

## A FIXED POINT THEOREM FOR NON-SELF SET-VALUED MAPPINGS

B.E. RHOADES

Department of Mathematics  
Indiana University  
Bloomington, Indiana 47405, U.S.A.

(Received September 29, 1994)

**ABSTRACT.** Let  $X$  be a complete, metrically convex metric space,  $K$  a closed convex subset of  $X$ ,  $CB(X)$  the set of closed and bounded subsets of  $X$ . Let  $F : K \rightarrow CB(X)$  satisfying definition (1) below, with the added condition that  $Fx \subseteq K$  for each  $x \in \partial K$ . Then  $F$  has a fixed point in  $K$ . This result is an extension to multivalued mappings of a result of Čirić [1].

**KEY WORDS AND PHRASES.** Fixed point, multivalued map, non-self map

**1991 AMS SUBJECT CLASSIFICATION CODE.** 47H10

Let  $X$  be a complete metrically convex metric space. This means that, for each  $x, y$  in  $X$ ,  $x \neq y$ , there exists a  $z$  in  $\partial X$  such that  $d(x, y) = d(x, z) + d(z, y)$ . Let  $CB(X)$  denote the set of closed and bounded subsets of  $X$ ,  $H$  denote the Hausdorff metric on  $CB(X)$ . Let  $K$  be a nonempty closed, convex subset of  $X$ .

Let  $F : K \rightarrow CB(X)$  satisfying: for each  $x, y$  in  $K$ ,

$$H(Fx, Fy) \leq h \max \left\{ \frac{d(x, y)}{a}, D(x, Fx), D(y, Fy), \frac{[D(x, Fy) + D(y, Fx)]}{a + h} \right\}, \quad (1)$$

where  $0 \leq h < (-1 + \sqrt{5})/2$ ,  $a \geq 1 + (2h^2/(1 + h))$ , and  $F(x) \subseteq K$  for each  $x \in \partial K$ .

Čirić [1] proved a fixed point theorem for the single-valued version of (1). He also established a multivalued version. However, he used the  $\delta$ -distance, instead of the Hausdorff distance, so that the result and proof are identical to the single-valued case. It is the purpose of this paper to prove a multivalued version. For the single-valued version of (1), one can allow  $h$  to satisfy  $0 \leq h < 1$ . However, the multivalued proof requires smaller values of  $h$ .

**THEOREM.** Let  $X$  be a complete metrically convex metric space,  $K$  a nonempty closed, convex subset of  $X$ . Let  $F : K \rightarrow CB(X)$  satisfying (1), and the condition that  $Fx \subseteq K$  for each  $x \in \partial K$ . Then  $F$  has a fixed point in  $K$ .

**PROOF.** We shall need the following lemma of Nadler [2].

**LEMMA.** Let  $A, B \in CB(X)$ ,  $x \in A$ . Then, for each positive number  $\alpha$ , there exists a  $y \in B$  such that

$$d(x, y) \leq H(A, B) + \alpha.$$

We shall assign  $\alpha = h(1 + h)$ . We shall now construct a sequence  $\{x_n\}$  in  $K$  in the following way. Let  $x_0 \in K$  and define  $x'_1 \in Fx_0$ . If  $x'_1 \in K$ , set  $x_1 = x'_1$ . If not, then select a point  $x_1 \in \partial K$  such that  $d(x_0, x_1) + d(x_1, x'_1) = d(x_0, x'_1)$ . Then  $x_1 \in K$ . By the Lemma, choose  $x'_2 \in Fx_1$  such that  $d(x'_1, x'_2) \leq H(Fx_0, Fx_1) + \alpha$ . If  $x'_2 \in K$ , set  $x_2 = x'_2$ . Otherwise, choose  $x_2$  so

that  $d(x_1, x_2) + d(x_2, x'_2) = d(x_1, x'_2)$ . By induction we obtain sequences  $\{x_n\}, \{x'_n\}$  such that, for  $n = 1, 2, \dots$ ,

- (i)  $x'_{n+1} \in Fx_n$ ,
- (ii)  $d(x'_{n+1}, x'_n) \leq H(Fx_n, x_{n-1}) + \alpha^n$ ,

where

- (iii)  $x'_{n+1} = x_{n+1}$  if  $x'_{n+1} \in K$ , or
- (iv)  $d(x_n, x_{n+1}) + d(x_{n+1}, x'_n) = d(x_n, x'_n)$  if  $x'_{n+1} \notin K$  and  $x_{n+1} \in \partial K$ .

Now define

$$P := \{x_i \in \{x_n\} : x_i = x'_i, i = 1, 2, \dots\};$$

$$Q := \{x_i \in \{x_n\} : x_i \neq x'_i, i = 1, 2, \dots\}.$$

Note that, if  $x_n \in Q$ , for some  $n$ , then  $x_{n-1} \in P$ .

For  $n \geq 2$  we shall consider  $d(x_n, x_{n+1})$ . There are three possibilities.

Case 1.  $x_n, x_{n+1} \in P$ . Then, from (1),

$$\begin{aligned} d(x_n, x_{n+1}) &= d(x'_n, x'_{n+1}) \leq H(Fx_{n-1}, Fx_n) + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, D(x_{n-1}, Fx_{n-1}), D(x_n, Fx_n), \frac{D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})}{a+h} \right\} + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1}) + d(x_n, x_n)}{a+h} \right\} + \alpha^n \\ &\leq \max \left\{ hd(x_{n-1}, x_n) + \alpha^n, \frac{\alpha^n}{1-h}, \frac{hd(x_{n-1}, x_n) + \alpha^n(a+h)}{a} \right\} \\ &\leq hd(x_{n-1}, x_n) + \max \left\{ \frac{1}{1-h}, \frac{a+h}{a} \right\} \alpha^n = hd(x_{n-1}, x_n) + \frac{\alpha^n}{1-h}. \end{aligned} \quad (2)$$

Case 2.  $x_n \in P, x_{n+1} \in Q$ . Then, from (1),

$$\begin{aligned} d(x_n, x_{n+1}) &\leq d(x_n, x'_{n+1}) \leq H(Fx_{n-1}, Fx_n) + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, D(x_{n-1}, Fx_{n-1}), D(x_n, Fx_n), \frac{D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})}{a+h} \right\} + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, d(x_{n-1}, x'_n), d(x_n, x'_{n+1}), \frac{d(x_{n-1}, x'_{n+1})}{a+h} \right\} + \alpha^n \\ &\leq \max \left\{ hd(x_{n-1}, x_n) + \alpha^n, \frac{\alpha^n}{1-h}, \frac{hd(x_{n-1}, x_n) + \alpha^n(a+h)}{a} \right\} \\ &\leq hd(x_{n-1}, x_n) + \max \left\{ \frac{1}{1-h}, \frac{a+h}{a} \right\} \alpha^n = hd(x_{n-1}, x_n) + \frac{\alpha^n}{1-h}. \end{aligned} \quad (3)$$

Case 3.  $x_n \in Q, x_{n+1} \in P$ . Note, that  $x_n \in Q$  implies that  $x_{n-1} \in P$ . Using the convexity of  $X$ ,

$$d(x_n, x_{n+1}) \leq \max \{d(x_{n-1}, x_{n+1}), d(x'_n, x_{n+1})\} \quad (4)$$

Suppose that the maximum of the right hand side of (4) is  $d(x'_n, x_{n+1})$ . Then, from (1),

$$\begin{aligned} d(x_n, x_{n+1}) &\leq d(x'_n, x_{n+1}) \leq H(Fx_{n-1}, Fx_n) + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, D(x_{n-1}, Fx_{n-1}), D(x_n, Fx_n), \frac{D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})}{a+h} \right\} + \alpha^n \\ &\leq h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, d(x_{n-1}, x'_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1}) + d(x_n, x'_n)}{a+h} \right\} + \alpha^n \end{aligned}$$

Recall that  $d(x_{n-1}, x_n) \leq d(x_{n-1}, x'_n)$  and that  $d(x_n, x'_n) \leq d(x_{n-1}, x'_n)$ . Also,  $d(x_{n-1}, x_{n+1}) + d(x_n, x'_n) \leq d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + d(x_n, x'_n) = d(x_{n-1}, x'_n) + d(x_n, x_{n+1})$ . Therefore,

$$\begin{aligned} d(x_n, x_{n+1}) &\leq h \max \left\{ d(x_{n-1}, x'_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x'_n) + d(x_n, x_{n+1})}{a+h} \right\} + \alpha^n \\ &\leq \max \left\{ h d(x_{n-1}, x'_n) + \alpha^n, \frac{\alpha^n}{1-h}, \frac{h d(x_{n-1}, x'_n) + \alpha^n(a+h)}{a} \right\} \\ &\leq h d(x_{n-1}, x'_n) + \frac{\alpha^n}{1-h}. \end{aligned}$$

Since  $x_{n-1} \in P$  and  $x_n \in Q$ , it follows from Case 2, that

$$d(x_n, x_{n+1}) \leq h^2 d(x_{n-2}, x_{n-1}) + \frac{h\alpha^{n-1}}{1-h} + \frac{\alpha^n}{1-h}. \quad (5)$$

If the maximum of the right hand side of (4) is  $d(x_{n-1}, x_{n+1})$ , then, from (1),

$$\begin{aligned} d(x_n, x_{n+1}) &\leq d(x_{n-1}, x_{n+1}) \leq d(x_{n-1}, x'_n) + d(x'_n, x_{n+1}) \quad (6) \\ &\leq d(x_{n-1}, x'_n) + H(Fx_{n-1}, Fx_n) + \alpha^n \\ &\leq d(x_{n-1}, x'_n) + h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, D(x_{n-1}, Fx_{n-1}), D(x_n, Fx_n), \right. \\ &\quad \left. [D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})]/(a+h) \right\} + \alpha^n \\ &\leq d(x_{n-1}, x'_n) + h \max \left\{ \frac{d(x_{n-1}, x_n)}{a}, d(x_{n-1}, x'_n), d(x_n, x_{n+1}), \right. \\ &\quad \left. [d(x_{n-1}, x_{n+1}) + d(x_n, x'_n)]/(a+h) \right\} + \alpha^n \\ &\leq \max \left\{ (1+h)d(x_{n-1}, x'_n) + \alpha^n, \frac{\alpha^n}{1-h}, \right. \\ &\quad \left. [d(x_{n-1}, x_{n+1}) + d(x_n, x'_n)]/(a+h) \right\} + \alpha^n. \end{aligned}$$

Using (6), if the maximum of the quantity in braces is the third term, then

$$d(x_{n-1}, x_{n+1}) \leq \frac{h d(x_{n-1}, x'_n) + (a+h)\alpha^n}{a} \leq \frac{h d(x_{n-1}, x'_n) + (a+h)\alpha^n}{a}.$$

Therefore, by Case 2,

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \max \left\{ (1+h)d(x_{n-1}, x'_n) + \alpha^n, \frac{\alpha^n}{1-h}, \frac{h d(x_{n-1}, x'_n) + (a+h)\alpha^n}{a} \right\} \\ &\leq (1+h)d(x_{n-1}, x'_n) + \frac{\alpha^n}{1-h} \\ &\leq h(1+h)d(x_{n-2}, x_{n-1}) + \frac{h\alpha^{n-1}}{1-h} + \frac{\alpha^n}{1-h}. \quad (7) \end{aligned}$$

Define  $\delta = \alpha^{-1/2} \max \{d(x_0, x_1) d(x_1, x_2)\}$ . We shall now show that

$$d(x_n, x_{n+1}) \leq \alpha^{n/2}(\delta + 3n), \quad n > 1. \quad (8)$$

The proof is by induction. Note that, for  $0 \leq h < (-1 + \sqrt{5})/2$ ,  $(1+h)/(1-h) < 3$ , and  $1/(1-h) < 3$ .

If  $x_2$  and  $x_3$  are such that (3) or (4) is satisfied, then

$$d(x_2, x_3) \leq h d(x_1, x_2) + \frac{\alpha^2}{1-h} \leq h\alpha^{1/2}\delta + 3\alpha^2 < \alpha(\delta + 3),$$

since  $h < h(1+h) = \alpha$ .

Note that (5) implies (7). If  $x_2$  and  $x_3$  are such that (7) is satisfied, then

$$\begin{aligned} d(x_2, x_3) &\leq h(1+h)d(x_1, x_2) + \frac{(1+h)\alpha}{1-h} + \frac{\alpha^2}{1-h} \\ &\leq \alpha^{3/2}\delta + 3\alpha + 3\alpha^2 \leq \alpha(\delta + 6). \end{aligned}$$

Therefore, in all cases,  $d(x_2, x_3) \leq \alpha(\delta + 6)$ . Assume the induction hypothesis. If (3) or (4) are satisfied, then

$$\begin{aligned} d(x_n, x_{n+1}) &\leq h d(x_{n-1}, x_n) + \frac{\alpha^n}{1-h} \leq h\alpha^{(n-1)/2}(\delta + 3(n-1)) + 3\alpha^n \\ &\leq \alpha^{n/2}(\delta + 3n) \end{aligned}$$

If (7) is satisfied, then

$$\begin{aligned} d(x_n, x_{n+1}) &\leq h(1+h)d(x_{n-2}, x_{n-1}) + \frac{(1+h)\alpha^{n-1}}{1-h} + \frac{\alpha^n}{1-h} \\ &\leq \alpha^{n/2}(\delta + 3(n-2)) + 3\alpha^{n-1} + 3\alpha^n \leq \alpha^{n/2}(\delta + 3n). \end{aligned}$$

From (8) it follows that, for  $m > n$ ,

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \leq \delta \sum_{i=n}^{m-1} \alpha^{i/2} + 3 \sum_{i=n}^{m-1} \alpha^{i/2} i,$$

and  $\{x_n\}$  is Cauchy, hence convergent. Call the limit  $p$ .

Let  $\{x_{n_k}\}$  denote the subsequence of  $\{x_n\}$  with the property that each term of the subsequence belongs to  $P$ . Then

$$\begin{aligned} H(Fx_{n_k-1}, Fp) &\leq h \max\{d(x_{n_k-1}, p)/a, D(x_{n_k-1}, Fx_{n_k-1}), D(p, Fp), \\ &\quad [D(x_{n_k-1}, Fp) + D(p, Fx_{n_k-1})]/(a+h)\} \\ &\leq h \max\{d(x_{n_k-1}, p)/a, d(x_{n_k-1}, x_{n_k}), D(p, Fp), \\ &\quad [D(x_{n_k-1}, Fp) + d(p, x_{n_k})]/(a+h)\}. \end{aligned}$$

Taking the limit as  $k \rightarrow \infty$  yields

$$H(p, Fp) \leq hD(p, Fp),$$

which implies, since  $H(p, Fp) = D(p, Fp)$ , that  $p \in Fp$ .

## REFERENCES

1. ĆIRIĆ, Lj. B., A remark on Rhoades fixed point theorem for non-self mappings, *Internat. J. Math. & Math. Sci.* 16(1993), 397–400.
2. NADLER, S.B.JR., Multi-valued contraction mappings, *Pacific J. Math.* 30(1969), 475–488.

## Special Issue on Boundary Value Problems on Time Scales

### Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

|                        |                 |
|------------------------|-----------------|
| Manuscript Due         | April 1, 2009   |
| First Round of Reviews | July 1, 2009    |
| Publication Date       | October 1, 2009 |

### Lead Guest Editor

**Alberto Cabada**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [alberto.cabada@usc.es](mailto:alberto.cabada@usc.es)

### Guest Editor

**Victoria Otero-Espinar**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [mvictoria.oter@usc.es](mailto:mvictoria.oter@usc.es)