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The Pommiez operator (Af)(z) = (f(z) — f(0))/z is considered in the space #(G) of the
holomorphic functions in an arbitrary finite Runge domain G. A new proof of a repre-
sentation formula of Linchuk of the commutant of A in #(G) is given. The main result
is a representation formula of the commutant of the Pommiez operator in an arbitrary
invariant hyperplane of #(G). It uses an explicit convolution product for an arbitrary
right inverse operator of A or of a perturbation A — AI of it. A relation between these two
types of commutants is found.

1. The Pommiez operator and its shift operators

Let G be a finite Runge domain in the complex plane C, that is, a finite domain with
connected complement with the characteristic property that every holomorphic function
can be approximated by polynomials. As usual, by #(G), the space of the holomorphic
functions on G is denoted. Additionally, assume that 0 € G.

Definition 1.1. If f € #(G), then the Pommiez operator A is defined by

GRS (U

(Af)(2) ={ z (1.1)
£(0) ifz=0.

Remark 1.2. The notation of Pommiez in [8] for A is f(1), and f(,,) for the nth power A"
assuming that the operator A acts on the holomorphic functions in a disc Dr = {z: |z]| <
R}. The operator A is known also as the backward shift operator (see Douglas et al. [5]).

Definition 1.3. Let { be an arbitrary point of G. Then the operator

SFE-UQ o,

(ch)(Z):{ z— ¢ (1.2)
FO+©Q) ifz={,

determined by (, is called a shift operator for the Pommiez operator in J(G).
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Remark 1.4. Such an operator appears in Linchuk’s representation formula of the com-
mutant of A in #(G) (see [7, Theorem 1]). The name of the functional shift operator for
Tt is given by Binderman [1, 2].

THEOREM 1.5. Ty is a continuous linear operator in #(G) with the compact-open topology,
that is, with respect to the uniform convergence on the compact subsets of G.

Proof. According to Kothe [6, pages 375-378], it is enough to consider a sequence
{G,} >, of connected domains such that G, C G, C G,1, for all n, and which exhausts G,
thatis, G=J;,_; Gy.. Then the sequence of norms p,(f) = SUp,cg, | f(2)|=max,cg, | f(2)]
generates the topology. Since the continuity of an operator is equivalent to its bounded-
ness, here the latter will be established on G, for all sufficiently large n.

Let { € G. Then for some ng, one has { € G, for all n > ngy. Using the definition of T¢,
the following estimate holds:

7@ < e+l | LEZLE) (1.3)

If z is close to {, then the right-hand side of (1.3) could be estimated approximately as
[F(O1I+ I f ()], but for holomorphic functions, the derivative f” can be estimated by
the function f itself, that s, | f'({)| < B,max,cg_|f(2)|. In general, everywhere in G,

| Te f(2) ] SAn{;éegclf(ﬂ)l- (1.4)

Then (1.4) can be written as the desired boundedness estimate for the operator T¢,

pn(T(f) SAanél( |f(Z)| :Anpn(f)> Vf € #(G). (1.5)
2€G, O

Lemma 1.6. If G is an arbitrary domain in the complex plane C containing the origin, then
Ty commutes with the Pommiez operator A, that is,

[(T:A) f1(2) = [(ATy) f1(2) (1.6)

forevery f € #(G).
The proof of this lemma is a matter of an elementary check.

Lemma 1.7. Let p(z) be a polynomial of degree n. Then,
(Tep)( Z )(2) - ¢k, (1.7)

Proof. Tt is sufficient to check (1.7) for an arbitrary power z¥. Obviously,

A zZks forO0<s<k, (1.8)
Z° = .
0 for s > k.
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If z # (, then
Lk .k
T((Zk) _ z Zz_g ( :Zk+Zk71(+' i _+Z(k71+<‘k
_ (Aozk)(0+ (Alzk)fl +eee (Ak_lzk)(k_l + (Akzk)(k (1.9)
k
=2 (a°2)¢
s=0
Finally, in order to obtain (1.7) for arbitrary polynomial p, it remains to use the linearity
of T¢.
The check of (1.7) for z = { is also easy. O

TaeoreM 1.8 (see Linchuk [7, Theorem 1]). A continuous linear operator M : #(G) —
H(G) commutes with the Pommiez operator A in #(G) if and only if it has a representation
of the form

(Mf)(2) = Dc{(Te f)(2)} (1.10)
with a continuous linear functional ® : #(G) — C.

Proof. The sufficiency can be proved by a direct check. Only the necessity needs to be
proved. Lemma 1.7 implies that if MA = AM, then MT; = T¢M for all { € G. Indeed, if
p is a polynomial of degree n, then by (1.7),

(MT;p)(z) = ZM (A*p)(z) = ZAk(Mp)(z) (T;Mp)(2). (1.11)

Then the identity (MT; f)(z) = (T¢M f)(z) for any f € #(G) follows by an approxima-
tion argument. Using it and the obvious property

(Tef)(2) = (T-£)(0), (1.12)

one has

(MT¢f)(2) = (TMf) Q). (1.13)
Define the continuous linear functional @ : %(G) — C by
Q{f}=(Mf)O). (1.14)
Substituting z = 0 in (1.13), one has
O{Tef} = (ToMf)(Q). (1.15)

But Ty, = I, the identity operator. Hence,

(Mf)(©) = {T¢f} (1.16)
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It remains to write the variable z instead of {, denoting the “dumb” variable in the func-
tional @ by (, and to use (1.12). Thus,

(Mf)(2) = (T £) ()} = OA(T: f)(2)}. (1.17)
0

2. Characterization of linear operators M : #(G) — % (G) with a fixed invariant
hyperplane ®{ f} = 0 which commute with the Pommiez operator A on it

Let @ : #(G) — C be a fixed nonzero linear functional, and consider the hyperplane
Ho =1{f € H(G): D{f} =0} (2.1)

Our aim is to characterize the linear operators M : #(G) — #(G) such that ®{f} =0
implies that ®{M f} = 0 and MA = AM in the hyperplane ¥q. In other words, we are
looking for the continuous linear operators M : #(G) — #(G) such that M (o) C Ho
and which commute with the Pommiez operator A in #.

A similar problem for the differentiation operators is considered in [3].

In order to find the operators commuting with A in #(G), the one-parameter family
{T¢}ceg of operators commuting with A was used. Now it is possible to use another one-
parameter family of linear operators.

Definition 2.1. Let A € C be such that the elementary boundary value problem

(Ay)(2) —Ay(2) = f(2),

Oiy} =0 (2.2)

has a solution y = R, f. The operator R) : #(G) — F(G) is called the resolvent operator of
the Pommiez operator with the boundary value condition ®{f} = 0.
From the first equation of (2.2) it is easy to obtain the solution

¥ = e fa+ 2O (2.3

with unknown constant y(0). Formally, its value can be determined from the boundary
condition ®{y} = 0. This is always possible, when 1/(1 — Az) € #(G). Then, for the next
considerations, it is convenient to denote

EQ\) = @z{ﬁ}. (2.4)

The function E(A) is defined and holomorphic at least in a neighborhood of the origin
A =0. Let A € C be such that E(A) # 0 and 1/(1 — Az) € #(G). Such a choice of A is al-
ways possible since the zeros of E(A) form a countable set and G is a finite domain. It is
sufficient to choose A so close to the origin that 1/A ¢ G.

Now the condition ®{y} = 0 allows to find y(0) and to obtain

__*% 1 ¢f(Q
Rf)@ =132 /@~ 5w f/lz)(D({lfM}' (2:3)
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Substituting (A —AI) f for f in (2.5) gives the following lemma.
LemMa 2.2. If f € #(G), then

@{f}

[RA=ADf1() = f(2) ~ oy oy

From (2.6), it follows that

[(AR) f1(2) = [(RiA) f1(2) iff @{f} =0,

1243

(2.6)

(2.7)

that is, the resolvent operator Ry commutes with the Pommiez operator if and only if f
is in the hyperplane #4. Hence, the resolvent operators form a one-parameter family of

the class considered above.
An important role in the sequel will play the functions of the form

o) =19 A€C

and also their modifications

:go,x(z): 1 _ 1
EA) EMN(1-Az) O A/(1-A)}1-Az)

P(2)

THEOREM 2.3. The operation

[2f(2) = {f())][zg(2) — {g(O)]

(f *8)(2) = O {(z = T f(2) Tr8(2)} =®({ ¢

is a bilinear, commutative, and associative operation in H(G) such that
O{fxg}=0 forarbitrary f,g € #(G),

that is, f * g is in the hyperplane defined by the functional ®, and

(Ruf)(2) = (31 % ) () = ﬁ (1% f)(2).

(2.8)

(2.9)

|

(2.10)

(2.11)

(2.12)

Proof. The bilinearity and the commutativity of the operation * defined by (2.10) are

obvious and only the associativity will be proved.

Since G is a finite domain, then for sufficiently small A and g, the functions ¢)(z) =
1/(1 - Az) and ¢,(z) = 1/(1 — uz) are in #(G). It is a matter of a simple algebra to show

that if A # p, then

E ~E(L
(2% @u) (2) = (”)W(ZA)_#( 9u2),

(2.13)
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From this representation, it follows immediately that

_ E(WEW) E(v)E(M) EM)E(p)
[Wu*%ﬂ*¢d&%—u_#XA_w¢M@ (y—VXy—M¢A@ (V‘*“”””ig?b

Due to the circular symmetry with respect to A, y, and v, one has the same expression for
[pr * (@u * ¢,)](2), and hence

(@2 @u) * @y = Q1 % (@ * ¢y). (2.15)
Since

9 _ 99 9 g5 2P0
a/\ ((P)L * go.”) - aA * (Pﬂ’ a‘u ((P/l * ¢H) =¢r * a[/t > (216)

then partial differentiations with respect to A, y, and v of (2.15), I, m, and n times, respec-
tively, yield

dor  9"pu\ ¢y _ g1 (9"Pu "9y
<W* oy ) o Tt oum o ) 2.17)

which is in fact the identity

[ Izt mlz™ ] nlz" Izt [ mlz™M nlz" ]
( ( ( '

1-— /12)“’1 * (1 _‘uz)m+1 * 1— 1,Z)n+1 = (1 _ )LZ)Z+1 * 1-— #Z)m-%—l * (1 _ VZ)”+1
(2.18)
Letting A, g, and » tend separately to 0, and dividing by I!m!n!, it follows that
(2% 2™) % 2" = 2 % (2" x 2"). (2.19)

The bilinearity of the convolution now ensures that the associativity is valid for arbitrary
polynomials p, g, and r as follows:

[p(2) % q(2)] * r(z) = p(2) * [q(2) *x r(2)]. (2.20)

The final step is to use Runge’s theorem to approximate arbitrary holomorphic functions
f> g, and h from #(G) by polynomials in order to complete the proof of the associativity,

(f*xg) kxh=fx*x(gxh). (2.21)

The proof of the second assertion (2.11) of the theorem follows from the fact that the
function

[zf(2) = Cf()]lzg(z) — {g(O)]

h(z.0) = p

(2.22)
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is antisymmetric with respect to z and (, that is, h(z,{) = —h({,z), and hence

O{f xg} =D A(f * @)D} = OO {h(z,))} = DO — h({,2)} = — 0. O {h({,2)}
=~ 00, {h({,2)} = . D¢ {h(z,()} = —D{f *g}.
(2.23)

Here it is used that the functional ® has the Fubini property, that is, the possibility of
interchanging of ®, and ®;. At the end, z and ( are also interchanged, since they are
“dumb” variables in the expression. Thus (2.23) gives 20{ f * g} = 0, and hence (2.11)
holds.

The last assertion in the theorem (2.12) can be proved directly. It is enough to use
(2.10) when expressing the right-hand side of (2.12) and to compare with (2.5).

Further, (2.12) can be expressed in other words saying that the resolvent operator Ry
is in fact the convolution operator @) * and one may write Ry = @ *. O

THEOREM 2.4. The commutant of A with the invariant hyperplane o coincides with the
commutant of the resolvent operators Ry in #(G).

Proof. Let M : #(G) — #(G) be a linear operator commuting with R) for some A € C,
that is, MR) = RyM. First, it will be proved that #¢ is an invariant hyperplane for M.
Indeed, let f and g be functions from #(G) such that Ryg = f. By (2.2), this means that

Af-Af =g (2.24)
Next MRyg = M f, or
R\Mg = MRyg = M f (2.25)
and hence, applying A — AI and Definition 2.1,
Mg = (A— M. (2.26)
Using (2.24), this can be written as
MA-A)f=(A-A)MS, (2.27)
which yields
(MA)f = (AM) f. (2.28)

Hence, M commutes with A in #g. It remains to show that ®(M f) = 0. This follows

using the representation (2.12) of the resolvent as a convolutional operator, and (2.11).
Conversely, let M : #(G) — #(G) have the hyperplane #¢ as an invariant subspace

and let MA = AM in # 4. One has to prove that MR, = RyM for A € C with E(A) # 0.
Let f € #(G) be arbitrary and denote h = (MR) — RyM) f. Then

(A—AD)h= (A= A)MRyf — Mf = M(A—ADR,f — Mf =0, (2.29)
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and also

®{h} = O{MR, f} - O{RM [} =0, (2.30)
according to our assumptions. Since A is not an eigenvalue, then k = 0, or

MR, f = R\M. (2.31)
0

Definition 2.5. A linear operator M : #(G) — H#(G) is said to be a multiplier of the convo-
lution algebra (¥(G), %) when for arbitrary f,g € ¥(G), it holds that

M(f xg)=(Mf)*g. (2.32)

THEOREM 2.6. A linear operator M : #(G) — #(G) is a multiplier of the convolution alge-
bra (#(G), x) if and only if it has a representation of the form

Mf(z) = uf(z)+(m* f)(2), (2.33)

where p = const and m € #(G).

Proof. The sufficiency is obvious.

In order to prove the necessity, let A € C be such that E(A) # 0 and ¢)(z) = 1/(1 — Az) €
7€(G). To this end, it is enough to take A with [A| so small that 1/A ¢ G. This is possible
since G is assumed to be finite.

Let M : #(G) — #(G) be an arbitrary multiplier of (#(G), *). Applying (2.12), one
has

MR f = M(§r* f) = (M@)) x f = gr * Mf = RiMS, (2.34)
that is, MRy f = RyM f. Also, denoting ) = M@, (2.34) gives
RMf =r % f. (2.35)

It remains to apply the operator A) = A — AI and the definition of the resolvent operator
to obtain

Mf =M (r* f). (2.36)
The right-hand side can be transformed using the identity
M(uxv)=(Au) *xv+O(u)v (2.37)
which can be checked directly. Then
(Mf)(z2) = [(Bar) * f1(2) + @(r2) f (2), (2.38)

which is the representation (2.33) with g = ®(r)) = @{M¢@,} and m(z) = (An1)(2) =
[AxM@,](z). Thus the necessity is proved. O
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In order to prove the next theorem, which is the main result of this paper, the following
auxiliary result is needed.

LemMa 2.7. Let A € C be such that ) (z) € #(G). Then, ¢, is a cyclic element of the oper-
ator Ry in #(G).

Proof. Let f € #(G) be arbitrarily chosen. It is needed to prove that there is a sequence
of functions of the form

fu(z) = Z rxnkR’)fq)A(z), n=12,... (2.39)
k=0

converging to f(z) uniformly on the compact subsets of G.
First, it is easy to show by induction that

REor(2) = 075 (2) = pror[02(2)] = g1 08 (2) + arxgk(2) + - - - + ar1 92 (2).
(2.40)

The calculation for k = 1 will be skipped and only the inductive step will be made. Sup-
pose that R¥"1¢, is a polynomial py of ¢ (z) of degree k > 2 with px(0) = 0, that is,

RE19) = 015 (2) = prloa(2)] = k1495 (2) + ar-1 41905 1 (2) + - - - +ar-1,190(2).
(2.41)

Then

REgr(2) = 9F ¥ (2) = 1% (2) % 9a(2)

s {{zpk[w(Z)] — {prloa (O]} [zga(2) —Cw(()]}

- @ "

_ (D(SL {zpeloa(2)] = Cpe[@a (O]} =/(1 = Az) = {/(1 —/\O]}
z—¢

_o [1/A+(z = 1/M)] prloa(2)] = {pil9a(O)]

- (1-12)(1-A0)

= 20 lp O Hplpr @1}~ 10clpr (Ol )]

(2.42)

— O {pr[oa(O]ea (D)} or(2),

which is a polynomial py.1 of ¢i(2z) of degree k + 1 with p.;(0) = 0, as in (2.40).
Now let f € #(G) be arbitrarily chosen. Note that

1. . —1
w=gi(e) = 7y iffz=g'(w) = WA—W (2.43)

and consider the transformation

1) = 1" ) =gm. (2.44)
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Then,

k—

T(REpr(2)) = a1 W™ + aw® + ag o1 w4+ - - +ag w. (2.45)

Since w = 0 ¢ T(G), then by Runge’s theorem, there exists a polynomial sequence {g,(w)
= Do buxw}i; convergingto (1/w)g(w) in #(T(G)). Then the sequence {wq,(w)} 5,
converges to g(w). But

wqn(w) = chkT Rgr(2)) (2.46)
k=0

with constants ¢,0,Cn,15...,cnn. Hence, the sequence {r,(z) = >}_, cn,kR’,{pr(z)},‘f:O con-
verges to f(z) in #(G). Therefore, ¢, is a cyclic element of R in #(G). O

TaeoreM 2.8. A linear operator M : #(G) — H(G) with an invariant hyperplane ¢ =
{f € #(G) : D{f} = 0} commutes with A in Ho if and only if it has a representation of the
form

(Mf)(2) = uf(2)+(mx* f)(z) (2.47)

with a constant y € C and m € ¥(G).

Proof. Since ®{f * g} =0 for f,g € #(G) (see (2.11)), then each operator of the form
(2.47) has ¥4 as an invariant subspace. It commutes with A in #e. Indeed, if f € o,
then (2.37) gives

Almx f)=m* [A(f)]+D{f}m, (2.48)

and using (2.47),
(AM) f = uA(f) +m* [A())]+ @ fm = pA(f) +m* [A(f)] = (MA)(f).  (2.49)

The sufficiency is proved.

In order to prove the necessity of (2.47), according to Theorem 2.4, MR, = RyM for
A € Cwith E() # 0. As it is shown in the book [4, Theorem 1.3.11, page 33], the commu-
tant of Ry coincides with the ring of the multipliers of the convolution algebra (#(G), *)
since Ry has a cyclic element. By Lemma 2.7 such a cyclic element is the function ¢, (z) =
1/(1 —Az) for which Ry f = ¢y * f = (1/E(A))[@a * f]. O

Remark 2.9. The constant y and the function m € #(G) in (2.47) are uniquely deter-
mined. Indeed, assume that uf +m* f = i f + my x f. Take f such that O(f) # 0.
Then, using (2.11), u®(f) = u ®(f), and hence y = py. From m x f = m; * f for ar-
bitrary f € #(G), it follows that (m — m;) * f =0, and hence m = m;.

3. Relation between the two types of commutants

It is natural to ask how the two types of commutants of A described above are connected
to each other. A partial answer is given by the following theorem.
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THEOREM 3.1. Let M be an arbitrary operator commuting with A in #(G). Then ker M is
an ideal in the convolution algebra (¥ (G), *).

Proof. By Theorem 1.8,

(Mf)(z)=®({%§f(o}, (3.1)

with @ : #(G) — C being a linear functional. From the representation
OGO _ i, SO-10) o)

z-¢
it follows that
f2) - f(0)
{74(1 gf(()} —0 = «[CD‘{ z—( } o (3.3)
OO} =0

The lower condition in (3.3) is easier to check:

O {(f *g)(O)} = @z{q%{ 1S —nf (@]_[flg(c) — ng(n)] H

_ @q{q)( 5( luf - (f(;)]_ [?gw) ~g(0)] H (3.4)
= =0, {(f ¥ )M} = - {(f *) ()}

Here the Fubini property of the functional @ is used. The function in the braces is an-
tisymmetric with respect to { and #, which gives the minus sign in the braces. Thus,
20:{(f *£)({)} =0, and hence

O {(f *x )} =0. (3.5)

More algebra is needed to check the upper condition in (3.3). Let f € ker M and con-
sider

WAL LEER)
¢ z—C

_ b {[Zf(Z)—ﬂf(ﬂ)][Zg(Z)—’1g(’1)] ~ [Cf(()—ﬂf(ﬂ)][(g(()—ng(n)]}
e (=1 =01

= Or®y {0} o)
3.6

Here the function in the braces is denoted by ¢.({,7). The proof of ®;®,{¢.({,)} =0
goes easier by splitting ¢.((,7) into symmetric and antisymmetric parts as follows:

¢-(0,n) + 92(1,0) N ¢-((,m) — §0z(7’]><‘).

5 7 (3.7)

§DZ((, ’7) =
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The antisymmetric part can be treated as in the proof of (3.5) and in fact, one has

@(@ﬂ{fpz((ﬁﬂ);(pz(n,()} o (3.8)
It remains to prove that the symmetric part also satisfies
q)(q)q{ﬁoz(Caﬂ);(/’z(ﬂ,()} o (3.9)

After some usual algebraic calculations and suitable grouping, the expression ({ — #) can
be canceled from the numerator and the denominator of y,({,%) = ¢.({,) + ¢.(,{) and
it can be written as

_ [2f(2) = Cf(D)][zg(2) —ng(m)] + [2f (2) — nf () ][2g(2) — {g(O)]
va((n) = (e O=1) . (3.10)
Now the left-hand side of (3.9) can be represented as
@%{%(g’n)} -1 ({Zf 2) = {f( C)} ’1{ i Zg(n)}
(3.11)
1o §zf( Z)—nf ") zg(2) —Cg(O) | _
o T o HEO o
In (3.11), it was used that
{Zf(z f()}:q)ﬂ{Zf(Z)—nf(n)}zo’ (3.12)
z—( z—1
which expresses the fact that f € ker M. Thus (3.9) is also shown. O

Remark 3.2. Theorem 3.1 expresses a new property of ker M. Other properties of ker M
are studied in details by Linchuk [7].
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