalities (3.9) it follows that F,(1) < — 1, and therefore FJ[‘] (1) is unbounded and
has a zero in each unit interval with integer endpoints.
THEOREM 3.3. For b < 0, each function T}, (t) monotonically tends to zero ast — + oo
PROOF. The inequalities

0<F()<1 (3 10)

imply that solution (3.7) is asymptotically stable and nonoscillatory. From (3 10) it follows that
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b<e V. (3 11)

Clearly the right-hand side of (3 11) vanishes as j — oo, and therefore the condition b < 0 is necessary
and sufficient for all T,,(t) to approach zero monotonically.
THEOREM 3.4. If

1

a®X>mn2 and e N <b< 5 (3 12)
then every solution (3 7) tends to zero and oscillates as ¢ — + oo
PROOF. From the inequalities
-1< F(1)<0, (313)

which imply asymptotic stability and oscillatory behavior of solution (3 7), it follows that
_a?2 l a2
e J<l7<2(l+e ,)_

These inequalities hold true for all j simultaneously with (3.12)
THEOREM 3.5. For any coefficient b that satisfies the inequalities

1
-<b<l1
2 <0<l

there exist infinitely many solutions Tr,,(t) which are unbounded and oscillating.
PROOF. For b < 1, the inequality F;(1) < — 1 which implies unboundedness and oscillation of
Tn,(t), is equivalent to
1 1 —d’ AZ
b> 2 + 2 e .
Clearly the right-hand side approaches 1/2 as j — oo.
THEOREM 3.6. Ifb < e~®"*~ then the solutions T} (%), ..., T, (t) of Eq. (3.3) monotonically tend to

zeroast — -+ oo.
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