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ABSTRACT. In this paper, under certain conditions on the orthogonal distribution D, we give
a characterization of real hypersurfaces of type A in quaternionic projective space QP™.
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1. Introduction.

Throughout this paper M will denote a connected real hypersurface of the quaternionic pro-
jective space QP™ m>3, endowed with the metric g of constant quaternionic sectional curvature
4. Let N be a unit local normal vector field on M and U, = —J,N, : = 1,2,3, where {J,}:=1.2.3
is a local basis of the quaternionic structure of QP™, [2].

Now let us define a distribution D by D(z) = {X€T; M : X LU;i(z),i = 1,2,3}, z€M, of
a real hypersurface M in QP™, which is orthogonal to the structure vector fields {U;,Uz,Us}
and invariant with respect to the structure tensors {¢1, ¢2, #3},and by D+ = Span{U,,U,,Us}
its orthogonal complement in T M.

There exist many studies about real hypersurfaces of quaternionic projective space QP™ (See
(1],[3],[4],5],[6]). Among them Martinez and the third author [4] have classified real hypersurfaces
of QP™ with constant principal curvatures and the distribution D is invariant by the shape
operator A. It was shown that these real hypersurfaces of QP™ could be divided into three types
which are said to be of type A;,A42, and B.

Without the additional assumption of constant principal curvatures, as a further improvement
of this result Berndt [1] showed recently that all real hypersurfaces of QP™ also could be divided
into the above three types when two distributions D and D+ satisfy g(AD,D+) = 0. Moreover,
it is known that the formula g(AD, D) = 0 is equivalent to the fact that the distribution D is
invariant by the shape operator A of M.

In a similar notation of Takagi [7] a real hypersurface of type A; denotes a geodesic hyper-
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sphere or a tube over a totally geodesic hyperplane QP™~! and of type A2 denotes a tube over
a totally geodesic quaternionic projective space QP* (1<k<m — 2) respectively. Moreover, real
hypersurface of type B denotes a tube over a complex projective space CP™.
Now, let us consider the following conditions that the shape operator A of M in QP™ may
satisfy
(VxAY = - {fi(Y)o: X + 9(6:.X,Y)U.}, (1.1)

9((Ad, - $,4A)X,Y) =0, (1.2)

for any ¢ = 1,2,3, and any tangent vector fields X and ¥ of M.

Pak [5] investigated the above conditions and showed that they are equivalent to each other.
Moreover he used the condition (1.1) to find a lower bound of ||V A|| for real hypersurfaces in
QP™. In fact, it was shown that ||V A||2>24(m — 1) for such hypersurfaces and the equality holds
if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent
to a real hypersurface of type A; or A., which is said to be of type A.

If we restrict the properties (1.1) and (1.2) to the orthogonal distribution D, then for any
vector fields X and Y in D the shape operator A of M satisfies the following conditions

(VxAY = -Ti;9(¢:.X,Y)U; (1.3)

and

9((A¢, — $:A)X,Y) =0 (1.4)

for any 7 = 1,2,3. Thus the above conditions (1.3) and (1.4) are weaker than the conditions (1.1)

and (1.2) respectively. Thus it is natural that real hypersurfaces of type A should satisfy (1.3)
and (1.4). From this point of view we give a characterization of real hypersurfaces of type A in

QP™ as the following

THEOREM. Let M be a real hypersurface in QP™, m>3, satisfying (1.3) and (1.4) for
all X,Y in D and any ¢ = 1,2,3. Then M is congruent to an open subset of a tube of radius
r over the canonically (totally geodesic) embedded quaternionic projective space QP*, for some
ke{0,1,...,m -1}, where 0 < r < J.

2. Preliminaries.

Let X be a tangent field to M. We write J,X = ¢, X + fi(X)N,i =1,2,3, where ¢,X is the
tangent component of J;X and f,(X) = ¢(X,U,),i =1,2,3. As J? = —id, i=1,2,3, where id
denotes the identity endomorphism on TQP™, we get

X ==X+ f,(XOU,, fi(6:X)=0, ¢U, =0, :=1,23 (2.1)

for any X tangent to M. As J;J; = —J,J, = Ji, where (4,7, k) is a cyclic permutation of (1,2,3)

we obtain
X = ¢ X — (X)), = =2, X + f;(X)Us (2.2)
and

fX) = fi($X) = —fu(,X) (2.3)

for any vector field X tangent to M, where (3,7, k) is a cyclic permutation of (1,2,3). It is also
easy to see that for any X,Y tangent to M and: =1,2,3
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9(6:X,Y) + 9(X,6.Y) =0, ¢(¢.X,6.Y) = g(X.Y) - fil(X)fi(Y) (2.

[
'S
~

and

¢!UJ = _¢]Uz = Uk (25)

(2,7,k) being a cyclic permutation of (1,2,3). From the expression of the curvature tensor of

QP™, m>2, we have that the equations of Gauss and Codazzi are respectively given by

R(X,Y)Z =¢(Y,Z)X — g(X,2)Y + £3_,{9(:Y, 2)$. X — 9(¢.X,2Z)$.Y

2.6
+29(X,¢.Y)$. 2} + g(AY, Z)AX - g(AX, Z)AY, (20

and

(VxA)Y — (VyA)X = Z2_ {f(X)$:.Y — fu(Y)$. X +29(X, 6, Y)U,} (2.7

for any X,Y, Z tangent to M, where R denotes the curvature tensor of M, See [4].

From the expressions of the covariant derivatives of J,, i =1,2,3, it is easy to see that
VxU, = —p,(X)Ux + px(X)U, + ¢;AX (2.8)

and
(Vxé:)Y = —p,(X)¢iY + pr(X)9;Y + fi(Y)AX — g(AX,Y)U, (2.9)

for any X,Y tangent to M, (i,j,k) being a cyclic permutation of (1,2,3) and p,, :=1,2,3,
local 1-forms defined on M.

3. Proof of the Theorem.

Let M be a real hypersurface in a quaternionic projective space QP™, and let D be a dis-
tribution defined by D(z) = {X€T:M : X1U,(z),i = 1,2,3}. Now we prove the theorem in
the introduction. In order to prove this Theorem we should verify that g(AD,Dt) = 0 from
the conditions (1.3) and (1.4). Then by using a theorem of Berndt [1] we can prove that a real
hypersurface M satisfying (1.3) and (1.4) is locally congruent to one of type A;, or Az in the
Theorem. ‘

Namely we can obtain another new characterization of real hypersurfaces of type A in a
quaternionic projective space QP™. For this purpose we need a lemma obtained from the re-

stricted condition (1.4) as the following

LEMMA 3.1. Let M be a real hypersurface of QP™. If it satisfies the condition (1.4) for
all X,Y in D and any ¢ = 1,2, 3, then we have

g((VXA)y-’ Z) = Gg(AX’ Y)g(Zv Vt)v 1=1,2,3, (31)

where & denotes the cyclic sum with respect to X,Y and Z in D and V, stands for the vector
field defined by ¢,AU,.
PROOF. Differentiating the condition (1.4) covariantly, for any vector fields X,Y and Z
in D we get
d(VxA)$,Y + A(Vx9,)Y + A9, VxY — (Vx¢,)AY — ¢:(VxA)Y,2Z)
- 9(6.AVXY,Z) + g((A¢:, — 4. 4)Y,Vx2Z) = 0.
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Now let us consider the following for a case where : =1

J(VXAY,612) + g(Vx A)Z,6:Y) = —g((Vx61)Y, AZ) — g(¢:Vx Y, AZ)
+ 9((Vx$1)AY, Z) — g(AVXY, 6, Z) + 5,0(Y )g(6,AX, Z),
where g((A¢; — $1A)Y,U,) is denoted by 6,(Y) and we have used the fact that
9((Ad1 — $1A)Y,VxZ) = £6,(Y)g(U,, VX Z)
=-%,0,(Y)g9(VxU,,2)
= —58,(Y)g(4:AX, 2).

Then by taking account of (2.8) and (2.9) and using the condition (1.4) again, we have

9(VxA)Y,6:2)+9(Vx A)Z, 1Y) = 1(AZ)9(AX.Y) + f1(AY)g(AX, Z)

3.2
+Li6:(Z)g(6.AX,Y) + £.6,(Y)g(6:. AX, Z). ¢

In this equation we shall replace X,Y and Z in D cyclically and we shall then add the second
equation to (3.2), from which we subtract the third one. Consequently, by means of Codazzi
equation (2.7) we get

9(VxA)Y,612) =f1(AZ)g9(AX,Y) + £:6,(X)g(A4.Y, Z)
+%,0.(Y)g(Ad. X, Z).
From this, replacing Z by ¢, Z, we have
9(VxA)Y,Z) =g(Vr, Z)9(AX,Y ) — Z,6,(X)g(A¢.Y, 41 Z)

(3.3)
- Eioi(Y)g(A¢zX, oA Z)'

where V; denotes ¢; AU; and the second term of the right side are given by the following
Ti0.(X)g9(Ad:Y,$:1Z) = — g(X, 61 AUL)g(AY, Z) + {9(A4:1 X, U2)
+9(AX,Us)}g(AY, ¢32) — {9(Ad1 X, Us)
- 9(AX,Uz)}g(AY, ¢22),

from this, the third term can be given by exchanging X and Y. Thus substituting this into (3.3),

we have

9(VxA)Y,2) = 69(V1,2)9(AX,Y) + o(X,Y, Z) + (Y, X, 2), (34)

where G denotes the cyclic sum with respect to X,Y and Z in D and a(X,Y, Z) denotes
~{9(A6:1X,Uz) + 9(AX, U3)}9(AY, 632) + {g(A$:1 X, Us) — g(AX, U2)}9(4Y, 62 2).

Then by virtue of the assumption a(X,Y, Z) is skew-symmetric with respect to Y and Z in D.
Now firstly let us take cyclic sum of the both sides of (3.4) one more time. Next using the
skew-symmetry of a(X,Y, Z) to the right and the equation of Codazzi (2.7) to the left of the
obtained equation respectively, we have the above result for : = 1. For a case where 1 = 2 or 3
by using the same method we can also prove the above result. O
PROOF OF THE THEOREM. From the assumption (1.3) we know that the shape
operator A is n-parallel, that is, g((VxA)Y,Z) = 0 for any X,Y and Z in D. From this, by

Lemma 3.1 we have for a case where : = 1
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9(V1,2)9(AX.Y) +¢(V1,Y)g(AZ, X) + g(V1,X)g(AZ,Y) = 0.
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(3.5)

Thus in order to prove g(AD, D) = 0, we suppose that there is a point p at which g(AD, D+),#£0.
Then there exists a neighborhood U = {peM : g(AD,DL1),#0} on which there exist such a

distribution D. Now let us denote AU, by

AU, =W, + T,a,,U,,

(3.6)

where W,,7 = 1,2,3 denote certain vectors in D. Since on this neighborhood U we have
g(AD, D1)#0, at least one of the vectors W,,i = 1,2,3 should not be vanishing. Thus for a

convenience sake let us assume that W) is a non zero vector on this neighborhood ¢. Then it

follows that
Vi = 014U = 1 W + Zj00,0:U,, W€D,

so that, (3.5) gives the following for any X,Y and Z in D
9(1W1, Z)g(AX,Y) + g(6:1W1,Y)9(AZ, X) + g(61 W1, X)g(AZ,Y) = 0.

From this, putting Z = ¢, W), then for any X,Y in D

W11°g(AX,Y) + g(61W1,Y )g(A1 W1, X) + g(6:2 W1, X)g(Ad1 W,1,Y) = 0,

so that, putting Y = ¢;W; gives
2| Wh|*g(AX, 61 W1) + g($1 Wi, X)g(Ad1 Wi, 61 W1) = 0.
From this, putting X = ¢; W}, by virtue of ||W;]|#0 we have
9(Ad1 Wy, 6, W) = 0.
From this together with (3.8) we have
9(AX,6:W1) = 0.
for any X in D. Thus it can be written

A W€Dt
From this together with (3.7) it follows that for any X,Y in D

9(AX,Y) =0,

(3.7)

(3.8)

where we also have used the fact ||W;||#0 on a neighborhood Y. Unless otherwise stated let us

continue our discussion on this open set «. Accordingly, by (3.6) we know for any X €D

AX =3,9(AX,U:)U,
= X,9(X, AU;)U;
= %,9(W,, X)U..

On the other hand, from the condition (1.3) let us put

(3.9)
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(VxA)Y = -T2 ¢(6,X,Y)U, .10
3.10
= M(X, YU + 2 (X,Y)Us + As(X,Y)Us.

for any X,Y in D. Since we have put AU, = Wi + X,a;,U,, from which it follows
(Vx AU, =VxW; + Z,X(ay;)U,
+ Z;00,{-pe(X)U: + pi(X)Uk + ¢,AX }
= A{=p2(X)Us + p3(X)U2 + 61 AX }.
Then for any X, Y in D the function A\;(X,Y") is given by
M(X,Y) =¢g((VxA)U1,Y)
- p3(X)g(AU2,Y) — (A4, AX,Y).

When we put X = W; and Y = ¢;W; in (3.10), we get
A (Wh, $:W7) = —||[W7 1% (3.12)

On the other hand, by the equation of Codazzi (2.7) and using (3.6) and (3.9) we have
(Vu, AW, — (Vw, A)Uy = 61,
=Vy,(AW)) — AVy, W, — Vi, (AU1) + AVw, Uy
=,Ui(g(W;, W1))U; + Zig(W,, W1)Vu, U;
— AVy, W1 — Vi, W) — T, Wi(ay,)U,
— Z,a1;{—px(W1)U; + p.(W1)Uix + ¢;AW: }
+ A{=p2(W1)Us + p3(W1)U> + $1 AW }.
From this, substituting (2.8) and taking the inner product with ¢;W; and using (3.6), we have
9(Vw, Wi, $: W) =|[W1 |2 (W1 ||* = 1) — g(AV v, W1, $:W1) = Ej00,9(¢;AW1, 61 W1)
= p2(W1)g(AUs, $1 Wh) + p3(W1)g(AUz, 61 Wh)
3.13
+ 9(Ad1 AWy, . W1). (3.13)
On the other hand, it can be easily verified that
9(AVy, W1, $:1W1) =¢(Vy, W1, A1 Wh)
=2:g(mv ¢1Wl )g(vvx le Ut)
= — Zig(W,, $:1W1)g(W1, 6, AU1)
=0,
where we have used (3.9) and (2.8) to the second and the third equality respectively. Moreover,
the facts that AW, = Z,g(W,, W,)U;€D+ and ¢; W1 €D imply
2J‘Clljg(¢jAW1 5 ¢1 W]) = 0 (314)

By virtue of these formulae (3.13) can be rewritten as
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9(Vw, Wi, 6:W1) =[WL|P(IWL |17 = 1) = p2(Wh)g(AUs, 6. W1)

(3.15)
+ p3(W1)g(AUz, 91 W) + g(Ad1 AWy, 61 Wr).

Now putting X = W; and ¥ = ¢;W; in (3.11), from which substituting (3.15) and using
(3.14), we have
M(Wr, 6:W1) = [[Wh]2(I[WA]|7 - 1).

From this and (3.12) we know ||W;]| = 0, which makes a contradiction on . Using the same
method for the cases where W, or W3 are non vanishing, we can also prove W, = 0 or W3 = 0
respectively. This makes a contradiction. From this we know that there does not exist such a
neighborhood ¢ on M. Thus we can conclude g(AD,D*) = 0. Then from [1] M is congruent
to an open part of either a tube of radius r, 0 < r < 7 over the canonically (totally geodesic)
embedded quaternionic projective space QP*, ke {0,1,....,m—1} ora tube of radiusr, 0 < r < 5
over the canonically (totally geodesic) embedded complex projective space CP™.

Let us consider the second kind of tubes. The principal curvatures on D+ and D of such a
tube are given by a; = 2cot2r, a; = a3 = —2tan2r, A = cotr and p = —tanr, with multiplicities
1,2,2(m — 1) and 2(m — 1) respectively ([1],[4]). Moreover, it is also known that

Aa, +2 .
ApX =22 T2 x, i=1,2,3
22X —a,

for a principal vector X in D with principal curvature \. When we consider for the cases where

az = az = —2tan2r, we have
(A¢, — $:A)X = —(cotr +tanr)d; X, 1=2,3

for any X in D with principal curvature cotr. Then from (1.4) we have —tanr — cotr = 0. This
implies that cot?’r = —1, which is impossible. Thus the second kind of tubes can not satisfy (1.4).
This completes the proof of the Theorem. 0O
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