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ABSTRACT. Let X be a complete, metrically convex metric space, K a closed convex subset of
X, CB(X) the set of closed and bounded subsets of X. Let F : K — CB(X) satisfying definition
(1) below, with the added condition that Fx C K for each z € K. Then F has a fixed point in
K. This result is an extension to multivalued mappings of a result of Cirié [1).
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Let X be a complete metrically convex metric space. This means that, for each r,y in
X, T # y, there exists a z in X such that d(z,y) = d(z,2) + d(2,y). Let CB(X) denote the
set of closed and bounded subsets of X, H denote the Hausdorff metric on CB(X). Let K be a
nonempty closed, convex subset of X.

Let F : K — CB(X) satisfying: for each z,y in K,

H(Fz,Fy) < h max {-—d(’” Y) | D(z,Fz), D(y,Fy), [D(z.Fy) + D(y,Fa)] } ,

a a+h )

where 0 < h < (=14 v5) /2,a > 1+ (2h?/(1+ h)), and F(z) C K for each z € 9K.

Ciri¢ [1) proved a fixed point theorem for the single-valued version of (1). He also established

a multivalued version. However, he used the é-distance, instead of the Hausdorff distance, so that

the result and proof are identical to the single-valued case. It is the purpose of this paper to prove

a multivalued version. For the single-valued version of (1), one can allow h to satisfy 0 < h < 1.
However, the multivalued proof requires smaller values of h.

THEOREM. Let X be a complete metrically convex metric space, K a nonempty closed,
convex subset of X. Let F : K — CB(X) satisfying (1), and the condition that Fz C K for each
T € K. Then F has a fixed point in K.

PROOF. We shall need the following lemma of Nadler [2].

LEMMA. Let A,B € CB(X),z € A. Then, for each positive number ¢, there existsa y € B
such that
d(z,y) < H(A,B) + a.

We shall assign o = h(1 + h). We shall now construct a sequence {z,} in K in the following
way. Let zo € K and define z{ € Fzo. If z{ € K, set z; = z}. If not, then select a point
z, € 8K such that d(zo,z1) + d(z1,2}) = d(zo,z}). Then z; € K. By the Lemma, choose
z4 € Fz1 such that d(z!,24) < H(Fzo,Fz1) + . If 25 € K, set zo = 5. Otherwise, choose z2 so



10 B. E. RHOADES

that d(z1,22) + d(z2,z5) = d(z1,7}). By induction we obtain sequences {z»}, {z,} such that, for
n=12,...,

(i) zhy1 € Fza,
(i) d(z4,2) < H(FZp,&n-1) + o™,
where
(iil) 54y = Tny1 if 2, € K, O

(iv) d(Zn,Tnt1) + A(Tns1,0541) = d(@Tn,2h 1) if 2, € K and Tn4 € OK.

Now define
P={r,e{z,}:z.=1], i=1,2,--};

Q:={z,€{zn} 2. #x,, 1=1,2,---}.
Note that, if z,, € Q, for some n, then z,_, € P.
For n > 2 we shall consider d(z,,z,+1). There are three possibilities.

Case 1. Zp,ZTn41 € P. Then, from (1),

d(Zn,Tnt1) = d(z),,2041) < H(FTno1,Fz,) +0"

{ d(In;l Tn)

D(zn-1,Fzn) + D(zn,FTn-1) } o
a+h

,d(In—l ,In), d(In,rn+l)1 d(xn_l’z"::.j_—; d(zn,xn) } + Ot"

o"  hd(zn-1,z) + a™(a+ h) }
1-4’ a

< h max v D(zn—1,FTn-1), D(zn,Fzy),

< h max

{ d(zn: &n)

< max {hd(zn-lrzn) + an,

1 a+h) ._ a”
< halno1,2n) + o { 2 SR 6" = Bd(anonan) + 1 @

Case 2. z, € P,z,4+1 € Q. Then, from (1),

d(Zn,Tns1) < d(zn,2p ) < H(Fzno1,Fzo) + o™

< h max {ﬂ:ﬁ‘;_l’ﬁ‘_).’ D(zn-1,Fzn-1), D(zn,Fz,), D(Tn-1,Fzn) + D(Zn,FTn-1) } ‘o

a+h

d(zn—lyl'n) ’ ’ d(zﬂ-hz:&l } ‘ n
< _— - nylpn-1)0 " ., 1
<h ma.x{ ~ 1 A(Tn-1,2), d(ZTn,Tn_1) ot h +o

s mex {"dm-l,zn) +on, &0 hdEn-17n) +aat h) }
1k .
1 a+h n_ a®
< hd(Tn-1,2s) + max {-——1 Y }a = hd(@n-1,2a) + 77, 3)

Case 3. znp € @Q,Tn4+1 € P. Note, that z, € Q implies that z,—1 € P. Using the convexity of X,
d(ZTn,Tn+1) < Max{d(Tn-1,Zn+1), d(T0,Tn+1)} (4)
Suppose that the maximum of the right hand side of (4) is d(z,,Zn+1). Then, from (1),

A(Tn,Tnt1) < Az, Znt1) < H(FZn_1,Fza) + "

S h max { d(zn—hzn) , D(In-],FIn-l),D(zn,FIn), D(zn—lvpzngl I hl')(zn,an—l) } + o
!
< h max {__d(l'n;l ’In) 3 d(zn-11$:|)v d(zn,xn-#-l)’ d(zﬂ—hzﬂ:fz ;— d(zn,zn) } +a®
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Recall that d(zn-1,2n) < d(Zn-1,z,) and that d(z,,z,) < d(Zn-1,25,). Also,
A(Tn-1,Tn+1) + d(znz)) < d(Tn-1,Tn) + A(Tn,Tn+1) + d(Tnzl) = d(Tn-12}) + d(Tn,Tn+1). There-
fore,

7
d(Tn,Trns1) < h max {d(zn_l,xﬁ,), d(Trn,Tn+1), UZn-1,20) + d(En Tnt1) } +a®

a+h
’ n a” hd(zn—l)z:\) + aﬂ(a + h)
Smax{hd(l'n—hl'n)""a ’l_h’ a
a®
S hd(Iﬂ—l’z;) + T_—}—i

Since z,—1 € P and z, € Q, it follows from Case 2, that

han—l a®

d(Zn,Tns1) < hzd(.’tn-z,xn_l) + Ey + - (5)

If the maximum of the right hand side of (4) is d(zn—1,Zn+1), then, from (1),

d(xﬂ’zn-l-l) < d(x'n—lyzn+l) < d(:c,._l,x:,) =+ d(I:nIn‘f'l) (6)

< d(zn-1,2) + H(Fz,—1,Fz,) + a"
< d(zn-1,2,) + h max {ﬂx"—;li"),D(zn-l,Fa:n-l),D(szzn),

[D(@n-1,F20) + D(@a,Fra-1)] /(a+ B) } + 0"

d(xn—ly

< d(zn—lyz;z) +h max{ 2 In) yd(ﬁrn—l yI:;)’ d(luﬂn+l)y

[d(@n-1,5n41) + d(@n,T)] /a+ )} + 0
< max {(1 + h)d(zn-1,z,) + ", loi—h’

[d(@n1,n+1) + d@n,2h)] /(@ + 1) } +a™,

Using (6), if the maximum of the quantity in braces is the third term, then

hd(zn,zL) + (a+ h)a™ < hd(zn—1,z,) + (a + h)a™
a = a )

d(In—l 7xn+1) <

Therefore, by Case 2,

n /7 n
d(z,.,zm)Smax{(1+h)d<xn-l,z;>+a", o hd(zn-17n) + (2 o }

1-h’ a
/ an
<1+ h)d(:L‘n_l,Z") + ].T-h,
n—1 n
< U+ R)d(@n-2rTno) + o + 15 ™

Define § = a~'/? max {d(zo,z1)d(z;,z2)}. We shall now show that
d(Zn,Zns1) < @™?(5+3n), n>1. (8)

The proof is by induction. Note that, for 0 < h < (=1+v/5) /2,(1+ h)/(1 - k) < 3, and
1/(1- k) <3.
If 25 and z3 are such that (3) or (4) is satisfied, then

2
d(x2,73) < hd(z1,22) + l‘i—h < ha'/26 4 3a% < a(6 + 3),

since h < h(1 + h) = a.
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Note that (5) implies (7). If z2 and z3 are such that (7) is satisfied, then

(1+h)a+ o?
1-h 1-h

< a®%6+3a+3a* < a(6 +6).

d(l‘Q,l’g) < h(l + h.)d(l']_,l'z) +

Therefore, in aall cases, d(z2,z3) < a(é + 6). Assume the induction hypothesis. If (3) or (4) are
satisfied, then

d(@n@ns1) S hd(zn-1,2n) + 7 < ha® V7% (6 +3(n - 1) + 30"
< a™?(5 + 3n)
If (7) is satisfied, then

(1+ h)an—l an
-k  T1-h
<2 (5+3(n~2))+ 30" + 30" < o™/2(6 + 3n).

d(Zn,Zn+1) < h(1 + R)d(Tn-2,Zn-1) +

From (8) it follows that, for m > n,
m—1 m—1 m-1
A(zTnam) € D d@nzi1) S8 a2 +3 Y a2,

and {z,} is Cauchy, hence convergent. Call the limit p.
Let {zn, } denote the subsequence of {z,} with the property that each term of the subsequence
belongs to P. Then

H(Fzn,-1,Fp) < h max{d(zn,-1,p)/@, D(ZTn\-1,F ZTn,-1), D(p,FD),
[D(zne—1,Fp) + D(p,FTn,-1)] /(a + h)}
< h max{d(zn,-1,p)/a,d(Tn,-1,Zn.), D(0,FD),
[D(zn,-1,Fp) + d(p.zn,)] /(@ + R)}.

Taking the limit as k — oo yields
H(p,Fp) < hD(p,Fp),

which implies, since H(p,Fp) = D(p,Fp), that p € Fp.
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