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The primary purpose of this paper is to introduce the notion of fuzzy n-normed linear
space as a generalization of n-normed space. Ascending family of α-n-norms correspond-
ing to fuzzy n-norm is introduced. Best approximation sets in α-n-norms are defined. We
also provide some results on best approximation sets in α-n-normed space.

1. Introduction

A satisfactory theory of 2-norm and n-norm on a linear space has been introduced and
developed by Gähler in [9, 10]. Following Misiak [16], Kim and Cho [13] and Malčeski
[15] developed the theory of n-normed space. In [11], Gunawan and Mashadi gave a
simple way to derive an (n-1)-norm from the n-norm and realized that any n-normed
space is an (n-1)-normed space. Best approximation theory in 2-normed space can be
viewed in the papers [3, 4, 5, 9]. Different authors introduced the definitions of fuzzy
norms on a linear space. For reference, one may see [2, 6, 7, 8, 12, 14, 17]. Following
Cheng and Mordeson [2], Bag and Samanta [1] introduced the concept of fuzzy norm on
a linear space.

In the present paper, we introduce the concept of fuzzy n-normed linear space as a
generalization of n-normed space by Gunawan and Mashadi [11]. Bag and Samanta [1]
introduced α-norms on a linear space corresponding to the fuzzy norm on a linear space.
As an analogue of Bag and Samanta [1], we introduce the notion of α-n-norm on a linear
space corresponding to the fuzzy n-norm on a linear space. Based on Elumalai et al. [3]
and Elumalai and Souruparani [5], we introduce the notion of best approximation sets
in α-n-norms and establish some results on it.

2. Preliminaries

For the sake of completeness, we reproduce the following definitions due to Gähler [9],
Gunawan and Mashadi [11], Elumalai et al. [3], and Bag and Samanta [1].
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Definition 2.1 [9]. Let X be a real vector space of dimension greater than 1 and let ‖•,•‖
be a real-valued function on X ×X satisfying the following conditions:

(1) ‖x, y‖ = 0 if any only if x and y are linearly dependent,
(2) ‖x, y‖ = ‖y,x‖,
(3) ‖αx, y‖ = |α|‖x, y‖, where α is real,
(4) ‖x, y + z‖ ≤ ‖x, y‖+‖x,z‖.

‖•,•‖ is called a 2-norm on X and the pair (X ,‖•,•‖) is called a linear 2-normed space.

Definition 2.2 [11]. Let n ∈N (natural numbers) and let X be a real vector space of di-
mension d ≥ n. (Here we allow d to be infinite.) A real-valued function ‖•, . . . ,•‖ on
X ×···×X︸ ︷︷ ︸

n

satisfying the following four properties,

(1) ‖x1,x2, . . . ,xn‖ = 0 if any only if x1,x2, . . . ,xn are linearly dependent,
(2) ‖x1,x2, . . . ,xn‖ is invariant under any permutation,
(3) ‖x1,x2, . . . ,αxn‖ = |α|‖x1,x2, . . . ,xn‖ for any α∈R (real),
(4) ‖x1,x2, . . . ,xn−1, y + z‖ ≤ ‖x1,x2, . . . ,xn−1, y‖+‖x1,x2, . . . ,xn−1,z‖,

is called an n-norm on X and the pair (X ,‖•, . . . ,•‖) is called an n-normed space.

Definition 2.3 [3]. Let (X ,‖•,•‖) be a linear 2-normed space and let G be an arbitrary
nonempty subset of X and x0 ∈ X . Then, for every x ∈ X and for every z ∈ X\G which is
independent of x and x0, dz(x,G)≤‖x− x0,z‖+ dz(x0,G), where dz(x,G) = inf g∈G‖x−
g,z‖. For each G ⊂ X and x0 ∈ X , define Dz(x0,G) = {x ∈ X : dz(x,G) = ‖x − x0,z‖ +
dz(x0,G)} for any z ∈ X\G which is independent of x and x0.

Also PG,z(x) = {g0 ∈ G : ‖x− g0,z‖ = dz(x,G)} and P−1
G,z(x0) = {x ∈ X : ‖x− x0,z‖ =

dz(x,G)}, where x0 ∈G.

Definition 2.4 [1]. Let X be a linear space over F (field of real or complex numbers). A
fuzzy subset N of X ×R (R, set of real numbers) is called a fuzzy norm on X if and only
if for all x,u∈ X and c ∈ F,
(N1) for all t ∈R with t ≤ 0, N(x, t)= 0,
(N2) for all t ∈R with t > 0, N(x, t)= 1 if and only if x = 0,
(N3) for all t ∈R with t > 0, N(cx, t)=N(x, t/|c|), if c �=0,
(N4) for all s, t ∈R, x,u∈ X , N(x+u,s+ t)≥min{N(x,s),N(u, t)},
(N5) N(x,◦) is a nondecreasing function of R and limt→∞N(x, t)= 1.

The pair (X ,N) will be referred to as a fuzzy normed linear space.

Theorem 2.5 [1]. Let (X ,N) be a fuzzy normed linear space. Assume further that
(N6) N(x, t) > 0 for all t > 0 implies x = 0.

Define ‖x‖α = inf{t : N(x, t)≥ α}, α∈ (0,1).
Then {‖ •‖α : α∈ (0,1)} is an ascending family of norms on X (or) α-norms on X corre-

sponding to the fuzzy norm on X .

3. Fuzzy n-normed linear space

By generalizing Definition 2.2, we obtain a satisfactory notion of fuzzy n-normed linear
space as follows.
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Definition 3.1. Let X be a linear space over a real field F. A fuzzy subset N of
X ×···×X︸ ︷︷ ︸

n

×R (R, set of real numbers) is called a fuzzy n-norm on X if and only if

(N1) for all t ∈R with t ≤ 0, N (x1,x2, . . . ,xn, t)= 0,
(N2) for all t ∈R with t > 0, N (x1,x2, . . . ,xn, t)= 1 if and only if x1,x2, . . . ,xn are linearly

dependent,
(N3) N (x1,x2, . . . ,xn, t) is invariant under any permutation of x1,x2, . . . ,xn,
(N4) for all t ∈R with t > 0,

N
(
x1,x2, . . . ,cxn, t

)=N
(
x1,x2, . . . ,xn,

t

|c|
)

, if c �= 0, c ∈ F (field), (3.1)

(N5) for all s, t ∈R,

N
(
x1,x2, . . . ,xn + x′n,s+ t

)≥min
{
N
(
x1,x2, . . . ,xn,s

)
,N
(
x1,x2, . . . ,x′n, t

)}
, (3.2)

(N6) N(x1,x2, . . . ,xn,◦) is a nondecreasing function of R and limt→∞N(x1,x2, . . . ,
xn, t)= 1.

Then (X ,N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 3.2. From (N3), it follows that in an f-n-NLS,
(N4) for all t ∈R with t > 0,

N
(
x1,x2, . . . ,cxi, . . . ,xn, t

)=N
(
x1,x2, . . . ,xi, . . . ,xn,

t

|c|
)

, if c �= 0, (3.3)

(N5) for all s, t ∈R,

N
(
x1,x2, . . . ,xi + x′i , . . . ,xn,s+ t

)
≥min

{
N
(
x1,x2, . . . ,xi, . . . ,xn,s

)
,N
(
x1,x2, . . . ,x′i , . . . ,xn, t

)}
.

(3.4)

The following example agrees with our notion of f-n-NLS.

Example 3.3. Let (X ,‖•,•, . . . ,•‖) be an n-normed space as in Definition 2.2. Define

N
(
x1,x2, . . . ,xn, t

)

=




t

t+
∥∥x1,x2, . . . ,xn

∥∥ , when t > 0, t ∈R,
(
x1,x2, . . . ,xn

)∈ X ×···×X︸ ︷︷ ︸
n

,

0, when t ≤ 0.

(3.5)

Then (X ,N) is an f-n-NLS.

Proof. (N1) for all t ∈R with t ≤ 0, we have by our definition

N
(
x1,x2, . . . ,xn, t

)= 0. (3.6)
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(N2) for all t ∈R with t > 0, we have N(x1,x2, . . . ,xn, t)= 1
(i) if and only if t/(t+‖x1,x2, . . . ,xn‖)= 1,

(ii) if and only if t = t+‖x1,x2, . . . ,xn‖,
(iii) if and only if ‖x1,x2, . . . ,xn‖ = 0,
(iv) if and only if x1,x2, . . . ,xn are linearly dependent.

(N3) for all t ∈R with t > 0,

N
(
x1,x2, . . . ,xn, t

)= t

t+
∥∥x1,x2, . . . ,xn

∥∥
= t

t+
∥∥x1,x2, . . . ,xn,xn−1

∥∥ =N
(
x1,x2, . . . ,xn,xn−1, t

)= . . . .
(3.7)

(N4) For all t ∈R with t > 0 and c ∈ F, c �= 0,

N
(
x1,x2, . . . ,xn,

t

|c|
)
= t/|c|

(t/|c|) +
∥∥x1,x2, . . . ,xn

∥∥
= t/|c|(

t+ |c|∥∥x1,x2, . . . ,xn
∥∥)/|c|

= t

t+ |c|∥∥x1,x2, . . . ,xn
∥∥

= t

t+
∥∥x1,x2, . . . ,cxn

∥∥ =N
(
x1,x2, . . . ,cxn, t

)
.

(3.8)

(N5) We have to prove

N
(
x1,x2, . . . ,xn + x′n,s+ t

)≥min
{
N
(
x1,x2, . . . ,xn,s

)
,N
(
x1,x2, . . . ,x′n, t

)}
. (3.9)

If
(a) s+ t < 0,
(b) s= t = 0,
(c) s+ t > 0; s > 0, t < 0; s < 0, t > 0, then the above relation is obvious. If
(d) s > 0, t > 0, s+ t > 0, then

N
(
x1,x2, . . . ,xn + x′n,s+ t

)= s+ t

s+ t+
∥∥x1,x2, . . . ,xn + x′n

∥∥
≥ s+ t

s+ t+
∥∥x1,x2, . . . ,xn

∥∥+
∥∥x1,x2, . . . ,x′n

∥∥ .
(3.10)

If

s

s+
∥∥x1,x2, . . . ,xn

∥∥ ≥ t

t+
∥∥x1,x2, . . . ,x′n

∥∥ , (3.11)

then

s

s+
∥∥x1,x2, . . . ,xn

∥∥ − t

t+
∥∥x1,x2, . . . ,x′n

∥∥ ≥ 0, (3.12)
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which implies

s
(
t+
∥∥x1,x2, . . . ,x′n

∥∥)− t
(
s+
∥∥x1,x2, . . . ,xn

∥∥)≥ 0, (3.13)

which in turn implies

s
∥∥x1,x2, . . . ,x′n

∥∥− t
∥∥x1,x2, . . . ,xn

∥∥≥ 0. (3.14)

So

s+ t

s+ t+
∥∥x1,x2, . . . ,xn

∥∥+
∥∥x1,x2, . . . ,x′n

∥∥ − t

t+
∥∥x1,x2, . . . ,x′n

∥∥

= s
∥∥x1,x2, . . . ,x′n

∥∥− t
∥∥x1,x2, . . . ,xn

∥∥(
s+ t+

∥∥x1,x2, . . . ,xn
∥∥+

∥∥x1,x2, . . . ,x′n
∥∥)(t+

∥∥x1,x2, . . . ,x′n
∥∥) .

(3.15)

By (3.14),

s+ t

s+ t+
∥∥x1,x2, . . . ,xn

∥∥+
∥∥x1,x2, . . . ,x′n

∥∥ − t

t+
∥∥x1,x2, . . . ,x′n

∥∥ ≥ 0, (3.16)

which implies

s+ t

s+ t+
∥∥x1,x2, . . . ,xn

∥∥+
∥∥x1,x2, . . . ,x′n

∥∥ ≥ t

t+
∥∥x1,x2, . . . ,x′n

∥∥ . (3.17)

Similarly, if

t

t+
∥∥x1,x2, . . . ,x′n

∥∥ ≥ s

s+
∥∥x1,x2, . . . ,xn

∥∥ , (3.18)

then

s+ t

s+ t+
∥∥x1,x2, . . . ,xn

∥∥+
∥∥x1,x2, . . . ,x′n

∥∥ ≥ s

s+
∥∥x1,x2, . . . ,xn

∥∥ . (3.19)

Thus,

N
(
x1,x2, . . . ,xn + x′n,s+ t

)≥min
{
N
(
x1,x2, . . . ,xn,s

)
,N
(
x1,x2, . . . ,x′n, t

)}
. (3.20)

(N6) For all t1, t2 ∈R, if t1 < t2 ≤ 0, then, by our definition,

N
(
x1,x2, . . . ,xn, t1

)=N
(
x1,x2, . . . ,xn, t2

)= 0. (3.21)
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Suppose t2 > t1 > 0, then

t2
t2 +

∥∥x1,x2, . . . ,xn
∥∥ − t1

t1 +
∥∥x1,x2, . . . ,xn

∥∥

=
∥∥x1,x2, . . . ,xn

∥∥(t2− t1
)

(
t2 +

∥∥x1,x2, . . . ,xn
∥∥)(t1 +

∥∥x1,x2, . . . ,xn
∥∥) ≥ 0,

(3.22)

for all (x1,x2, . . . ,xn)∈ X ×···×X︸ ︷︷ ︸
n

, implies

t2
t2 +

∥∥x1,x2, . . . ,xn
∥∥ ≥ t1

t1 +
∥∥x1,x2, . . . ,xn

∥∥ , (3.23)

which in turn implies N(x1,x2, . . . ,xn, t2)≥N(x1,x2, . . . ,xn, t1).
Thus N(x1,x2, . . . ,xn, t) is a nondecreasing function.
Also,

lim
t→∞N

(
x1,x2, . . . ,xn, t

)= lim
t→∞

t

t+
∥∥x1,x2, . . . ,xn

∥∥
= lim

t→∞
t

t
(
1 + (1/t)

∥∥x1,x2, . . . ,xn
∥∥) = 1.

(3.24)

Thus (X ,N) is an f-n-NLS. �

As a consequence of Theorem 2.5, we introduce an interesting notion of ascending
family of α-n-norms corresponding to the fuzzy n-norm in the following theorem.

Theorem 3.4. Let (X ,N) be an f-n-NLS. Assume the condition that
(N7) N(x1,x2, . . . ,xn, t) > 0 for all t > 0 implies x1,x2, . . . ,xn are linearly dependent.
Define ‖x1,x2, . . . ,xn‖α = inf{t : N(x1,x2, . . . ,xn, t)≥ α}, α∈ (0,1).
Then {‖•,•, . . . ,•‖α : α∈ (0,1)} is an ascending family of n-norms on X . These n-norms

are called α-n-norms on X corresponding to the fuzzy n-norm on X .

Proof. (1) ‖x1,x2, . . . ,xn‖α = 0. This
(i) implies inf{t : N(x1,x2, . . . ,xn, t)≥ α} = 0,

(ii) implies, for all t ∈R, t > 0, N(x1,x2, . . . ,xn, t)≥ α > 0, α∈ (0,1),
(iii) implies, by (N7), x1,x2, . . . ,xn are linearly dependent.

Conversely assume that x1,x2, . . . ,xn are linearly dependent. This
(i) implies, by (N2), N(x1,x2, . . . ,xn, t)= 1 for all t > 0,

(ii) implies, for all α∈ (0,1), inf{t : N(x1,x2, . . . ,xn, t)≥ α} = 0,
(iii) implies ‖x1,x2, . . . ,xn‖α = 0.

(2) As N(x1,x2, . . . ,xn, t) is invariant under any permutation, it follows that ‖x1,x2, . . . ,
xn‖α is invariant under any permutation.

(3) If c �= 0, then
∥∥x1,x2, . . . ,cxn

∥∥
α = inf

{
s : N

(
x1,x2, . . . ,cxn,s

)≥ α
}

= inf
{
s : N

(
x1,x2, . . . ,xn,

s

|c|
)
≥ α

}
.

(3.25)
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Let t = s/|c|, then

∥∥x1,x2, . . . ,cxn
∥∥
α = inf

{|c|t : N
(
x1,x2, . . . ,xn, t

)≥ α
}

= |c| inf
{
t : N

(
x1,x2, . . . ,xn, t

)≥ α
}

= |c|∥∥x1,x2, . . . ,xn
∥∥
α.

(3.26)

If c = 0, then

∥∥x1,x2, . . . ,cxn
∥∥
α =

∥∥x1,x2, . . . ,0
∥∥
α

= 0= 0
∥∥x1,x2, . . . ,xn

∥∥
α

= |c|∥∥x1,x2, . . . ,xn
∣∣
α, ∀c ∈ F (field).

(3.27)

(4)

∥∥x1,x2, . . . ,xn
∥∥
α +
∥∥x1,x2, . . . ,x′n

∥∥
α

= inf
{
t : N

(
x1,x2, . . . ,xn, t

)≥ α
}

+ inf
{
s : N

(
x1,x2, . . . ,x′n,s

)≥ α
}

= inf
{
t+ s : N

(
x1,x2, . . . ,xn, t

)≥ α, N
(
x1,x2, . . . ,x′n,s

)≥ α
}

≥ inf
{
t+ s : N

(
x1,x2, . . . ,xn + x′n, t+ s

)≥ α
}

≥ inf
{
r : N

(
x1,x2, . . . ,xn + x′n,r

)≥ α
}

, r = t+ s

= ∥∥x1,x2, . . . ,xn + x′n
∥∥
α.

(3.28)

Therefore, ‖x1,x2, . . . ,xn + x′n‖α ≤ ‖x1,x2, . . . ,xn‖α +‖x1,x2, . . . ,x′n‖α.
Thus {‖•,•, . . . ,•‖α : α∈ (0,1)} is an α-n-norm on X .
Let 0 < α1 < α2. Then

∥∥x1,x2, . . . ,xn
∥∥
α1
= inf

{
t : N

(
x1,x2, . . . ,xn, t

)≥ α1
}

,∥∥x1,x2, . . . ,xn
∥∥
α2
= inf

{
t : N

(
x1,x2, . . . ,xn, t

)≥ α2
}
.

(3.29)

As α1 < α2,

{
t : N

(
x1,x2, . . . ,xn, t

)≥ α2
}⊂ {t : N

(
x1,x2, . . . ,xn, t

)≥ α1
}

(3.30)

implies

inf
{
t : N

(
x1,x2, . . . ,xn, t

)≥ α2
}≥ inf

{
t : N

(
x1,x2, . . . ,xn, t

)≥ α1
}

(3.31)

which implies

∥∥x1,x2, . . . ,xn
∣∣
α2
≥ ∥∥x1,x2, . . . ,xn

∥∥
α1
. (3.32)

Hence, {‖•,•, . . . ,•‖α : α∈ (0,1)} is an ascending family of α-n-norms on X correspond-
ing to the fuzzy n-norm on X . �
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4. Best approximation sets in α-n-normed space

Inspired by this α-n-norm on X , we introduce the notion of two subsets of X , namely,
Dx2,x3,...,xn(x0,G) and PG,x2,x3,...,xn(x).

Definition 4.1. Let (X ,‖•,•, . . . ,•‖α) be an α-n-normed space corresponding to the fuzzy
n-norm N on X . Let G be an arbitrary nonempty subset of X and x0 ∈ X . Then for every
x ∈ X and for every x2,x3, . . . ,xn ∈ X\G which is independent of x and x0,

dx2,x3,...,xn(x,G)≤ ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn(x0,G), (4.1)

where

dx2,x3,...,xn(x,G)= inf
g∈G
∥∥x− g,x2,x3, . . . ,xn

∥∥
α. (4.2)

For each G⊂ X and x0 ∈ X ,we define

Dx2,x3,...,xn

(
x0,G

)
= {x ∈ X : dx2,x3,...,xn(x,G)= ∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

)} (4.3)

for any x2,x3, . . . ,xn ∈ X\G which is independent of x and x0.
We denote

PG,x2,x3,...,xn(x)= {g0 ∈G :
∥∥x− g0,x2,x3, . . . ,xn

∥∥
α = dx2,x3,...,xn(x,G)

}
,

P−1
G,x2,x3,...,xn

(
x0
)= {x ∈ X :

∥∥x− x0,x2,x3, . . . ,xn
∥∥
α = dx2,x3,...,xn(x,G)

}
,

(4.4)

where x0 ∈G.

We give the following examples in the α-2-normed linear space and α-n-normed
linear space for the sets Dx2,x3,...,xn(x0,G) and PG,x2,x3,...,xn(x). It is easy to find the set
P−1
G,x2,x3,...,xn(x0).

Example 4.2. Let X =R3 be a linear space over R.
Define ‖•,•‖ : X ×X →R by

∥∥x1,x2
∥∥

1 =max
{∣∣a1b2− a2b1

∣∣,
∣∣b1c2− b2c1

∣∣,
∣∣a1c2− a2c1

∣∣},
∥∥x1,x2

∥∥
2 =

1
2

{
max

{∣∣a1b2− a2b1
∣∣,
∣∣b1c2− b2c1

∣∣,
∣∣a1c2− a2c1

∣∣}},
(4.5)

where xi = (ai,bi,ci)∈R3, i= 1,2. Then (X ,‖•,•‖1) and (X ,‖•,•‖2) are 2-normed linear
spaces.

Define N : X ×X ×R→ [0,1] by

N
(
x1,x2, t

)=



1, if t >
∥∥x1,x2

∥∥
1,

0.5, if
∥∥x1,x2

∥∥
2 < t ≤ ∥∥x1,x2

∥∥
1,

0, if t ≤ ∥∥x1,x2
∥∥

2.

(4.6)

Then (X ,N) is a fuzzy 2-normed linear space. Define ‖x1,x2‖α = inf{t : N(x1,x2, t)≥ α},
α∈ (0,1).
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The α-2-norms are given by
∥∥x1,x2

∥∥
α =

∥∥x1,x2
∥∥

1, when 1 > α > 0.5,

= ∥∥x1,x2
∥∥

2, when 0 < α≤ 0.5.
(4.7)

Let G= {(a,0,0) : a∈R} be a subset of X .
Choose x0 = (0,1,1) and x2 ∈ K = {(0,0,k) : k ∈R\{0}}.
Then

Dx2

(
x0,G

)= {x = (0,b,0), b ∈ R+\{0} : dx2 (x,G)= ∥∥x− x0,x2
∥∥
α +dx2

(
x0,G

)}
,

PG,x2 (x)= {g′ = (a,0,0) :−1≤ a≤ 1
}
.

(4.8)

Example 4.3. Let X =Rn+1 be a linear space over R.
Define ‖•,•, . . . ,•‖ : X ×···×X︸ ︷︷ ︸

n

→R by

∥∥x1,x2, . . . ,xn
∥∥

1 =max
{
∆1,∆2, . . . ,∆n

}
,

∥∥x1,x2, . . . ,xn
∣∣

2 =
1
2

{
max

{
∆1,∆2, . . . ,∆n

}}
,

(4.9)

where

∆1 =

∣∣∣∣∣∣∣∣
a12 a13 ··· a1(n+1)

...
...

. . .
...

an2 an3 ··· an(n+1)

∣∣∣∣∣∣∣∣
,

∆2 =

∣∣∣∣∣∣∣∣
a13 ··· a1(n+1) a11

...
...

. . .
...

an3 ··· an(n+1) an1

∣∣∣∣∣∣∣∣
,

...

∆n =

∣∣∣∣∣∣∣∣
a11 a12 ··· a1n

...
...

. . .
...

an1 an2 ··· ann

∣∣∣∣∣∣∣∣

(4.10)

and xi = (ai1,ai2, . . . ,ai(n+1))∈Rn+1, i= 1,2, . . . ,n.
Then (X ,‖•,•, . . . ,•‖1) and (X ,‖•, . . . ,•,•‖2) are n-normed linear spaces. Define N :

X ×···×X︸ ︷︷ ︸
n

×R→ [0,1] by

N
(
x1,x2, . . . ,xn, t

)=



1, if t >
∥∥x1,x2, . . . ,xn

∥∥
1,

0.5, if
∥∥x1,x2, . . . ,xn

∥∥
2 < t ≤ ∥∥x1,x2, . . . ,xn

∥∥
1,

0, if t ≤ ∥∥x1,x2, . . . ,xn
∥∥

2.

(4.11)

Then (X ,N) is a fuzzy n-normed linear space. Define ‖x1,x2, . . . ,xn‖α = inf{t : N(x1,x2,
. . . ,xn, t)≥ α}, α∈ (0,1).
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The α-n-norms are given by

∥∥x1,x2, . . . ,xn
∥∥
α

= ∥∥x1,x2, . . . ,xn
∥∥

1, when 1 > α > 0.5,

= ∥∥x1,x2, . . . ,xn
∣∣

2, when 0 < α≤ 0.5.

(4.12)

Let G= {(a,0,0, . . . ,n times 0) : a∈R} be a subset of X .
Choose x0 = (0,1,1, . . . ,n times 1) and

x2,x3, . . . ,xn ∈ K =
{(

0,0,k(i)
3 , . . . ,k(i)

n+1

)
: k(i)

3 , . . . ,k(i)
n+1 ∈R\{0}

}
. (4.13)

That is,

x2 =
(

0,0,k(2)
3 , . . . ,k(2)

n+1

)
,

x3 =
(

0,0,k(3)
3 , . . . ,k(3)

n+1

)
,

...

xn =
(

0,0,k(n)
3 , . . . ,k(n)

n+1

)
.

(4.14)

Then

Dx2,x3,...,xn

(
x0,G

)
= {x = (0,b,0, . . . , (n− 1) times 0

)
, b ∈R+\{0} :

dx2,x3,...,xn(x,G)= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)}
,

(4.15)

where dx2,x3,...,xn(x,G)=max{|b|∆,|a|∆},

∆=

∣∣∣∣∣∣∣∣∣∣∣∣

k(2)
3 k(2)

4 ··· k(2)
n+1

k(3)
3 k(3)

4 ··· k(3)
n+1

...
...

. . .
...

k(n)
3 k(n)

4 ··· k(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣
,

∥∥x− x0,x2, . . . ,xn
∥∥
α = |b− 1|∆, dx2,x3,...,xn(x0,G)=max

{
∆,|a|∆}

(4.16)

and also PG,x2,x3,...,xn(x)= {g′ = (a,0, . . . ,n times 0) :−1≤ a≤ 1}.
By routine calculation the following theorems are validate from the Examples 4.2 and

4.3.

Theorem 4.4. For x ∈Dx2,x3,...,xn(x0,G) and y ∈Dx2,x3,...,xn(x,G),
(i) ‖y− x0,x2,x3, . . . ,xn‖α = ‖y− x,x2,x3, . . . ,xn‖α +‖x− x0,x2,x3, . . . ,xn‖α,

(ii) y− x+ x0 ∈Dx2,x3,...,xn(x0,G).
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Proof. (i) Let x ∈Dx2,x3,...,xn(x0,G) and y ∈Dx2,x3,...,xn(x,G).
Then by (4.3) we have

dx2,x3,...,xn(x,G)= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
,

dx2,x3,...,xn(y,G)= ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn(x,G).

(4.17)

Consider
∥∥y− x0,x2,x3, . . . ,xn

∥∥
α

= ∥∥y− x0− x+ x,x2,x3, . . . ,xn
∥∥
α

= ∥∥(y− x) +
(
x− x0

)
,x2,x3, . . . ,xn

∥∥
α

≤ ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +
∥∥x− x0,x2,x3, . . . ,xn

∥∥
α

= (dx2,x3,...,xn(y,G)−dx2,x3,...,xn(x,G)
)

+
(
dx2,x3,...,xn(x,G)−dx2,x3,...,xn

(
x0,G

))
= dx2,x3,...,xn(y,G)−dx2,x3,...,xn

(
x0,G

)
≤ ∥∥y− x0,x2,x3, . . . ,xn

∥∥
α.

(4.18)

Therefore,

∥∥y− x0,x2,x3, . . . ,xn
∥∥
α =

∥∥y− x,x2,x3, . . . ,xn
∥∥
α +
∥∥x− x0,x2,x3, . . . ,xn

∥∥
α. (4.19)

(ii) By (4.2), we have

dx2,x3,...,xn

(
y− x+ x0,G

)
≥ dx2,x3,...,xn(y,G)−∥∥y− (y− x+ x0

)
,x2,x3, . . . ,xn

∥∥
α

= dx2,x3,...,xn(y,G)−∥∥x− x0,x2,x3, . . . ,xn
∥∥
α

= (∥∥y− x,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn(x,G)

)−∥∥x− x0,x2,x3, . . . ,xn
∥∥
α

= ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +
(∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

))
−∥∥x− x0,x2,x3, . . . ,xn

∥∥
α

= ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
= ∥∥(y− x+ x0

)− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
.

(4.20)

Again by (4.2), it follows that

dx2,x3,...,xn

(
y− x+ x0,G

)= ∥∥(y− x+ x0
)− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

)
, (4.21)

which implies y− x+ x0 ∈Dx2,x3,...,xn(x0,G). �

Theorem 4.5. Let x ∈Dx2,x3,...,xn(x0,G). Then
(i) [x0,x]= {λx0 + (1− λ)x : 0≤ λ≤ 1} ⊂Dx2,x3,...,xn(x0,G),

(ii) Dx2,x3,...,xn(x,G)⊂Dx2,x3,...,xn(x0,G).
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Proof. (i) Let y = λx0 + (1− λ)x such that 0≤ λ≤ 1. Then

dx2,x3,...,xn(y,G)

≥ dx2,x3,...,xn(x,G)−∥∥x− y,x2,x3, . . . ,xn
∥∥
α

= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)−∥∥x− y,x2,x3, . . . ,xn
∥∥
α

= ∥∥y− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
.

(4.22)

By (4.2), we have

dx2,x3,...,xn(y,G)= ∥∥y− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
, (4.23)

which implies y ∈Dx2,x3,...,xn(x0,G).
(ii) Let y ∈Dx2,x3,...,xn(x,G). Then, by (4.3) and Theorem 4.4(i),

dx2,x3,...,xn(y,G)

= ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn(x,G)

= ∥∥y− x,x2,x3, . . . ,xn
∥∥
α +
(∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

))
= ∥∥y− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

)
,

(4.24)

which implies y ∈Dx2,x3,...,xn(x0,G).
Therefore, Dx2,x3,...,xn(x,G)⊂Dx2,x3,...,xn(x0,G). �

Theorem 4.6. Let x0, y0 ∈ X and λ �= 0. Then
(i) Dx2,x3,...,xn(x0,G) + y0 =Dx2,x3,...,xn(x0 + y0,G+ y0),

(ii) Dx2,x3,...,xn(x0,λG)= λDx2,x3,...,xn(x0/λ,G).

Proof. (i) Let x ∈Dx2,x3,...,xn(x0,G). Then

dx2,x3,...,xn

(
x+ y0,G+ y0)= dx2,x3,...,xn(x,G)

= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
= ∥∥x+ y0−

(
x0 + y0

)
,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

)
.

(4.25)

Therefore, x+ y0 ∈Dx2,x3,...,xn(x0 + y0,G+ y0).
Conversely, let y ∈Dx2,x3,...,xn(x0 + y0,G+ y0). Then

dx2,x3,...,xn

(
y− y0,G

)
= dx2,x3,...,xn

(
y,G+ y0

)
= ∥∥y− y0− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0 + y0,G+ y0

)
= ∥∥(y− y0

)− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
.

(4.26)

Therefore, y− y0 ∈Dx2,x3,...,xn(x0,G), and so

Dx2,x3,...,xn

(
x0,G

)
+ y0 =Dx2,x3,...,xn

(
x0 + y0,G+ y0

)
. (4.27)
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(ii) Let x ∈Dx2,x3,...,xn(x0,λG). Then

dx2,x3,...,xn

(
x

λ
,G
)
= 1
|λ|dx2,x3,...,xn(x,λG)

= 1
|λ|
(∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,λG

))

=
∥∥∥∥xλ −

x0

λ
,x2,x3, . . . ,xn

∥∥∥∥
α

+dx2,x3,...,xn

(
x0

λ
,G
)
.

(4.28)

Therefore, x/λ∈Dx2,x3,...,xn(x0/λ,G).
Conversely, let x ∈Dx2,x3,...,xn(x0/λ,G). Then

dx2,x3,...,xn(λx,λG)= |λ|dx2,x3,...,xn(x,G)

= |λ|
(∥∥∥∥x− x0

λ
,x2,x3, . . . ,xn

∥∥∥∥
α

+dx2,x3,...,xn

(
x0

λ
,G
))

= ∥∥λx− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,λG

)
.

(4.29)

Therefore, λx ∈Dx2,x3,...,xn(x0,λG).
Thus, Dx2,x3,...,xn(x0,λG)= λDx2,x3,...,xn(x0/λ,G). �

Theorem 4.7. Let G⊂G1 and x0 ∈ X, where G1 is a subset of X such that

dx2,x3,...,xn

(
x0,G

)= dx2,x3,...,xn

(
x0,G1

)
. (4.30)

Then Dx2,x3,...,xn(x0,G1)⊂Dx2,x3,...,xn(x0,G).

Proof. Let x ∈Dx2,x3,...,xn(x0,G1). Then, by (4.30), we have

dx2,x3,...,xn(x,G)≥ dx2,x3,...,xn

(
x,G1

)
= ∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G1

)
= ∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +dx2,x3,...,xn

(
x0,G

)
.

(4.31)

By (4.2), it follows that

dx2,x3,...,xn(x,G)= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
, (4.32)

which implies x ∈Dx2,x3,...,xn(x0,G).
Hence, Dx2,x3,...,xn(x0,G1)⊂Dx2,x3,...,xn(x0,G). �

Theorem 4.8. (i) PG,x2,x3,...,xn(x0)⊂ PG,x2,x3,...,xn(x) for every x ∈Dx2,x3,...,xn(x0,G),
(ii) Dx2,x3,...,xn(x0,G)= P−1

G,x2,x3,...,xn(x0) for every x0 ∈G.

Proof. (i) Let x ∈Dx2,x3,...,xn(x0,G) and g ∈ PG,x2,x3,...,xn(x0).
Now,

dx2,x3,...,xn(x,G)

= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
= ∥∥x− x0,x2,x3, . . . ,xn

∥∥
α +
∥∥x0− g0,x2,x3, . . . ,xn

∥∥
α.

(4.33)
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By Theorem 4.4(i), we have

dx2,x3,...,xn(x,G)= ∥∥x− g0,x2,x3, . . . ,xn
∥∥
α, (4.34)

which implies g0 ∈ PG,x2,x3,...,xn(x), which in turn implies PG,x2,x3,...,xn(x0)⊂ PG,x2,x3,...,xn(x).
(ii) Let x0 ∈G and x ∈Dx2,x3,...,xn(x0,G). Then

dx2,x3,...,xn(x,G)

= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
= ∥∥x− x0,x2,x3, . . . ,xn

∥∥
α, where x0 ∈G,

(4.35)

which implies x ∈ P−1
G,x2,x3,...,xn(x0). So

Dx2,x3,...,xn(x0,G)⊂ P−1
G,x2,x3,...,xn

(
x0
)
. (4.36)

Conversely, let x ∈ P−1
G,x2,x3,...,xn(x0).

Then xo ∈ PG,x2,x3,...,xn(x).
Since x0 ∈G,dx2,x3,...,xn(x0,G)= 0.
Hence, we have

dx2,x3,...,xn(x,G)= ∥∥x− x0,x2,x3, . . . ,xn
∥∥
α +dx2,x3,...,xn

(
x0,G

)
, (4.37)

which implies x ∈Dx2,x3,...,xn(x0,G), which in turn implies

P−1
G,x2,x3,...,xn

(
x0
)⊂Dx2,x3,...,xn

(
x0,G

)
. (4.38)

From (4.36) and (4.38), we have

Dx2,x3,...,xn

(
x0,G

)= P−1
G,x2,x3,...,xn

(
x0
)
. (4.39)

�
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165–189.

[11] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), no. 10,
631–639.

[12] A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems 12 (1984), no. 2, 143–
154.

[13] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29
(1996), no. 4, 739–744.

[14] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and
Systems 63 (1994), no. 2, 207–217.
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