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ABSTRACT. A new approach for the determination of exact solutions of steady plane infin-
itely conducting MHD aligned flows is presented. In this approach, the (£,%)— or the (n,9%)—
coordinates is used to obtain exact solutions of these flows where ¥(z,y) is the streamfunction
and w = £(z,y) + in(z,y) is an analytic function of z = z + iy.
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1. INTRODUCTION.

M. H. Martin [4] developed a new approach in the study of plane viscous flows of incom-
pressible fluids by introducing a natural curvilinear coordinate system (¢,t) in the physical
plane (z,y) when 1 = constant are the streamlines and ¢ = constant is an arbitrary family of
curves. Following Martin [4] and taking the arbitrary family of curves ¢(z,y) = constant to
be £ =constant, Chandna and Labropulu [1] studied exact solutions of steady plane ordinary
viscous and magnetohydrodynamic (MHD) flows.

In this paper, we present an approach for the determination of exact solutions of steady plane
infinitely conducting MHD aligned flows and we let #(z,y) = constant to be either £(z,y) =
constant or 7(z,y) = constant where w = N(z) = £(z, y) + in(z,y) is an analytic function of z
and study flows when the streamline pattern is of the form

n= %) f(f) = constant or ——5 — k(n)

9(£) m(n)

= constant
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In the cases when f(£) = 0 and g(§) = 1 or k() = 0 and m(n) = 1, the problem is called an
isometric flow problem or Hamel’s problem and was first raised by Jeffery [3]. However, Hamel
[2] was the first to give complete solutions of the permissible flow patterns for ordinary viscous
incompressible plane flows. As examples to illustrate the method, we use two analytic functions
N(z) = v2z and N(z) = Inz.

The plan of this paper is as follows: in section 2, we recapitulate the basic equations governing
the steady plane motion of infinitely conducting MHD aligned fluid flows. This section also
contains the recasting of the equations in a new form by employing some results from differential
geometry. In section 3, we outline the method of determining whether a given family of curves
can be the streamlines. Section 4 consists of applications of this method.

Examples I, I, VII and X are four streamline patterns for the Hamel’s problem for our flows.
Two of these flow patterns are different from the four well known flow patterns for Hamel’s

problem in ordinary viscous fluid dynamics.

2. FLOW EQUATIONS.
The governing equations of a viscous incompressible and electrically conducting fluid flow, in
the presence of a magnetic field, are [5]

divz =0
P (g - grad) v+ gradp = uV?v + 4° (curug) x H (1)

;%a curl (curllg) = curl (2 X Ij)

where vis the velocity vector field, H the magnetic vector field, p the pressure function, and the
constants p, i, p* and o are the ﬁuld density, coefficient of viscosity, magnetic permeability and
the electrical conductivity respectively. The magnetic field H satisfies an additional equation

divH =0 2

expressing the absence of magnetic poles in the flow.
Taking the flow to be aligned (or parallel) so that the magnetic field is everywhere parallel
to the velocity field, we have
H=pu 3)

where 3 is some unknown scalar function such that
v-gradB =0 4)

In this paper we study plane motion in the (z,y) —plane of an infinitely conducting fluid (i.e.
o0 — 00) and have the velocity components u, v, the magnetic components H;, Hz, the pressure
function p and the function S as functions of z, y. We define the vorticity function w, current
density function 2 and energy function h given by

v Ou 0H, OH,

- _ = il At 3 _l 2 2
T8z oy’ =6z " oy =ge W+ +p ®)

Since the fluid is infinitely conducting and the flow is aligned, then the third equation of system
(1) is identically satisfied.
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Using (3) to (5) in system (1), we find that an infinitely conducting steady plane MHD aligned
flow is governed by the following system of six partial differential equations:

Ou B .
% + b_y. =0 (continuity)
Oh 0
5o+ — P+ Bu =0
y (linear momentum)
R w22 o~ wpu =0
Oy Hog TPuw— R PUE=
98 . 98 _ .
uss +v By 0 (solenoidal)
v Ou . .
il v w (vorticity)
8 98 _ .
Bw + v 7 U i Q (current density)
(6)

for the six functions u(z, y), v(z, y), h(z,y), w(z,y), Uz, y) and B(z,y). Once a solution of this
system is determined the magnetic vector field H and the pressure function p(z,y) are found by
using equations (3) and (5). i

The equation of continuity in system (6) implies the existence of a streamfunction ¥ = ¥(z,y)

such that
2w, % ™

We take ¢(z,y) = constant to be some arbitrary family of curves which generates with the
streamlines 1(z,y) = constant a curvilinear net so that in the physical plane the independent
variables z, y can be replaced by ¢, .
Let
z=z(¢,¢), y=y(¢9¥) ®)

define a curvilinear net in the (z,y) —plane with the squared element of arc length along any

curve given by

ds® = E(¢,%)d¢* + 2F(¢, ) dé dyp + G(8, %) dip* 9)
where
o= () ¢ (@) r-GRe kR oo () @) o
~ \o¢ )’ T T3¢0y 00 ~  \8 ¥

Equations (8) can be solved to obtain ¢ = ¢(z,y), ¥ = ¥(z,y) such that
b _ o ox__ 06 Oy__ 0 Oy _ 0

%= "a w- e - e w Ve )
provided 0 < |J| < oo, where J is the transformation Jacobian and
_0z 0y _0z0y_, jpa o
J—a¢a¢ 3¢6¢_i EG-F? =+W (say) (12)

Following Martin [4] and Chandna and Labropulu [1], we transform system (6) into ¢ —plane

and we have the following theorem:
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THEOREM 1. If the streamlines 1(z,y) = constant of a viscous, incompressible infinitely
conducting MHD aligned flow are chosen as one set of coordinate curves in a curvilinear coor-
dinate system ¢, ¥ in the physical plane, then system (6) in (z, y)-coordinates may be replaced
by the system:

Oh Ow Ow
J—=up|F—~-E—
w“a¢ 3% .
(linear momentum)
155 =u|655-F 55| +TWwpa- i
o (W _, a (W L\ _
5% ( l"u) 3% ( I{ ) =0 (Gauss)
E 98 _ .
Bw — W op - (current density)
weL[2 (f_) _A (E (vorticity)
W \W)  ap \W ¥
op .
% = 0 (solenoidal)
(13)
of six equations for seven unknown functions E, F, G, h, Q, w and 8 of ¢, 9.
If we use the integrability condition 6326’:1: = in the linear momentum equations of

Theorem 1, we find that the unknown functions E(¢,v), G(¢,v), F(é,¥), w(é,¥), (,%) and
B(¥) must satisfy the following equations:

-S54

2= po- 5o (15)

(5)-4 (5m) -
[BE5-52) 8 (8- 55)) Bl o
8= B(v) (18)

Equations (14) to (18) form an underdetermined system, the reason being the arbitrariness
inherent in the choice of the coordinate lines ¢ = constant. This system can be made determinate
in a number of ways and one plausible way is to assume ¢(z,y) = £(z,y) or ¢(z,y) = n(z,y)
where £(z,y) and n(z,y) are the real and imaginary part of an analytic function as outlined in
the next section.

3. METHOD.

Let w = £ + in be an analytic function of z = z + iy where ¢ = £(z,y) and n = n(z,y).
Since w is an analytic function of z, y, then its real and imaginary parts must satisfy the
Cauchy-Riemann equations, that is

% _ _on (19)

IR
I
|
|
|
I

Q
(o))
8
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The equations £ = £(z,y) and = n(z,y) can be solved to obtain

z=z(&1n), y=y(n) (20)
such that a on 8 ot 8 on @ ot
0T _ 0 0T 06 0¥y _ .00 0¥ _ .08
=" oy m- Vo o 32 on -7 o2 (1)
provided 0 < |J*| < oo, where J* is given by
o Ozy) 0zdy 06z0y 22)

Using (19) and (21) in (22), we obtain
. dz\? ay\? dz\? ay\?
7= (3_€> * (35) B (an) * (30) (@)
Using (20), (21) and (23) in ds? = dz? + dy?, we get
ds? = J* [d€® + dy?] (24)

Method for the (£,1)—coordinate net.

To analyze whether a given family of curves Q;—f(-g—)- = constant can or cannot be streamlines,
we assume the affirmative so that there exists some function () such that
n—f(€) '
— A =7¥), r{)#0 25
G (#) (#) # (25)

where v'(1) is the derivative of the unknown function 4(%) and we take the coordinate lines
¢ = constant to be £ = constant.
Employing equation (25) in (24) and simplifying the resulting equation, we obtain

ds? = I {1+ [£(©) + ¢ O } de?

(26)
+27{F' () + ' (O) 7 ()} 9 ()Y () dEdy + T*g* (€) v (¥) dy?
Comparing (26) with (9) after taking ¢ = £, we get
E=J{1+[f©+dE®I'}, G=IdEn® -
F=TI[f(&)+9' )9 (¥), W=VEG-F?=Jg(€N' (%)
Since
g2 9=y =y _ Azy) &)
o(¢,%)  9(&¥)  9(&n) AE,¥)
then
J=T"9(E)' (%)
and therefore
J=W=JT"g(&)(¥) (28)

2
Equations (27) yields E = J* + -I;— Therefore, the system of equations (14) to (18) becomes a
determinate system of five equations in five unknowns F, G, w,  and S.
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Using (27), (28) and ¢ = £ in (14) to (18), we have the following theorem:

THEOREM 2. If a steady, plane, viscous incompressible fluid of infinite electrical conductivity
n—f(©)

flows along = constant in the presence of an aligned magnetic field, then the known

g
functions f(£), g(¢) and the unknown functions #(%) and () must satisfy

' _aZ_w _ 1 ' w 1 +f'2(f) 2f'(§)g'(€)
(O (H) s = 2O + 5 En(w) gz + [T O, )
g (6) 2 1 6_2“"_. g 2f'(©)g'(€) 29"(§) _n
5670 g+ {0+ LEEL [Hag - 0] )
L0 W) 20000 10 (¥) _ g7 7’(¢)7"(1b)} aw
R G R IR
po -
and
’ 1 '
2((6) + ¢ ()] 2 aea¢ T L O+ O] 27 557
~ s 5 { [1+17©) + O] 2 s 4 1770 + " (Ew)
(30)

IICTR (EW)]} Yt oy 1@+ v} (%)

(E) * T or ()
7o) (55) - 21O+ 5 5 =0

where w and Q2 are given by
1 {[f”(&)_2f'(£)g’(£)] 1 +[g"(e)_2g”’(s)] (%)
* UL g() g%(§) 10 L9(€)  ¢%E) I Y(¥)

OO W) | O )
R ) R R

RET L ORUO)
P )

+

_ , B
2= B() ~ Jozrs {1+ 710+ O} (32)
and () is some function of ¥ such that 4'(3) # 0.

11— f(§)

A given family of curves = constant is a permissible family of streamlines if and

g
only if the solution obtained for ¥(v) is such that 4'(y) # 0.
Method for the (7,1)—coordinate net.

§ = Kk(n)

= constant can or cannot be streamlines,

To analyze whether a given family of curves

we assume the affirmative so that there exists some function () such that

£ —k(n)
m(n)

where v'(3) is the derivative of the unknown function (1) and we take the coordinate lines

=7%¥), Y@ #0 (33)

¢ = constant to be n = constant.
Employing equation (33) in (24) and simplifying the resulting equation, we obtain
ds? = J* [1+ {K'(n) + m' () ()} | d®

(34)
+2J7 (K (7) + m' (n)y (@) m (n) 7' () dn dy + J*m? (1) 7 (¥) dy*
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Comparing (34) with (9) after taking ¢ = £, we get

E=J* {1 +[K(n)+ m’(n)7(¢)]2} ,  G=T"m(n)y*(¥)

(35)
F = J"[k'(n) + m' (n)y($) m(n)y' (), W =+VEG-F?=J"m(n)"(¥)
Since
g2 9=y) _ O=y) _ z,y) ()
o(¢,¥)  On,¥)  O(&n) A(n, )’
then
J==J*"m(n)"'(¥)
and therefore
J=-W==I"mny'(¥) (36)

Using (35), (36) and ¢ = 5 in (14) to (18), we have the following theorem:
THEOREM 3. If a steady, plane, viscous, incompressible fluid of infinite electrical conduc-
€ — k(n)

tivity flows along = constant in the presence of aligned magnetic field, then the known

functions k(n), m(n) and the unknown functions 8(v), ¥(¥) must satisfy

[3) w ”2 ! ml
m(v)v’('b)% ~ 2 + 9] oy + [0 2O,

m?(n) , 1 & " 2K (mm/(n) | [2m"(m)

+ )] gy + { o+ EIED [ -]
_LHE2(m) 2"(¥) 2K (mm'(n) v(¥)1"(¥) _ m™(n) 7’(¢)7"(¢)} ow
m(n)  ¥2(¥) m(n) 72(%) m(n)  7%(¥) oY

L PO

uOn

(37)

PN
—8)5,

and

2 7+ 2 7=
20 () + ' ()2(8)) 53 = s {1+ ) + 0}

' ' 7" (%) " "
o+ { [T+ @+ m o] 2 ) 4 ()]
1

-\ 2
20D (e 4 m’(n)7(¢)]} + T 7D {1+ ®m+m 0N} (?9{1: )

o)
+Fm(”)"'(¢)(%{;) - LW+ ) 3 5 =0

(38)

where w and 2 are given by

1 {[k”(n) 2K (mm’(n)] _1 m"(n) 2m”(n)] (%)

w =

I Umm ~ m2m) [ A@) " Lmm) T m2() | ¥'(%) )
1+ K%(n) v"(¢) + 2k' (n)m' (n) ¥($)v" (¥) + m'(n) Y2 (¥ )7" ()
m2(m) %) T mi(m)  vR(%) | min)  R(%)
Q= ) ~ Fomzres {1+ W)+ m ) } 20 (40)

and () is some function of ¥ such that v'(y) # 0.
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4. APPLICATIONS.
We use analytic functions w = € + in = N(z) = V22 in the first seven examples and
w = £+ ip = N(z) = Inz in the other four examples.

4.1. Examples for w = V2z.
Let z = Jw? or w = v/2z. Then, we have

1
1“—'?({ _7]2) } (41)

E=\z+ V22 +y?
n=y-z+Vz2+y?

Using equation (41) in (23), we obtain

or

(42)

=&+ (43)

Example 1. (Flow with n = constant as streamlines).

This example gives us a streamline pattern for Hamel’s problem for infinitely conducting
MHD aligned flows. The streamline pattern obtained is not one of the four well known patterns
for ordinary viscous fluid flow. This pattern is given in Figure 1.

We let
n=90%); 7(¥)#0 (44)
where v(¢) is an unknown function of . Employing (44) in (43), we get
= +9(4) (45)
Comparing (44) with (25), we have
f(€)=0, g(¢)=1 (46)

Employing (31), (32), (45) and (46) in equations (29) and (30), we find that equation (30) is
identically satisfied and (29) reduces to

2
D Aa(¥)E" =0 (47)

n=0

where

20 40 (2 3((13))) #7075 (%)}

Alw)—-[p we ) 28 2u B(¥)B'(%)

. (%) 7?(%)
A (¥) = [7 (1¢) ( "((:i)))]

Equation (47) is a quadratic in ¢ with coefficients as functions of ¢ only. Since £, ¥ are indepen-
dent variables, it follows that equation (47) can hold true for all values of £ if all the coefficients

of this quadratic vanish simultaneously and we have

Ao(¥) =

Ao(¥) = A1(¥) = A2(¥) =0 (48)
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Integrating Az(z) = 0 four times with respect to 1, we obtain
a7’ ($) + az7*(¥) + asv(¥) +as — =0 (49)

where a1, a2, a3 and a4 are arbitrary constants that are not zero simultaneously.
Using equation (49) in Ao(%) = 0, we get

az =0 (50)

Employing equation (49) with a; = 0 in A;(¢) = 0 and integrating the resulting equation once
with respect to v, we obtain

as
(3a,m - 3o, + <1:¢)2

where as is an arbitrary constant of integration. Substituting equation (44) in (49) with a; = 0,
we find that

B (y) = #i p- (51)

Y=an® +asn+ay (52)

where 7 is given by equation (42). For this flow, the exact solutions are given by

1
u= E—ﬁ [—Salz +3a;/2?2 + y? +a3] Ve + vz +y?

1
VE T o [—30125 + 3a; /22 4 32 +a3] V- + Vi +y?

Hy= B, Hy=B®), w= -\/% = e (53)

1 {—12pa1 Ve+ Vet +y2—p [—3a11: +3a1vVz2 +y2 + 03]2} + o

P=7 2?2 + y?

1

where pg is an arbitrary constant and B(¢) is given by equation (51). If a; = 0, then the flow

2
~3mz +3a1v/22 + 97 +as] B(¥)

is irrotational. Thus, we have the following theorem:

THEOREM 4. Steady plane flow along n = constant is permissible for infinitely conducting
MHD aligned flow and the exact solutions for the rotational flow are given by equations (53)
and for the irrotational flow by equations (53) with a; = 0.

Example II. (Flow with £ = constant as streamlines).
This example also deals with a streamline pattern for Hamel’s problem and this pattern is
not one of the four well known patterns. Figure 2 shows this flow pattern.
We let
E=1); ') #0 (54)

where 4() is an unknown function of .
Comparing equation (54) with (33), we get

Hn)=0, m(n)=1 (55)
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Using equation (54) in (43), we get
I =0 +9(¥) (56)

Employing (39), (40), (55) and (56) in (37) and (38), we find that equation (38) is identically
satisfied and (37) takes the form
2
Y Ba$)n" =0 (57)

n=0

1 7rr(¢) nk
Balv) = [7(¢)( ’3(¢)>]
Bi9)=2 o) 219 | 2 BT
7"(¥)

) ~hW (w%) 70 5755 (% ((i)))]

Equation (57) is a quadratic in n with coefficients as functions of % only. Since 7, ¢ are
‘independent variables, it follows that equation (57) can hold true for all values of 7 if all the
coefficients of this quadratic vanish simultaneously and we have

where

Boy(y) =

Bo(¥) = B1(¥) = B2(¢) =0
Integrating B,(v) = 0 four times with respect to 1, we obtain
biy* (%) + b v (%) + bav(¥) + by — 9 =0 (58)

where by, by, b3 and by are arbitrary constants that are not zero simultaneously.
Using equation (58) in Bo(¥) = 0, we get b, = 0.
Proceeding as in the previous example, we have

3
=03+ b6+by=b (\/z+\/1:2 +y? ' +b3\/:c+ V2 +y2+b,

Bo
wr (3blm+3b1\/12+y2+b3)2
1
U= T s [3bla:+3b1\/a:T+_y’+b3] -+ +y?
v = e [3bll'+3bl\/$2 +y? +b3] T+ V2% +y?
2 32+y2
3b
= ﬂ(zb)u, H2 = ﬂ(‘(/))v, w= —.\/7___:_—!!2- T+ 3 /x2 + y2
2

p= —-—1'——2 {6#51 V-z+Vzt+y? - %p [3blz + 32 +y?2 + b3] } + po

2z +y
2
[3b1:c +3bv/z2 +y2 + bs] B'(¥)

2
B(¥) = P

(59)

1
BN

where f#y and po are arbitrary constants. If b = 0, then the flow is irrotational.
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Example III. (Flow with n — £ = constant as streamlines).
We assume that

n=E=7(¥) Y(¥)#0 (60)
where (%) is an unknown function of 1. Comparing (60) with (25), we get
f&=¢ g¢)=1 (61)
Using (61), equation (43) yields
J* =267 4+ 269(4) +7*(¥) (62)

Employing (31), (32), (61) and (62) in equations (29) and (30), we find that equation (30) is
identically satisfied and (29) reduces to

4
Y caw)er=0 (63)

n=0

where

7' (¥) ( B(#) B(%) 7 (#)

. YW) | BEEW)
+;v“<¢){[p W) T + w2 }

Ca(¥) = 167 () 7—({#—)(1%% _1672(@(7,';((3))) )

{5 e A}

[ " ! " "
G0 =Tt 7&7(—%&3) -wﬂw(%iﬁi) o)

W[ YW BGEE)
i (R e

o= [ () (- ) 2557)

1
1 7:r(¢) )'
C. =16 | —
) [7’(¢) (5%
Equation (63) is a fourth degree polynomial in ¢ with coefficients as functions of ¥ only. Since

£, v are independent variables, it follows that equation (63) can hold true for all values of £ if
all the coefficients of this polynomial vanish simultaneously and we have

Co(¢)—4‘74(¢)[ 7"(”’))] ~sr) (L) 4 )

Cu(¥) = C3(¥) = Ca(¥) = C1(¥) = Co(¢) = (64)
Integrating Cy4(3) = 0 four times with respect to 1, we obtain
ar*(¥) + 2V’ (@) + () +ea =9 =0 (65)

where ¢;, ¢z, ¢3 and ¢4 are arbitrary constants of integration that are not zero simultaneously.
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Using C4(¢) = 0in C3(¢) = 0, we get

{[p w B (v)] 2
which upon integration implies that

B(y) = ;‘1— [0 — cs7”(%)] (66)

10, BT
@) @)

where cs is an arbitrary constant and (1) is given implicitly by equation (65). Employing (65)
and (66), C,(¢¥) = 0 gives

c2=0 (67)
Finally, using (65) to (67) in C1(3) = 0 and Co(%) = 0, we find that both of these equations are
identically satisfied. Hence, the family of curves 7 — £ = constant are permissible streamlines
for the flow under consideration and the unknown function (%) is given implicitly by equation
(65) with ¢ = 0.

Employing (60) in equation (65) with c; = 0, we get

vp=c1(n—E€°+ecs(n—€) +c (68)

where £ and 7 as functions of z and y are given by equation (42). Thus, the solutions for the
velocity components, the magnetic field components, the pressure, the vorticity and the current
density are given by

=2—z—2+—2[6c1 (\/a:2+y2—y)+¢:3] {\/z+m_\/_z+ $2+y2}

=2———m[6c1(\/m—y)+%]{\/z+ :c2+y2+\/—z+ x’+y2}
Hy = B(¥)u, Hz =B
p=-6c1p———-—l———[\/z+\/m+\/—z+\/mj .
S (69)

- g———rxzi_}_—y— [601 (\/12_+y3—y) +Cs]2+Po
YT z2+ 2 [Gc’\/-x+‘/’2—+y_—6c’\/7+‘/m}
2= 80—~ 8 ) oo (VI TV ) ]

where pg is an arbitrary constant and #(3) is given by equation (66).

The streamline pattern for this flow is shown in Figure 3.
Example IV. (Flow with £ — 7® = constant as streamlines)
We let
-’ =7(¥); Y(®)#0 (70)
where v(1) is an unknown function of ¥ and £,  are given by equations (42).
Proceeding as in previous examples, we have

2($) = arth +az, ﬁ(¢)=\/#z.
u ;2\/—:+\/z2+y2(1—3y)

—201 :c’+y
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—-——[ <\/—z+\/z-2_-fy—) +yz+ z2+y2]

2a;,4/z% + y?
1/_z:_‘_ $2+y2
H1= -%u, H2= Q= L‘w (71)
Vu u Ve Ve
1 2
= ————1{6pyz + V2% + 2——[l+9 —z+Vat+y? ]}
P 2a, z2+y2{# y 2a, ( y)

where a; # 0 and p, are arbitrary constants of integration.

The flow pattern of this example is shown in Figure 4.

Example V. (Flow with n — & — £3 = constant as streamlines)

We assume that
n—E-E=7(%); Y{)#0 (72)

where 4(%) is an unknown function of ¢ and £, n are given by equations (42).

Following the examples above, we get

VW) = bbby )= \/#Z

b 1-3y)Vz+vVz2+yt—y\—z+ V22 + }
YN 2{( v) y \/ y
3

v=——{\/-z+ 72 +y?2 +\/z + /22 + 2 +3(\/ z2+y2) }
(73)
H1=‘/L‘u, H, = -p—‘v, w= \/x+ zz+y, ‘/—p;w
M M z’+y M
1 / P
= ———0={6u\/—z+ /22 + 2+—[18:c2+9 2+61:+2
T +y2{ # ' % g

z2

+6(3x+1)\/a:74:—y_2_]}+po

where b; # 0 and pg are arbitrary constants of integration.

Figure 5 shows the streamline pattern of this flow.

Example VI. (Flow with n — ¢* = constant as streamlines).

We assume that

n-8=901); Y@ #0 (74)

where () is an unknown function and &, 7 are given by equations (42). Following the same
procedure as in previous examples, we conclude that this family of curves is a permissible
streamline pattern for infinitely conducting MHD aligned flow and the solutions are given by

)= dip+ds,  B) = \/;E

u
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v

3

S S A +3( 24 2)

2d, 12+y {\/I ey \/ vy

p 2 = /L 75
H=,/—u, H= z+Vz +y, Q= —w (75)
zz+y u
2

S S— 4 S22 __r 2 4 42

P zd\/m{ o/ + VTR - [t (e V) | o

where d; # 0, d, and po are arbitrary constants. The flow pattern for this example is shown in
Figure 6.

4.2. Examples for w = Inz.

Let z = e” or w = Inz. Then, we have

z = ef cosp
(76)
y = efsing
or )
€ =lor = zln (22 + ¢*
5in ( . ) -
—f=tan-t (¥
oo ()
Using equation (76) in (23), we obtain
J* = e (78)

Example VII. (Flow with 7 = constant as streamlines).
This example is a possible streamline pattern for the Hamel’s problem for our fluid flow. This
pattern in given in Figure 7.
We assume that
n=v) Y ®)#0 (79)
where (1) is an arbitrary function of 1 and 7 is given by equation (77). Comparing (79) with
equation (25), we get
f(9)=0, g(¢)=1 (80)
Employing (31), (32), (78) and (80) in equations (29) and (30), we find that equation (30) is
identically satisfied and equation (29) reduces to

@) [ (N L2 1 gy LW, L BRBW)
)t [v'w) (ww))] +2{l-wo) g+ PP =0 @

Integrating (81) with respect to %, we obtain

7" (%)

B(¢)
where S, is an arbitrary constant and v(¢) is an arbitrary function of %. Thus, this family of
streamlines is allowed by infinitely conducting MHD aligned flow and the exact solutions for
this rotational flow are given by

BW) = — [p +4p7' (V) — 7' (%) ( ) + #50‘7'2(1/’)] (82)

S S S SV AR S, il (.))
e o) P Aty )
1 !
Hy= o, Hr= B, 0= B0~ e D (&)

1 b (Y)Y _ _e
P= 2@+ ) [7’(¢) (7'3(¢)) 7”('/')] Tr
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where po is an arbitrary constant, B(i) is given by equation (82) and +(%) is an arbitrary
function of .
Example VIII. (Flow with n — £ — ¢2 — %€ = constant as streamlines).

We assume that

n—€-€ - =9(); Y #0 (84)

where 4(¢) is an unknown function and £, n are given by (79). The streamlines are shown in
Figure 8.

Proceeding as above, we have

%w=—%v—m%w+%, B() = fo
2u 1
[p— p*B2) z* + y?

2u 1
ve ey Ve (@ ) - 20 (& )]

2u 2
H, = = = - Q=
1=PBu, Ha=Ppov w T [4 + Yy y’] ) Bow

u=— [r—y—yln(x2+y2)—2y(12+y2)]

2, .2 1 2,2\ _ 8y’ 1
.ﬂzl [1-2(z +y)] 24y 21n(z +y°) - B2 +y?

p:
[p p

- m[“" I ) - Hin 6 ) - (@ 4]
2pu®
Clo-wBY ’2+y

+4( +97)"} + o

(85)

{2+[ln(z +y2)] + (2 + 422 + 4y%) In (2 + ¢?)

where ¥y, By # \ /ﬁ and pg are arbitrary constants.

Example IX. (Flow along n — £% = constant as streamlines).
We take
n—€ =) Y®)#0 (86)

where (1) is an unknown function and £, 7 are given by equations (77).
Following the above procedure we get

7(¢)—-— [p—uB2 ¥+,  B®)=ho
2
_[p—:‘ﬂgl [t’:—y’ et -yFyZ . (z2+y2)]
2u [ y d 2 2
= |5, 2T 2 2ln(z +y)]
lp—p*B2 |22 +y?  z2+y 1 -

- - - -
-—ﬂou, H2 —ﬂova w = [P—/-l'ﬂzl z2+y21 Q —.Bow

- s (& +47) +1]

. .
P= = pE

2p1® 1 2
prr e M LGRS N
— u*Bo

where ¥, fo # ﬁ; and py are arbitrary constants. The flow pattern for this example is shown
V U

in Figure 9.
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Example X. (Flow with £ = constant as streamlines).

The flow pattern in this example is a possible solution of the Hamel’s problem for our flow.
Figure 10 is shown this streamline pattern.

We let

E=7); Y(¥)#0 (88)
where v(¢) is an unknown function and ¢ is given by (77). Using (88) in (78), we get

J* = e2¥) (89)
Comparing (89) with (33), we obtain
k(n) =0, m(n) =1 (90)

Employing (39), (40), (89) and (90) in equations (37) and (38), we find that equation (38) is
identically satisfied and equation (37) gives

L 711(¢) ! '- 71/(¢) ! 7/!(1/)) _
[7'(«/)) (vww))} (5@) ++ g =0 ®

Thus, £ = constant can serve as streamline pattern for infinitely conducting MHD aligned flow
and the solutions are given by

w=—t Y
TP
R S
T O
Hy = B(¥)u, Hz=p(¥)v
1 (92)

b [ X)) g Lo [ g2 )] —

p @) [e 73 (%) o+ 2¢ [p wh (d’)] 72 (%)

ey [ e 1 P 1

o R O b e e
1 4w _ 1 B
T 224y y3(y)’ @=pk - 272 (¥)

+ Po

where po is an arbitrary constant, 3(1) is an arbitrary function of ¥ and (%) is a solution of
equation (91). Requiring the pressure to be single-valued, we must take

[;mw%]' =0

which, upon integration, gives
ae?"¥) 4 2a,7() + a3 -y =0 (93)

where a;, a; and a3 are arbitrary constants that are not simultaneously zero. Using (93),
equation (91) is identically satisfied. Employing (88) in (93), we obtain

¥ = a1e¥ + 2a,¢ + a3 (94)
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Using equation (77) in (94), we obtain
¥ =a)(z? +y?) + azln (2% + %) + a3

Hence, the solutions for this rotational flow are given by equations (92) with v(¢) given implicitly
by equation (93). If a; = 0, then the flow is irrotational.
Letting B%(¢) = -17 [p = 7(¥))] and using (93), the solutions (92) take the form
©

2 2
v=tay s 2 ve (2w 295)
H — H, = - - ,(1/") 2 2 2 2
1 = Bu, 2 =Bv, w=—4a,, Q_ﬂw_z2+y2 [2a; (z® + ¥°) + 2a2)

p 2
p= —2—(.17:—3/?) [201 (12 + yz) +2a2] +P0

where B2()) = #i [0 - 72(%).

24
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Figure 1. Streamline pattern for Example I
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1k

-2 -1.5 -1 -0.5 0

Figure 2. Streamline pattern for Examipe II

3 15 1 0.5 0 0.5 1 1.5

Figure 3. Streamline pattern for Examlpe III
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Figure 5. Streamline pattern for Example V
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Figure 6. Streamline pattern for Example VI

Figure 7. Streamline pattern for Example VII
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Figure 8. Streamline pattern for Example VIII
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Figure 9. Streamline pattern for Example IX
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Figure 10. Streamline pattern for Example X
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