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ABSTRACT. Let X be a complete, metrically convex metric space, K a closed convex subset of

X, CB(X) the set of closed and bounded subsets of X. Let F" K CB(X) satisfying definition

(1) below, with the added condition that Fx C_ K for each x OK. Then F has a fixed point in

K. This result is an extension to multivalued mappings of a result of (irid [1].
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Let X be a complete metrically convex metric space. This means that, for each x,y in

X, x y, there exists a z in OX such that d(x,y) d(x,z) + d(z,y). Let CB(X) denote the

set of closed and bounded subsets of X, H denote the Hausdorff metric on CB(X). Let K be a

nonempty closed, convex subset of X.
Let F K CB(X) satisfying: for each x, y in K,

H(Fx,Fy) <_ h max { d(x,Y)a D(x,Fx), D(y,Fy),
[D(x,Fy) + D(y,Fx)] >a+h j

(1)

where 0 <_ h < (-1 + v/2,a >_ 1 + (2h2/(1 + h)), and F(x) C K for each x OK.
(irid [1] proved a fixed point theorem for the single-valued version of (1). He also established

a multivalued version. However, he used the S-distance, instead of the.Hausdorff distance, so that

the result and proof are identical to the single-valued case. It is the purpose of this paper to prove

a multivalued version. For the single-valued version of (1), one can allow h to satisfy 0 _< h < 1.

However, the multivalued proof requires smaller values of h.

THEOREM. Let X be a complete metrically convex metric space, K a nonempty closed,
convex subset of X. Let F" K CB(X) satisfying (1), and the condition that Fx C_ K for each

x OK. Then F has a fixed point in K.

PROOF. We shall need the following lemma of Nadler [2].

LEMMA. Let A,B CB(X),x A. Then, for each positive number a, there exists a y B
such that

d(z,y) <_ H(A,B) + .
We shall assign c h(1 + h). We shall now construct a sequence {x,} in K in the following

way. Let x0 K and definex’ Fxo. Ifx K, set xl x. If not, then select apoint

xl OK such that d(xo,xl) + d(xl,x) d(xo,x). Then x K. By the Lemma, choose

x Fxl such that d(x,x_) <_ H(Fxo,Fxl) + a. If x K, set x2 x_ Otherwise, choose x2 so
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that d(xl,x2) + d(x2,x) d(xl,x). By induction we obtain sequences {x}, {x} such that, for

n=l,2,...,

(i) :r’n+ - Fxn,

(ii) d(x+,x) <_ H(Fx,.,,x,.,_) +

where

(iii) Xn+ Xn+ if Xn+ E K, or

(iv) d(x,.,,Xn+l) + d(x,+l, n+i) d(x,,x+l) if x+ K and x,+l E OK.
Now define

P:= {z, e {z}-z,=z,, = ,2,...};
1,2, }.q’= {, {} ", #,,

Note that, if x Q, for some n, then x_ P.
For n 2 we shall coider d(x,x+). There aret poibilities.

Case 1. xn, Xn+l P. Then, from (1),

d(z,,x,.,+l) d(x,x+l) < H(Fxn-I,Fxn)

{ d(xn-l,x,)
D(Xn_I,Fx,_),D(xn,Fx,.,), D(Xn-I,Fx=) + D(x,.,,Fxn-1) }< h max +

a a+h

{ d(x,.,-1,x,.,) d(xn-l,Xn+l + d(xn,Xn) } an< h max d(xn_,x,.,) d(x,.,,x,.,+l) +
a a+h

{ a" hd(xn_l,x,.,)+a’(a+h)}< max hd(xn_ 1,x,.,) + a"
’l-h’ a

1 +._h " hd(z-l,Xn) + 1 h
<_ hd(Zn-l,Zn) + max

1-h’ a
(2)

Case 2. zn P, Zn+l (. Then, from (1),

d(xn,Xn+ 1) < d(z,., x’n+l) -- H(Fzn-I,Fzr,)+ o{ d(x,.,-1,Xn)
D(xn_ ,Fx,.,-1),D(xn,Fxn), D(xn-l’Fxn) + D(xn’Fxn-1) } + a< h max z" a+h

{ d(x,.,-1,x,.,) d(xn-l }< h max d(xn_,x’), d(zn,x,.,_l)’ + a
a a+h

{ a" hd(x,.,_ ,x,.,)+an(a+h)}< max hd(Xn-l,Xn) -[- a
’l-h’ a

1 a+h
a’--hd(x,-l,xn)+l_h<_ hd(xn-l,x,.,) + max

h’ a
(3)

Case 3. xn . Q, xn+l - P. Note, that x,, Q implies that x,-i P. Using the convexity of X,

d(x,.,,x,+l) < max {d(x,.,-,Xn+l),d(x,xn+l)} (4)

Suppose that the maximum of the right hand side of (4) is d(z,Zn+l). Then, from (1),

d(xn,xn+l) < d(x’n,x,+l) < H(Fxn-l,Fxn) + o

{d(x,.,_,x,) }< h max D(xn-I,Fxn-1) D(xn,Fxn),
D(x,_I,Fx,) + D(xn,Fxn-1) + an

a a+h

{ d(x,-,-1,x,.,) d(xn-l,xn+l) + d(x,.,,x) }< h max d(Xn-l,X) d(x,.,,x,.,+l) +a a+h
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Recall that d(zn-l,Xn)

_
d(x,.,_l,x) and that d(z,-,,x) <_ d(x,-l,z,.,). Also,

d(x,.,_,x,+) + d(x,x) <_ d(x,.,-1,x,-,) + d(x,,x,+) + (x,.,x,.,) d(x,-lX) + d(z,,x,.,+) Thcre-

fore,

d(xn,xn+l) _< h max d(x,_,x),d(x,,x,.,+),

{< max hd(x,_,:c) + a
’l-h’

<_ hd(z,_,z) + l-h

d(x,.,_,x) + d(x,,x,+) + a,
a+h

hd(x,-,-1,X)a+ a’(a + h) }

Since xn-1 E P and xn E Q, it follows from Case 2, that

d(x,.,,x,.,+) <_ h2d(x,_:,x,.,_) + hn- oln

1 ’"h / l-h" (5)

If the maximum of the right hand side of (4) is d(x,_,x,+), then, from (1),

d(x,.,,x,+) <_ d(xn_.,x,.,+) <_ d(x,_,x) + d(x,x,+)
<_ d(x,_,x) + H(Fx,.,_,Fx,.,) +

<_ d(x,.,-,x) + h max ,D(x,.,_,Fx,.,_),D(x,,Fx,,,),
a

[D(x,.,_ ,Fx,) + D(x,.,,Fx,.,_l)] /(a + h) } + a

[ d(xn-l,Zn)<_ d(x,-,x,) + h max ,d(x,.,_,x,.,),d(x,.,,x,.,+),
a

[d(_,+) + d(,z’)]/( + h)} +
{_< max (1 + h)d(z,_,x,) +

1 h’

+ d(z,,z’)l/( + h)}[d(Zn--l,Zn+l)

Using (6), if the maximum of the quantity in braces is the third term, then

()

d(x,.,-,x,.,+) <_ hd(x,.,,x) + (a + h)a" < hd(x,.,_.,x) + (a + h)a"
a a

Therefore, by Case 2,

d(x,.,,x,+) < max (1 + h)d(x,.,-1,x) + ’l-h’ a

_< (1 + h)d(x,.,_,z’n) + l- h
hon-1 o_< h(1 + h)d(x,.,__,x,.,_l) +
1 h + l- h" (7)

Define 5 a-/2 max {d(xo,xl)d(z,x2) }. We shall now show that

d(xn,xn+l) (_ an/2(5 q- 3n), n > 1. (s)

The proof is by induction. Note that, for 0 <_ h < (-1 + f)/2, (1 + h)/(1 h) < 3, and

1/(1- h) < 3.

If x2 and x3 are such that (3) or (4) is satisfied, then

2
d(x2,x3) <_ hd(xl,x2) +

h <- ha/25 + 3a2 < a(5 + 3),

since h < h(1 + h) a.
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Note that (5) implies (7). If x2 and x3 are such that (7) is satisfied, then

(1 + h)a a
d(x2,x3)

_
h(1 + h)d(xl,x2) + +1-h 1-h_
a3/25 + 3a + 3a2

_
a(5 + 6).

Therefore, in aall cases, d(x2,x3) <_ a(5 + 6). Assume the induction hypothesis. If (3) or (4) are

satisfied, then

d(x,,x,+l)

_
hd(x,-l,x,) +

<_ a/2(5 + 3n)

< ha(’-’)/2 (5 + 3(n- 1)) + 3a
l-h-

If (7) is satisfied, then

1 + h)a an
d(x,,,x,+l) <_ h(1 + h)d(x,-2,X,-l) + 1-h 1-h

<_ a/ (5 + 3(n 2)) + 3a"-1 + 3a" _< a’/2(5 + 3n).

From (8) it follows that, for m > n,

and {xn} is Cauchy, hence convergent. Call the limit p.

Let {xn } denote the subsequence of {x} with the property that each term of the subsequence
belongs to P. Then

H(Fx,_,Fp)

_
h max(d(x,_l,p)/a,D(x,_l,Fx,_l),D(p,Fp),

[D(x,_,Fp) + D(p,Fx,k_)] /(a /

<_ h max{d(x,,_l,p)/a, d(x,_,z,), D(p,Fp),

[D(x_,Fp) / d(p,x,,)] /(a + h)}.

Taking the limit as k c yields

H(p,Fp) <_ hD(p,Fp),

which implies, since H(p,Fp) D(p,Fp), that p Fp.
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