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ABSTRACT. This paper is concened with joins of orbital topologies especially on the orbit of the

reals with the usual topology.
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The importance of comparing two different topologies on the same set was noted by Garrett
Birkhoff in 1936 [1]. Let X be a set and L(X) be the lattice of all topologies on X. If f is a bijective

function from X to X and 7 is a fixed topology on X, then we can define 1, = {f(U) |Ue t}. Note

that 7, is a topology. Let Y be the set of all bijections from X to X. Define {t; | fe 27} to be the

orbit of T in L(X). The topologies in this orbit are homeomorphic to each other. Also note that for
all bijective functions f and g, there exists a bijection h such that 1; v 1.’ is homeomorphic to
TV T,

Throughout this paper we will refer to the orbit of the usual topology on the reals as the
Euclidean Orbit. All functions will be bijective, and {(x, f(x)) | x e X}, the graph of f, will be
denoted G(f).

Bourbaki [2] showed (X, T Vv 17 is homeomorphic to {(x, x) | x e X} with the relative
topology of T x T; via h(x) = (x, x). Clearly, (X x X, T x 1) is homeomorphic to (X x X, 1 x 1)
via F(x, y) = (x, £ "'(y)). Hence (X, T Vv 1;) is homeomorphic to (G (f), T x 7). It is this graph
which will help us discover properties of (X, T v T).

Note that if X is a metric space, it is trivial to see that t v 1; is metric. But locally compact

is not so clear. Given a locally compact Hausdorff space, we have the following:
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THEOREM 1. LetG* () =cl(G () -G (). T v t, .1 is locally compact if and only if
AG ) NGH=9

PROOF. If cl(G* (f)) » G (f) # &, then let p € cl(G* (f)) ~ G (f). Then p ¢ G* (f); hence p is
in the derived set. Let C be a compact neighborhood of p in G (f); then there exists an open V < X*
such that VA G (f) = C and V n G (f) is compact. Since cl(V) is a neighborhood of p in X?, there
exists a point q € V such that g € G* (f). Let {V,} be a basis at q. Since X is regular, we can
assume there is a basis element V such that cl(V))c V, Let U, = X - cl(Vy); then {U,} covers
X - q. Hence {U,} covers G (f) n cl(V). But since G (f) n cl(V) is compact, there exists a finite

subcover {U,,...,U, } which covers G (f) m cl(V). Let U be the union of the subcover. Then U covers

G (f) » cl(V). This is a contradiction since q € cl(G (f)), but q ¢ U.

Now suppose cl(G* (f)) 7 G (f) = D and let p € G (). Then there is an
open U containing p such that U n G* (f) = @. Also we can find an open neighborhood V of p such
that cl(V) < U. Since cl(V) n cl(G* () = G, G (f) ~ cl(V) is closed. Therefore, G (f) is locally
compact.

For the remainder of this paper, we restrict ourselves to the Euclidean orbit. In the Euclidean
orbit we know that T = 1, only if f is continuous and that since T is connected, T, is also, but what
about T v T,?

THEOREM 2. T v 71, is connected if and only if T = 1, .
PROOF. If T = 1, then Tt v 1, = 1, hence it is connected. Now, if T # T, then f
is not continuous. But f is bijective so neither is the inverse of f. Let x, be a
point of discontinuity of f ~'. Then there is a sequence {x,} such that {x,} — x,,
but {f '(x,)} # f '(x,). Suppose {f '(x,)} is bounded. Then there exists a convergent
subsequence {f "(x,,k)}. Let lim {f "(x,,k)} = y. Without loss of generality, let
y > £7(x,). Then there is an M > 0 such that for every n, > M, f "(x,,k) > £ (%)
Let n, > M then f "(xnj) > f "(x,). Now consider the vertical ray A = {(a,b) | a= X, and
b > f(x,)and let X, € R such that | £ (x,,') -yl < | £'(x,)-y! and without loss of
3 )
generality, let x, < x,,‘ . Consider the horizontal line segment
B={(ab) | x, <a< * and b = f"(x“J )}. Also, consider the vertical ray
C={G@ab) | a= x, and b < f"(x,,J )}

Since f ' is an injective function, (A U B U C) N G(f ') = &. Now
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(x, , £(x, )) and (x,, £'(x)) lie in separate components of R - (A UB U C). So in
¢ t

the bounded case, T v 7; is not connected. The unbounded case is similar.
COROLLARY 3. 1V 1;is path-connected if and only if it is connected.

THEOREM 4. Let D(f) = {x | fis discontinuous at x}. If D(f"") is a
discrete subset of R, then t v 1 ; is locally connected.

The proof is very similar to that of Theorem 2 and hence is omitted.

COROLLARY 5. 1V 1;is locally path connected if and only if T v 1, is locally
connected.

THEOREM 6. If 1 v 1, is locally connected, then T Vv 1, is locally compact.

PROOF. Since T V 1, is locally connected, each component C of (G (f), T v 1) is open.
Now m,(C) and w,(C) are connected subsets of the reals, therefore intervals. Now f*! |1l:l ©
must be monotone, otherwise we would have points a,b,c € m,(C) with a < b < ¢ such that
f-'(a) € n,(C) and without loss of generality £'(b) > f(a). Now suppose f'(c) < f'(b). If
£(c) > £(a), then the set {(a,y) | y 2£(©)} U {(x, f(c)) | a<x<b} U {(by) | y < £'(c)}
disconnects C. If £(c) < f"'(a), then the set {(c,y) | y 2 f'(@)} U {(xf'@) | bsx<c} U
{(by) | y < f'(a)}disconnects C. This shows that a function which increases from a to b must
continue to increase, the decreasing case is similar. So we have f*! |1t,(C) is a monotonic function
from m,(C) to w,(C), hence f™' is continuous on 7,(C). Therefore G (f' |1t,(C)) is homeomorphic to
an interval, thus locally compact. Hence T Vv 1, is locally compact.

The converse of this theorem is not, however, true. The following counter example

illustrates this.

1 x=-1
-1 x= 0
x-1 leZ
x
f(x) = x+1 le{z-{1}}
X
x+1 xe(-1,00and _1 €2
x+1
x-1 xe(@il)and _1 € Z
x-1

be Otherwise
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The graph of f is locally compact, but there is no connected neighborhood about

(0,-1).
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