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ABSTRACT. In this paper we study finite difference procedures for a class of parabolic equations
with non-local boundary condition. The semi-implicit and fully implicit backward Euler schemes
are studied. It is proved that both schemes preserve the maximum principle and monotonicity of
the solution of the original equation, and fully-implicit scheme also possesses strict monotonicity.
It is also proved that finite difference solutions approach to zero as ¢ — oo exponentially. The
numerical results of some examples are presented , which support our theoretical justifications.
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1. INTRODUCTION.

In this paper we study finite difference approximations to the solution of the following
parabolic equations with non-local boundary condition:

u¢— Au=0inQr,
(1'1) u(a:,y,O) = ¢($,y), (3a U) €q,
u(z,y,t) = fo K(z,y,€,n)u(é,n,t)dédn, ondQ x[0,T),

where Qr = @ x (0,T), T > 0, @ = (0,1) x (0,1), ¢(z,y) # 0 and K(z,y,£,n) are known

functions. In addition, it is assumed that for some constant 0 < p < 1 the kernel K(z,y,&,7)
satisfies

(12) [) K(z,v.&nldedn <p <1,  V(z,y) € o0
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In [4, 5] Day considered the one-dimensional problemon (—L, L), L > 0, with the boundary

conditions
L L
(1.3) w(=L,t) = / h@u(e il amd u(lb) = /  h(@)u(z s,

and showed that if

L L
(1.4) / lfi(z)ldz <1  and / 1fa(2)ld < 1,
-L -L
then, for the solution u,

(15) U = _pax, lu(.)

is decreasing in t. The solution u represents the entropy in a quasi-static theory of thermoelasticity
[5, 6], so that Day’s results shown that the maximum modulus of the entropy is decreasing in
time. In [8] Friedman extended Day’s results to a general parabolic equation in n-dimensions of
the form

ou &u z Ou
(1.6) i ,-;1 a;,,-(z,t)a;ia—zj + ga;(z, t)az—. +au=0

with a(z,t) > 0 and with the initial and boundary conditions as given in (1.1). Moreover,
Friedman proved that there exists Co > 0 and A > 0 such that

(1.8) U(t) < Coe™™, t2>0,
i.e., U(t) decays to zero exponentially as ¢ — co. Problems similar to the above also arise from
the determination of the unknown source parameter [2, 9] and other related problems [10].

For physical applications of the problem (1.1), let us consider first the coupled partial
differential equations ’

alz; = b0y + 6o Bvz sy, Avzzez = B,

which describe the quasi-static flexure of a thermoelastic rod [5]. Here 6(z,t) is the temperature,
8o is a uniform reference temperature, v(z,t) is the transverse displacement, a is the conductivity,
b is the specific heat at the constant strain, the constant A is the flexure rigidity and the constant
B is a measure of the cross-coupling between thermal and mechanical effects. We assume that
the ends z = —L and z = L to be maintained at the reference temperture 6, and to be clamped,
that is

6(—L,t) =6(L,t) =0,
u(—L,t) = uz(—L,t) = u(L,t) = u;(L,t) = 0.

Let

b
u= b—(a - 00) + Bu;.
0
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be the entropy, then after some mathematical manipulations [5] we obtain that u satisfies
B?
AUuzr = (b + 907) Ut

with the boundary conditions

6, B2 L
u(=L,t) = - _21:42L2 / (L - 3z)u(z,t)dz,

u(L,f)=~ Am / (L + 3z)u(z, t)dz

and an appropariate initial condition.

For the second example we consider the equations [1, 3, 5]

afzz = b6 + Bpa(3) + 2p)vze
(A 4+ 2p)vzz = a(3X + 2u)0,

which describe the behavior of a slab —L < £ £ L made of homogeneous and isotropic material.
Here 6(z,t) is the temperature, v(z,t) is the displacement component in the direction of the
z—axis, §p is a uniform reference temperature, a is the coefficient of expansion, and X\ , u are the
elastic moduli. The boundary conditions are
6(—L,t) =6(L,t) = b, v(=L,t) =v(L,t) =0.
Let
b
u= % (9 - 90) + 0(3/\ + 2/1)1):
be the entropy, one has [5] that u satisfies

augr = b*uy

with the boundary conditions

(_Lt)_u(,;t)__k‘ji y (z,t)d
u(=L,t) = u(L,t) = 5 5% -Luz,)z,
where

._ 2 (3X\ +2p)?

' =b+Ga -———-/\+2” .

For the detail derivations of the above equations we refer to [1, 3, 5].

The condition (1.2) implies for the first problem that 5682 < 3bA? and for the second
< 1or 6pa?(3) —2p)? < (A + 2u)b.

problem that

In this article we study finite difference schemes for (1.1). The finite difference procedures
proposed below preserve monotonicity, the maximum principle and the exponential decay (if the
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kernel is non-negative) of the solution for equation (1.1); therefore, they are considered as good
numerical approximations.

Let h = Az = Ay = 1/N for some integer N > 1, and let 7 > 0 be a small step-size in time
with t, = nr, n=0,1,--.. For a smooth function v(z,y) € C?() we assume that the following
numerical integration formula is valid:

N
(19) [ K@ emeendtdn = Y- wniK(z,g,2m w0 vma + O,

m,l=0

where w1 2 0 are weights and vm,1 = v(zm,y) with zm = mAz, yi = 1Ay, m, 1 =0,1,---,N.
For any 0 < p* < 1, we restrict h to be so small, say for some ho > 0, 0 < h < hy, that

N
.1t
(1.10) > wnil K@y zmwl <ot = 52 <1, @y en.

m,i=0

Here and throughout this paper we assume that h is small enough so that (1.10) is satisfied. In
fact (1.10) serves as a discrete version of (1.2). In order to obtain the numerical solution which
preserves as many properties of the solution as possible, (1.10) is a necessary and cannot be
considered as a constraint on space discretization. For example the weights can be chosen by
using trapezoidal rule,

AzAy, m,l=1,2,.-- N -1;
(1.11) wmy={ }AzAy, m,l€{0,N};
-;— AzAy, otherwise.

Define the following shorthand notations

n __ g” - gn—l

agg = ——T
Alg: . = Jinitgi-1; % Gij41 + gij-1 — 49i

g'y] - h2 .

b

We now define our first numerical scheme: Find {U,} such that

')j
8¢U{:j—A2U{:j=O, i,j=12,-- N=-1, n>1,
(1.12) Ui = i i,7=0,1,2,---,N,
Un =K (0a0), GAINONI A0, n21,

where

N
(1'13) Ki,j ({U:v‘:,l}) = E meK(zityhzm’ yl) U::g,b {11.7} n{oa N} # ﬁ, n2>1

m,l=0

It is clear that (1.12)-(1.13) is a fully-implicit scheme that requires a full-matrix to be
solved at each time level due to the boundary integration. For small A > 0, the matrix will be
diagonally-dominant and can be solved by Gaussian-elimination or any standard method.
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Since (1.12)-(1.13) results in an error O(h? 4+ 7), we may propose the following numerically

economical semi-implicit scheme: Find {W";} such that

Wy - AW, =0, t,j=12,-- ,N-1, n>1,
(114) W'c:J =¢"j’ t»] :‘=0,1,2,,N,

wry = Kis ((W231), {653NHONY£08, n21

Clearly, (1.14) results in an error O(h%+7) and is easy to implement numerically since only a pent-
diagonal matrix system needs to be solved at each time level. Therefore, it is a very economical
and fast algorithm. In addition, it is also unconditionally stable. Alternative methods, say ADI,
may also be used to solve (1.14).

2. STABILITY, MONONOTONICITY AND EXPONENTIAL DECAY.

In this section we prove some monotonicity, maximum principle and exponential decay
properties for our numerical solutions U}’; and W}";. Define

(2.1) U™ = max
0<i,j<N

U, W"=0<4,j <N — max W7l
THEOREM 2.1. Assume that U}'; is a solution of (1.12)-(1.13) and the initial approximation
Ul; #0fori,j=1,2,---,N — 1, then the following holds:

(2.2) 0<U"<U™!, Wn>1.

PROOF. We show that
(2.3) 0<U"<U™!, Wn>1.

We observe that U™ > 0 for all n > 0. Consider the first two levels n = 0 and n = 1. Assume to
the contrary that U® < U, then U > 0. LU = [U}, ; | = U} ; > 0( the case U}, ; <0 canbe
treated in a similar way) for some (ig, jo), then it follows from the discrete maximum principle (7]
that this maximum is attained at the boundary. Thus (i¢,jo) can be selected to be a boundary

point. Then, we see from (1.10), (1.12) and (1.13) that

(2'4) Ul = IKioyJ'o ({Uv‘n,l}) | < p‘U‘

which is impossible unless U! = 0 since p* < 1. This contradicts U? > 0. By (1.12), U = 0 will
lead to UY; =0 for 4,5 = 1,2,-- , N — 1 which is a contradiction. Thus, 0 < U' < U°.

Now, we consider the levels n = 1 and n = 2. By repeating the above argument with U} ;
as the initial data, we can show that 0 < U2 < U*. Thus, (2.3) is proved by repeating the above
argument for higher levels. Q.E.D.

THEOREM 2.2. Assume that W; is a solution of (1.14) and the initial approximation

WP; #0fori,j =1,2,-,N — 1, then the following holds:

(2.5) O<Wr<w™1  vn>1
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PROOF. We show first that W > 0. If on the contrary W! = 0, we will get W?; = 0 for
i,j=1,2,--- ,N —1 by (1.14). This contradiction proves W! > 0. By (1.10), we get
(26) Whil < e W® < W, {i,i} {0, N} #£0.
According to the discrete maximum priciple (7],

2.7 W= max(;, j} n{o,N}#O'Wil.jl <we.

The remainder of the proof follows from an argument similar to the above and mathematical
induction.
Q.E.D.

REMARK. Theorem 2.1 and Theorem 2.2 imply the unconditionally stability of numerical
solutions U["; and W7}, even though W}"; is the solution of semi-implicit finite difference scheme.

In (8] Friedman proved that U(t) decays exponentially when (1.2) is satisfied. We have
proved that both {U"} and {W"} possess the strict monotonicity. In fact numerically there
exists A > 0, as suggested in the examples of section 5, Figure 6 and Figure 7, such that

n+1

(2.8) log ~ =AMt as n— oo,

Un

and same is true for W”. This motivates the justifications of the exponential decay of U™ and
W™ when the kernel is non-negative.

THEOREM 2.3. Under the assumption that UP; is the solution of (1.12)-(1.13) and the

kernel K(z,y,£,n) 2 0, there exists a positive constant A > 0 such that for U° = max; ; |U2,'|,

(2.9) Ur <U% ™ forall n>0.

PROOF. Let V(z,y,t) = e~*(2U° — £(z? + y?)) where € and A are two positive constants
to be chosen below. It follows easily that there exists ¢g > 0 such that

V(z,y,0) = 2U° - i (Z2+y)>U° on Q if 0<e<e.
Also, since K; j({1}) < p* < 1, we find
K ;({2U°%)) < p*2U° < 2U°,
and then, there exists a positive constant €¢; > 0 small enough such that for all 0 < € < ¢,
Vs > Kii((VaD)y {63} (HON}#0, n21
Thus, we choose € = min{eg, ¢;}. It follows from a s'imple calculation that

OV — AV = et (- A0 - S(at +4D)),  ii=1,2,N -1
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where £ € (0,7). As Xe*” — 0 when A — 0, we have for some Ao = Ao(€) > 0 (or Ao =
min{1/7,€/(2¢U°)}) such that for all 0 < A < Ao,

atVi?j—szi,,‘j>0’ 4j=12--,N-1

Now letting Z7'; = V[ —U"; with A = A and € chosen above, we see from (1.12) and the analysis
above that

3tz,~':j—AQZ,-','j>0, 4,;=12,-- N~-1, n>1,
(210) Z?,J >0’ j=0$1y2a"‘7Ni

Z0;> Kij ({Z,'.'.,z}) » {LIN{O,N} #8, n21

We now show that Zr; 2 0. Assume that ng is the first level that Z!; may take the negative
values, then we have (ig, jo) such that

nO. — mi no
Z'o:)o - n'l']Jn Zitj <0.

It follows from the discrete maximum principle [5] that (i,jo) must be the boundary point,
otherwise 8;Z7°. — A2ZP°. < 0 which is not possible. Thus we have from the positivity of

i0,J0 io,Jo

kernel K and ( 2.10) that

%0, Jo 10,Jo

=25, < Kis (1-2701)) < 0"(= 2%

which implies that Z°, = 0, a contradiction. Hence, we have proved that U; < V/";. Using a
similar argument by treating —U}; it can be shown that U'; > —V;";. This completes the proof.

W =
Q.E.D.
THEOREM 2.4. Assume that W, is the solution of (1.14), then there exists a positive
constant A > 0 such that W° = max; ; [W};|,

(2.11) W < W% forall n>0.

PROOF. The proof consists of an argument similar to that given in the proof of Theorem
2.3, we therefore only give the outline.

Let V(z,y,t) = e™*(2W° — £(2? + y?)) and as before, let € be chosen so small that
V(z,y,0) > WP for 0 < € < ¢. Because the numerical integration uses the data on the previous
level for the boundary condition, we need to first select a A\g > 0 such that 0 < A < A,

e AT > pt, de.  eTAT2WO > pr2we,

—=Ar

Since e — 1 when )\ — 0, the existence of such a )¢ is not a problem. With ¢, and Ay chosen

as above, we then select ¢; > 0 so small that for 0 < e < ¢

V%> Kii((Var'D), {63} MO, N} #0, n2>1.
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Using € = min{eg, €1} and the Ao selected above , we select A; > such that for 0 < A < Ay,
avy - AW >0, i,j=12-N-1

We take A = min{)\o, A\1}. We omit the reminder of the proof which is the same as that given in
the proof of Theorem 2.1 with the € and A as chosen here. Q.E.D.

3. CONVERGENCE AND ERROR ESTIMATES.

In this section we study the convergence and error estaimes of the numerical procedures
proposed in section 1. First, we show the following result.

THEOREM 3.1. Assume that in addition to (1.2), the kernel K in problem (1.1) satisfies
K € C*(9Q x Q) and

(3.1) K(z,y,6,m) 20, ¥ (2,1,{,7) € 82 x Q.

If the solutions u of (1.1) is known apriori to be smooth enough, u € C*?(Qr), then there exists
a positive constant C = C(||u||cs.2, ||K|lc2) > 0 such that the solution UP; of (1.12) satisfies

(3.2) max |U7; — u(zi, yj ta)| < C(h? + 7).

'.’jl"
PROOF. Let ef; = Ul; — u(zi,yj,ta) for all i, j, n, then we see from (1.10) and (1.12)
that ef; satisfies

Opel; — Alel; =11, 4,j=1,2,--- . N=1, n>1,

(33) e?,j =0, 4,j=0,1,2,---,N,
eri=Kij ({en}) + ey {5}NMON}#0, n>1.

Here 7[%; and €; are the truncation errors induced by the discretization of differential equation
and numerical integration respectively. Then there exists Ly > 0 such.that

(3.4) max [rfy] < Lo(h +7),  max |ely] < Lo(h? + 7).

We now define an auxiliary function 6(z,y) by

—z?—y?

1
(35) 0z,y) =~ Lo(h? +7)
then it is easy to verify that
(3.6) —A%;=Lo(h?+7) and 0<6;;< % (h? + 7).

Let Z7; = el; — 6;,; for all 4, j, n, we find from (3.3) and (3.6) that

atZ:J—Azz::’SO, i,j=1,2,"‘,N—1, nZI’
(3.7 Z0;=-6i; <0, i,j=0,1,2,--+,N,

Z'?:j = Ki,j ({Zr':l,l}) + Ki,i ({oﬁt,l}) - ol',.i + f?,j’ {11]} ﬂ{O,N} 5& 0; n2>1.
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We now show that there exists C' > 0 such that Z; < C(h* + 7) for all i,j,n. If Z}, has a
positive maximum, then according to the discrete’ maximum principle then it must be attained
at a boundary point. Assume that M = Z,';“,o > 0 with ny > 1, is the positive maximum. From

the boundary condition in (3.7) we see that

(38) M < p*M + (b + )max |6:,;] + max |¢] |
<M+ 3 L4,
which implies
P~ +3 2
. <L T
(3.9) M< A=) Lo(R? + 7).
Hence, we have proved that
p"+3
(3.10) eij <0+ a=p Lo(R* + 7).
If instead Z7; = el'; + 6, ;, then a similar argument gives
P +3 2
) 0>
(3.11) eij > —0;; 2(1 o) Lo(R% + 7).
Therefore, we find from (3.10)-(3.11) that
p*+3
(3.12) lei ;| < 16i,5] + W—j Lo(R% + T)
<7 2o T+,
which is (3.1). The proof is complete. Q.E.D.

THEOREM 3.2. Under the same assumptions of Theorem 3.1, let W, be the solution of
(1.14). Then for some positive constant C > 0, independent of h and 7, we have

(3.13) max [W7; — u(zi,yj, ta)| < C(A% + 7).

1,j,n

PROOF. It follows by a similar argument to that given in the proof of Theorem 3.1. Q.E.D.

REMARK. The error estimates in (3.2) and (3.13) are uniform for all 0 £ ¢ < 00 if T = o0,
which is guaranteed by the the condition (1.2).

4. GENERAL SMOOTH KERNEL K(z,y,¢,7).

In this section we consider the effect on the original problem (1.1) when the kernel condition
(1.2) is replaced by:

(4.1) 0 < K(z,y,6,n) < Ko,  V(z,y,€,n) €00 x Q.
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In general if the condition (1.2) is not satisfied, then the numerical procedure of (1.12) or
(1.14) may not be stable uniformly for 0 < ¢ < co. This will be demonstrated in both theoretically
and through numerical examples below. For these kernels, the stability will depend upon Ky and
T > 0. Here we consider a class of kernels which satisfy (4.1) but not (1.2).

We first consider the continuous problem. Let w(z,y) be an auxiliary function defined by
(4.2) 1<w(z,y) =1+M((z-1/2)% +(y - 1/2)%), d>0,
where M and d (even) are two positive constants to be chosen. Clearly, we have

1

d
(4.3) (z’r;l)xgm w(z,y) =1+4+2M (-2-)

Let u(z,y,t) be a solution of (1.1) with K satisfying (4.1), and set Let v(z,y,t) = "w‘(’z"; and
find that v satisfies

v;=Av+2-Y£u‘7‘ﬁ’-+AT"’v, in Qr,
(4-4) v(z,y,0) = %ﬁ?’ (z,y) €0
v(z,y,t) = fQ R(z,y,€&,n)v(€,n)dédn, (z,t) €09, t2=0,
where
w(é,n)
4-5 R I, " & =K z 16y N
(4.5) (z,v,€,m) (,ycn)w(z’y)
Thus, we have from (4.1) that
(46) 1R mildedn < s [ (e, mdgan.
o SIS S TEMA 2T Jo U
A simple calculation shows that if d is an even integer,
_ (1/2)*?
4.7) /n w(€,n)dgdn = 1+ 0 T2
Then it follows that
1+ M4 24-;_‘ Ky

as M — oo.

(4.8) LlR(z, ¥,§,n)|dédn < Ko 1+ M(1/2)d1 - d+1

Hence, taking d = 2K and M = M(K;) > 0 large enough, we can achieve

Ko 2K,
. L=< 55— .
(49) [IREw e s Fh <zt v @eon

For w(z,y) chosen in this way, we have for some K; = K;(Kp) > 0 that |Aw/w| < K;.

Now consider the transformation v(z,y,t) = e*Y(z,y,t) with A > Kj, we find that ¥
satisfies
Y, =AY +2¥2YY 4 (42 _ \)W  in Qr,
(4.10) Y(z,y,0) = Sz, (z,y) €Q
Y(z,y,t) = [o R(z,y,&,m)Y (¢, n)dEdn,  (z,t) €0Q, t>0.
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REMARK. We now see from [5] that ¥ possesses the maximum principle, monotonicity and
exponential decay properties, which in turn results in monotonic and stable numerical schemes if
it is discretized as (1.12) or (1.14) in an appropriate way.

Turning to numerical approximations for (1.1) with condition (4.1), we let r = T/N; where
N is a positive integer. Numerical solutions to the problem, U?; or W;, are defined as in (1.12)
or(1.14). We cannot expect that these two schemes have the monotonic properties as described
in Theorem 2.1 and Theorem 2.2 when (1.2) is not satisfied. However, we have the following local

stability estimates.

THEOREM 4.1. Assume that U; is defined as in (1.12) or (1.14) for the problem (1.1)
with K > 0 and (4.1) satisfied. If the solution u of (1.1) is known apriori to be smooth enough,
u € C4?(Qr), then there is some constant C* = C*(||ul|cs.3,||K|lc2, Ko, T) > 0 such that

(4.11) max |U7; — u(zi, yj,ta)| < C*(A* + 7).

i,J,n

PROOF. The proof is similar to that given in section 3, so is outlined as below. For (4.11),
we let U, = eMrw;;Y[, where A and w(z,y) are defined as above. Thus, it follows from a
simple calculation that Y;”; satisfies a difference equation which is the discrete version of the
equation (4.10). Thus it follows from Theorem 3.1 and Theorem 3.2 (The proof needs only
minor modifications from that given in Section 3, we therefore omit.) that there exists a positive

constant C > 0 such that

(4.12) max [V]7; = Y (zi,yj,ta)| < C(h? + 1),

t,n

where C is indepedent of Ky and T > 0, and then, we obtain that
(4.13) [UZ; — u(@ir yjrta)l < EXmwij|UR; — u(zi,yj,ta)| < C*(R? + 7),

which completes the proof. Q.E.D.

REMARK. The constant C* above can be very large if Ky and T > 0 are very large. This
can be seen from the choices of d and K, in the above analysis, and also is demonstrated in the
examples in section 5. In another words although h and 7 are small, the error could be very big,
even approaching co as n — oco.

5. NUMERICAL EXAMPLES.

We shall report several numerical examples which support our theoretical justifications in
the previous sections, i.e., stability, monotonicity and exponential decay as ¢ — oo. Both semi-
implicit and fully explicit schemes using trapezoidal rule for numerical integration are used in our
computations.

EXAMPLE 1. In order to demonstrate the error analysis and stability, we select Q =
[0,27] x [0,27], ¢(z,y) = sin(z)sin(y) and K(z,y,£,9) = 4% Thus, for any real constant k£ > 0,
u(z,y,t) = sin(z)sin(y)e?* is the solution with [, |K(z,y,¢,n)|dén = k. Figure 1 and Figure
2 show by using semi-implicit scheme that the error distributions of u ( the maximum error on
each level via the time) with the various parameter k from 0.1 to 4. Clearly, for k = 0.1, 0.3, 0.5
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and k = 0.8, even k = 1.0, the errors are under control as predicted by Theorem 3.1 On the other
hand, for k = 1.5, 2.5, 3 and k = 4, it is seen that the errors are under control only for a short
period of time, and then divergent to co as n — oo. This is the exact same result as predicted by
Theorem 4.1, i.e., the numerical schemes are stable locally depednent upon Ko > 0 and T > 0.
Figure 3 shows the error distribution of u by using fully implicit scheme. For 0 < k < 1 the error
distributions of u in this example are almost identical to the case of k = 1. Also we noticed that
the fully implicit scheme is more stable than the semi-implicit scheme.

EXAMPLE 2. We now take a simple model problem with the same spatial domain and
kernel as in example 1, ¢(z,y) = sin(zy) and k = 0.8. Figure 4 and Figure 5, by using semi-
implicit and fully implicit schemes respectively, shows the distribution of U™ via the time ¢, which
decrease to zero exponentially as t — oo. If we assume roughly that for some A(t), C(t) such that

Ut) ~Ct)e*t as t— oo,

then A(t) can be calculated by the following formula
1 ynt+l
n A~ — ——
A Atlog( i ) as t— oo,

Figure 6 and Figure 7, by using semi-implicit and fully implicit schemes respectively, show the

distributions of A(t) proposed above, and it is seen that A™ approaches to a negative constant as

expected. For semi-explicit scheme we find A® ~ —0.145, and fully explicit A® ~ —0.1336, thus

the difference is 1.2 x 10~2 which is within the rate of the truncation error of the discretization.
With A™ calculated above we then can compute C(t) by

—\"
Ch~Ume 2" A" 45 n— co.

Figure 8 shows the distribution of C(t) computed by semi-implicit scheme according the above
assumption. In this example we see that C(t) also approaches to a constant . Figure 9 and Figure
10 are the numerical solutions of u at ¢ = 0.5 and ¢ = 1.0 with A = /20 and 7 = 0.01.

EXAMPLE 3. Taking the same model problem as in example 2 except that the initial data
#(z,y) = (r — z)(7 — y) and k = 0.4. Figure 11, Figure 12 and Figure 13 show the distributions
of U(t), Mt) and C(t) using the semi-implicit scheme . It is noticed that U(t) goes exponentially
to zero very rapidly as t — oo compared to that in example 2, this is due to that C(t) also
approaches to zero, not a fixed constant as in example 2.

From these examples We have a rough idea how U(t) will behave as the time advances, i.e.,
we can at least by using numerical methods, semi-implicit or fully implicit scheme, to estimate
the parameter A\ mentioned in Section 1.
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Figure 12: The semi-implicit scheme
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