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The primary purpose of this paper is to introduce the notion of fuzzy n-normed linear
space as a generalization of #n-normed space. Ascending family of a-#n-norms correspond-
ing to fuzzy n-norm is introduced. Best approximation sets in a-n-norms are defined. We
also provide some results on best approximation sets in a-n-normed space.

1. Introduction

A satisfactory theory of 2-norm and n-norm on a linear space has been introduced and
developed by Gihler in [9, 10]. Following Misiak [16], Kim and Cho [13] and Malceski
[15] developed the theory of n-normed space. In [11], Gunawan and Mashadi gave a
simple way to derive an (#-1)-norm from the #-norm and realized that any n-normed
space is an (n-1)-normed space. Best approximation theory in 2-normed space can be
viewed in the papers [3, 4, 5, 9]. Different authors introduced the definitions of fuzzy
norms on a linear space. For reference, one may see [2, 6, 7, 8, 12, 14, 17]. Following
Cheng and Mordeson [2], Bag and Samanta [1] introduced the concept of fuzzy norm on
a linear space.

In the present paper, we introduce the concept of fuzzy n-normed linear space as a
generalization of n-normed space by Gunawan and Mashadi [11]. Bag and Samanta [1]
introduced a-norms on a linear space corresponding to the fuzzy norm on a linear space.
As an analogue of Bag and Samanta [1], we introduce the notion of a-n-norm on a linear
space corresponding to the fuzzy n-norm on a linear space. Based on Elumalai et al. [3]
and Elumalai and Souruparani [5], we introduce the notion of best approximation sets
in a-n-norms and establish some results on it.

2. Preliminaries

For the sake of completeness, we reproduce the following definitions due to Gahler [9],
Gunawan and Mashadi [11], Elumalai et al. [3], and Bag and Samanta [1].
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Definition 2.1 [9]. Let X be a real vector space of dimension greater than 1 and let ||, o]
be a real-valued function on X x X satisfying the following conditions:
(1) llx, yIl = 0 if any only if x and y are linearly dependent,

2) syl = lly,xll,
(3) llax, yll = lalllx, yll, where « is real,
4) llx, y +zll < Iyl + llx, 2]l

I, o]l is called a 2-norm on X and the pair (X, ||, ¢||) is called a linear 2-normed space.

Definition 2.2 [11]. Let n € N (natural numbers) and let X be a real vector space of di-
mension d > n. (Here we allow d to be infinite.) A real-valued function |le,..., ]| on
X x - - - x X satistying the following four properties,

-

(l)nllxl,xz,...,an = 0 if any only if x1,x3,...,%, are linearly dependent,
(2) lIx1,x2,..., %, |l is invariant under any permutation,
(3) lIx1,%2, ..., ax, ]l = |l l[x1,%2,...,%, || for any & € R (real),
(4) llxr, %2505 x0-1,y 2l < s X255 X1, Y11+ X1, X2, X015 2115
is called an n-norm on X and the pair (X, ||e,...,||) is called an n-normed space.

Definition 2.3 [3]. Let (X, ]|, e]|) be a linear 2-normed space and let G be an arbitrary
nonempty subset of X and xy € X. Then, for every x € X and for every z € X\ G which is
independent of x and xo, d;(x,G) <||x — xo,z|| + d.(x0, G), where d.(x,G) = infyeq [l x -
& zll. For each G C X and xy € X, define D,(x9,G) = {x € X : d,(x,G) = |lx — x0,2l +
d;(x9,G)} for any z € X\ G which is independent of x and x.

Also P (x) = {go € G: llx — go,zll = d.(x,G)} and PgL(x0) = {x € X : lx — x0,2[| =
d,(x,G)}, where x¢ € G.

Definition 2.4 [1]. Let X be a linear space over F (field of real or complex numbers). A
fuzzy subset N of X X R (R, set of real numbers) is called a fuzzy norm on X if and only
ifforallx,u € X and c € F,

(N1) for all t € R with t <0, N(x,t) =0,

(N2) forall t € R with t >0, N(x,t) = 1 ifand only if x = 0,

(N3) forall t € R with t >0, N(cx,t) = N(x,t/|cl), if ¢ #0,

(N4) foralls,t € R, x,u € X, N(x+u,s+t) >min{N(x,s),N(u,t)},

(N5) N(x,0) is a nondecreasing function of R and lim;_. N(x,t) = 1.
The pair (X,N) will be referred to as a fuzzy normed linear space.

THEOREM 2.5 [1]. Let (X,N) be a fuzzy normed linear space. Assume further that
(N6) N(x,t) >0 forall t >0 implies x = 0.
Define ||x|lo = inf {t: N(x,t) = a}, a € (0, 1).
Then {l o |l : a € (0,1)} is an ascending family of norms on X (or) a-norms on X corre-
sponding to the fuzzy norm on X.

3. Fuzzy n-normed linear space

By generalizing Definition 2.2, we obtain a satisfactory notion of fuzzy n-normed linear
space as follows.
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Definition 3.1. Let X be a linear space over a real field F. A fuzzy subset N of
X x -+ x X XR (R, set of real numbers) is called a fuzzy n-norm on X if and only if
-

(N1) forall £ € R with £ < 0, N (x1,%2,..., % £) = 0,

(N2) forallt € Rwitht >0, N (x1,%2,...,%,,t) = 1 ifand only if x,x5,...,x, are linearly
dependent,

(N3) N (x1,%2,...,%n, ) is invariant under any permutation of x,%x2,..., X,

(N4) for all t € R with t >0,

N (x1,%X25...,CXpyt) = N(xl,xz,...,xn,ﬁ» ifc# 0, c € F (field), (3.1)

(N5) for all s,t € R,
N(x1,%2,. %0 + x5, +1) = min {N (x1,%2,...,%1,5), N (X1,%2,...,%,,1) }, (3.2)

(N6) N(x1,%2,...,%n,°) is a nondecreasing function of R and lim;.. N(x1,x2,...,
X, t) = 1.
Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 3.2. From (N3), it follows that in an f-n-NLS,
(N4) forall t € R with t >0,

t .
N (X1,X250 .5 CXiyer s Xy t) = N(xl,xz,...,xi,...,xn,m), ifc#0, (3.3)

(N5) forall s,t € R,

N(X1,X25 003 Xi + X} 5oy Xy S+ 1)
) , (3.4)
>min {N(x1,%2,...sXise 03Xy S), N (X1,X250 05X 5o s Xy £) }

The following example agrees with our notion of f-n-NLS.

Example 3.3. Let (X, ||e,e,...,¢]|) be an n-normed space as in Definition 2.2. Define

N (x1,%25...sXns1)
t

— > hent>0, t e R, »X25eees eXxX- XX,
t+||x1,x2,...,xn|| whent > (X1 X2 x") - - (35)

n

0, when t < 0.

Then (X,N) is an f-n-NLS.
Proof. (N1) for all t € R with ¢ < 0, we have by our definition

N (x1,%25...,%n,t) = 0. (3.6)
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(N2) for all t € R with ¢ >0, we have N(x1,x2,...,%,,1) = 1
(i) if and only if #/(¢ + llx1,x2, ..., xull) = 1,
(ii) ifand only if t = £+ [[x1,%2,..., Xl
(iii) if and only if [|x1,x2,..., %41l = 0,
(iv) if and only if x;,x2,...,x, are linearly dependent.
(N3) forall t € R with ¢ >0,

t
t+ |1, %2, 05 0] |
p— t p—
t+ %1, %2505 Xns X1

N(x1,%X25. .5 Xnyt) =

(N4) Forallt € Rwitht>0andc € F, c#0,

N(xl,xz,...,xn,i> = Ylc|
lc| (t/Icl) + ||x15 %25y ]|
_ t/|c|
—(t+lell|xn, X, 2a]) /D]
_ t
ot el xnxs 0]
t

B =N 1).
t+[|x1,%25 5 X | (x1,X2,...,CXps )

(N5) We have to prove

N(X1,%2,...sXn x5 +1) = min {N (x1,%2,...,%1,8), N (X1,X2,..., %, 1) }.

If
(a) s+t<0,
b)s=t=0,
(c) s+t>0;5s>0,t<0;s<0,t >0, then the above relation is obvious. If
(d) s>0,t>0,s+t >0, then
s+t
N(x1,%2,...,%p +X,,s+1) =
(61,05 o 4 2 54 1) s+t+||x1,x2,.. %0 + x|
s+t
> .
s+t+||xn, %0, x|+ [|xX1 %2, x|
If
S t
> ,
sH|x1x0, x| Tt [x X2, x0 |
then

s t
- >0,
sH||xnx0s.oxal| XL X005 10|

N (x1,%25.. s XpyXn—1,t) =....

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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which implies
s(t+|]xn, x50 |]) = t(s+ | |x1, %25, x4]]) = 0, (3.13)

which in turn implies

sl|x1, %2505 x0) | — tl|x1, %250 %] | = 0. (3.14)
So
s+t _ t
stt+||xn X0, xal| X x0, 10| XX, x|
, (3.15)
_ s||x1, %250 x| | — El|x1, %2505 x|
(s+t+]|x1, %0 oo Xn|| + X1, %25 x4 |) (E+ |1, %2550 ]])
By (3.14),
st —_— L) (3.16)
sHt+||xn X0, xal| X %0, Hx0] | XX, x0 |
which implies
st > A (3.17)
5+t+||x1>x2a~->xn||+||xl)x2y---)xn|| t+||x1,x2,...,xn||
Similarly, if
t S
. , 3.18
P oy | [y | o | (3.18)
then
st > S . (3.19)
stt+||xn, %0, x| X% HxL] T s X X2, x|
Thus,
N (X1,%2,.. %0 + x5+ 1) = min {N (x1,%2,...,%1,8)s N (X1,X25...,X), 1) }. (3.20)

(N6) For all 11,1, € R, if t; <, < 0, then, by our definition,

N(xl,xz,...,x,,,tl) = N(xl,XZ,...,Xn,tz) =0. (3.21)
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Suppose t; > t; >0, then

t B A
t2+||X1,X2,...,Xn|| t1+||X1,X2,...,Xn||
(3.22)
_ ||X1,X2,...,Xn||(t2—t1) >0
(ta+ |1, %2, 20| |) (1 + 215205 xal]) —
for all (x1,%x2,...,%,) € X X - - - X X, implies
n
f2 > b , (3.23)
tz+||X1,X2,...,Xn|| t1+||x1,x2,...,x,,||
which in turn implies N (x1,%2,..., %1, 2) = N(X1,X2,...,Xn, 11)-
Thus N(x1,%2,...,%y,t) is a nondecreasing function.
Also,
lim N (x;,x Xy t) = im-——
oo 1>5X25-5Xn> _taoot—f—”xl’xz’“_,xn” (324)
= lim ! =1 .
= t(1+ (1/0)||x1,%0,..ox4]])
Thus (X,N) is an f-n-NLS. O

As a consequence of Theorem 2.5, we introduce an interesting notion of ascending
family of a-n-norms corresponding to the fuzzy n-norm in the following theorem.

THEOREM 3.4. Let (X,N) be an f-n-NLS. Assume the condition that
(N7) N(x1,%2,...,%n,t) >0 for all t > 0 implies x1,%2,...,%, are linearly dependent.
Define ||x1,%2,...,Xnlle = Inf{t: N(x1,%2,...,%n,1) = a}, @ € (0,1).
Then {||e,e,...,ello:a € (0,1)} is an ascending family of n-norms on X. These n-norms
are called a-n-norms on X corresponding to the fuzzy n-norm on X.

Proof. (1) llx1,%2,...,%nlla = 0. This
(1) implies inf {t : N(x1,%2,...,%4,t) = a} =0,
(ii) implies, for all t € R, t > 0, N(x1,%2,...,Xn, 1) = a >0, a € (0,1),
(iii) implies, by (N7), x1,x2,...,%, are linearly dependent.
Conversely assume that x1,%»,...,x, are linearly dependent. This
(i) implies, by (N2), N (x1,%2,...,%,,¢) = 1 forall t >0,
(i) implies, for all & € (0,1), inf{t: N(x1,%2,...,Xn,t) = a} =0,
(iii) implies [|x1,%2,...,Xnll4 = 0.
(2) As N(x1,x2,...,Xy,t) is invariant under any permutation, it follows that [|x;,x,...,

Xn|l4 1s invariant under any permutation.
(3) If ¢ # 0, then

||x1,%2,...,cxn|, = Inf {s: N (x1,%2,...,¢X4,5) = at}

(3.25)
= inf {s : N<x1,x2,...,xn, ﬁ) > oc}.
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Let t = s/|c|, then

l[x1,%25...cxn||, = Inf {[c|t : N (x1,%2,...,%n, 1) = o}
= |clinf {t: N (x1,%2,...,%n,t) = &} (3.26)

= ‘C|||x1’x2)---)xn||a.

If ¢ = 0, then
l[x1,%2,..» x|, = |Jx1,%2,...,0]],
:0:0||x1)x2)---)xn||a (327)
= lcl||x1,%2,...,%n | o Ve €F (field).
(4)

||x13x23~-’xn||a+ ||x1)x2,...,x;||a
=1inf {t: N (x1,X2,...,%n,1) = &} +inf {s: N (x1,%2,...,%,,5) > a}

=inf{t+s: N(x1,%0,...,%0t) = & N(x1,%2,...,%,,5) = a}

3.28
>inf{t+s: N(x1,%2..., %, + X, £ +5) > a} ( )
Zinf{r:N(xl,x2,.__,xn+x;,r) Z“}, r=t+s
= ||x1,%250 ., X0 + X7 |

Therefore, |lx1,x2,..., %0 + X o < [1X1, %2, s Xl + 1215255 x5 e
Thus {||e,e,...,e|s:a € (0,1)} is an a-n-norm on X.
Let0 < ) < ay. Then
[[X15%25. . X[, = Inf {£: N (x1,%2,...,%0,1) = a1},
. (3.29)
15525 X[, = Inf {£: N (x1,%2,...,%0, 1) = a2},
As oy < ay,
{t:N(x1,%20,. . %n5 ) = Ao} C it N(x1,%2,5.05Xnst) = a1} (3.30)
implies
inf {t: N (x1,%,...,%0,t) = ax} > inf {t: N (x1,%2,...,%n,1) > a1} (3.31)
which implies
215 X255 | o, = |21 X055 X, - (3.32)

Hence, {||e,e,...,ell4:a € (0,1)} is an ascending family of a-n-norms on X correspond-
ing to the fuzzy n-norm on X. (]
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4. Best approximation sets in a-n-normed space

Inspired by this a-n-norm on X, we introduce the notion of two subsets of X, namely,
sz,x3,...,xn (xOx G) and PG,xz,x3,...,xn (X)

Definition 4.1. Let (X, |e,e,...,|l,) be an a-n-normed space corresponding to the fuzzy
n-norm N on X. Let G be an arbitrary nonempty subset of X and xy € X. Then for every
x € X and for every x2,x3,...,%, € X\ G which is independent of x and x,

dxz,xg,...,x,, (.X', G) = ||x — X05X2,X35. .. J-xn”a + dxz,x3 ..... Xn (-x(b G)) (41)
where

Ay, (%, G) = Inf ||x — g, %2, %3, ..., X | - (4.2)
geG

For each G € X and x, € X,we define

sz,x3 ..... Xn (xO’ G)

(4.3)
= {-x eX: dxz,X3 ..... X (X, G) = ||x — X0,X2,X35. .. :xn”,x + dXz,X3,...,Xy, (XO) G)}
for any x3,x3,...,%, € X\G which is independent of x and x,.
We denote
PGy sy, (%) = {20 € G [|x = 80,%2,%3, . 5 X | = Dy, (6, G (1)

PG, (%0) = {x € X 1 ||x = x0,%2, X35 X |y = Ay s, (6, G) ],

where x; € G.

We give the following examples in the a-2-normed linear space and a-n-normed
linear space for the sets Dy, ;. .x (X0,G) and PG, x,,..x, (%). It is easy to find the set

=1
PG,Xz X3 500X (Xo).

Example 4.2. Let X = R? be a linear space over R.
Define |[e,¢]l : X X X — R by

||x1,x2||1 = max{ |ﬂlb2 —ab |, |171C2 — by |, |01€2 —ax( | },

1 (4.5)
e xally = 5 {max{| by = asbs [, [brca = bacr [, [arc2 = aacr [ 11,

where x; = (a;,bi,¢;) € R3,i=1,2. Then (X, ||e,|[;) and (X, ||, ¢||5) are 2-normed linear
spaces.
Define N: X X X xR — [0,1] by

1, ift>||X1,X2||1,
N(x1,x2,t) =10.5, if||x;, x|, <t <||x1,%2]|; (4.6)

0, ift < ||X1,X2||2.

Then (X, N) is a fuzzy 2-normed linear space. Define [|x1,x; |l = inf{t: N(x1,%x2,1) = a},
ae (0,1).
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The a-2-norms are given by

[|x1,%2]|, = ||x1,%2]];, when1>a>0.5,

(4.7)
= ||x1,x2||,, whenO0<a<0.5.
Let G = {(a,0,0) : a € R} be a subset of X.
Choose xo = (0,1,1) and x, € K = {(0,0,k) : k € R\ {0}}.
Then
Dy, (x0,G) = {x =(0,b,0), b € R"\{0} : dy,(x,G) = ||x — x0, %2}, + dx, (x0,G) }, (45)
PG, (x) ={¢ =(a,0,0): —1 <a <1} '
Example 4.3. Let X = R™"! be a linear space over R.
Define |[e,e,...,e[[: X X --- XX — R by
[ "
[|x1,%2,.. ., %u||; = max {A1,As,..., A},
1 (4.9)
[|x1,%2,..o%0 |, = i{max{Al,Az,...,An}},
where
ajpp a3zt Al(n+l)
M=l
Any  Apz "¢ An(n+1)
aiz ottt Ain+l) 411
o R
A3 "t Aun+l)  Gal (4.10)
an aiz . Qin
A, =
anl An2 " Qun

and x; = (ai1,aip,- .., aim+1)) € R i=1,2,...,n.

Then (X, |[e,e,...,¢]l;) and (X, |le,...,e,e]l;) are n-normed linear spaces. Define N :
XX+ xXxXR - [0,1] by
-

n

1, if £ > [|x1, %25, %nl| 1>
N (x1,%2,..s %0, 1) =1 0.5, if [[x1,%2,.. 0, %] |, < £ < [|x1,%2,. ., %4]| (4.11)

0, ift<||x1,x2..., %],

Then (X,N) is a fuzzy n-normed linear space. Define ||x1,%2,...,%,llo = Inf{f: N(x1,x2,
cosXpst) = at, € (0,1).
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The a-n-norms are given by

||x1,x2,...,xn||a
=||x1,%2,...,%4]|,, when1>a>0.5, (4.12)

=||x1,%2,...,%1|,, When0<a <0.5.

Let G = {(a,0,0,...,n times 0) : a € R} be a subset of X.
Choose xo = (0,1,1,...,n times 1) and

50,2500 € K = (0,04, k10 ) KoK € RVIOH, (413)
That is,
xZ = (0)0)k§2))...,k,(1i_)1>,
55 = (00,47, 42)),
(4.14)
xn = (0,0, k).
Then
Dy, ..., (x0>G)
= {x=(0,b,0,...,(n—1) times 0), b € R*\ {0} : (4.15)
dxz,xa ..... Xn (X, G) = ||.x—XO,Xz,X3,...,Xn||‘x+dx2,x3)w)xn (_xO’G)},
Where de,X3 ..... Xn (x) G) = maX{|b|A, ‘a|A}’
2 2 2
g0
3 3 3
R Rk
: (4.16)

R S R
|| = X0, %25 . Xul|, = 1b— 114, Ay 5,0, (%0, G) = max {A, |a| A}

and also Pgy, x,,..x, (X) = {g = (a,0,...,ntimes 0) : =1 <a < 1}.

By routine calculation the following theorems are validate from the Examples 4.2 and
4.3.

THEOREM 4.4. For x € Dy, 4, x,(%0,G) and y € Dy, 4, .+, (x,G),
(1) 1y = %0,%2,%35 s Xnlla = 11y = %, %2, %3, s X o+ 1 — %0522, 35 ., Xnll
(11) y—X+x0€ sz,X3 ..... X (xO: G)
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Proof. (i) Letx € Dy, x,, . x,(%0,G) and ¥ € Dy, x;, . x, (%, G).
Then by (4.3) we have
dxz,X3 ..... Xn (X, G) = ||x — X05X2,X35... :xn”a + dxz,xg,...,x,, (xO) G)

dxz,x3,...,x,1 ()A G) = | |)’ X X2,X35. 05X | |oc + dxz,x3,...,xn (X, G)

Consider
||y — X0, X2, X35, Xn]|
= |ly = x0 — x+ %62, X3,..., x|,
=[|(y =) + (x — x0),X2, X35, Xn |,
<[y = x0x2,05, 5 X[ + {1 = x0,22, %355 x|
= (duy s,y (15 G) = Ay, (%, G))
(s (6G) — s, e, (50, G))
= d 500 (1> G) = Ay s, (%0, G)
<|ly = %0,%2,%35. .., Xn|| -
Therefore,

[y = %0,%2, %35 > Xu |, = ||y = %2, X35> X |, + || = X0,2%2, %35, X |-

(ii) By (4.2), we have

A s, (¥ — X +%0,G)
= dey ey (1,G) = ||y = (¥ = x+%0),%2, X35, X |,
=de iy (1, G) = ||x = X0, %2, X3, ., %],
= (|ly = %,%2,%3,. . s Xn |, + dxs s, (6, G)) = ||X = X0,%2, X35> X |,

=5kl + 15— 3052050 ol + s, (20 )
_ ||X — XOaXZaX.’n“"XnHa

=y = %,%2,%3,.. ., %l + derrs,. 00 (X0, G)

= H(}’—x‘l'xo) _x0>x2>x3’--->xn||a+dx2,x3 ..... Xn (Xo,G).

Again by (4.2), it follows that

2 B ()’ —x+x0,G) = ||(J’ —x+x0) *xO’x2’x3)---)xn||a+dxz,x3 ..... Xn (x0,G)
which implies y — x4+ x9 € Dy, ;,..x, (X0, G).
THEOREM 4.5. Let x € Dy, .. x, (%0, G). Then

..... X0 G))

.....

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

O
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Proof. (i) Let y = Axp+ (1 —A)x such that 0 < A < 1. Then

dXz,X3 ..... Xy ()h G)

= dy, s, (6, G) = ||x = y,%0,%3,. 5 X
(4.22)
= ||x_x03x23x3:-~-axn||a+dx2,x3 ..... X (Xo,G) - ||X—)/,X2,X3,---,xn||a

= ||y_x0>x2)x3>---)xn||a+dx2,x3 ..... Xy (Xo,G).
By (4.2), we have

dxz,xg,...,x,, (ya G) = | |)’ — X0,X2,X35...5Xp | |oc + dxz,x3,...,x,, (xO: G) > (4'23)

which implies y € Dy, 1, x, (%0, G).
(ii) Let y € Dy, x,,..x, (%, G). Then, by (4.3) and Theorem 4.4(i),

dxz,xs,...,xn (}’) G)

b/ — X, X2,X35. .. ’xn”“ + dxz,xh..,xn (x: G)

4.24
= ||y = %,%2,%3,..., x|, + (||x = %0, %2, %3, .. ., Xl + D, (%0, G)) (424)

= H)’ = X0>X25X35. .. >-xn||a + dxz,x3 ..... X (XOa G)’
Therefore, Dy, x,...x, (X, G) C Dy, x,....x, (%0, G). O

THEOREM 4.6. Let xq, yo € X and A # 0. Then
(1) sz,xg,...,xn (XOJ G) + )’o = sz,x3,...,x,, (xO + )/o, G + )’0),
(11) sz,xg,...,xn (Xo,/\G) = Asz,x3,...,xn (XO/A: G)

.....

dxz,x3 ..... Xy (X+)/0,G+yo) = dxz,x3 ..... Xy (X, G)
= ||x_xO)xZ)x3)---Jxﬂ||a+dX2,X3 ..... Xn (X(),G) (425)

=||lx+y0 = (X0 + ¥0)>%2, %35, Xnl |, + dis ..., (%0, G).

.....

.....

de)xs ..... Xn ()’ =)o, G)
:dxz,x3 ----- xn()’,G-f-yo)

(4.26)
= ||y = yo = X0,%2, X35 . Xn] | + Ay s,...x, (%0 + Y0, G+ o)

=|(y = ¥0) — %0,%2, X35 . X |, + Ay s, %, (%0, G).
Therefore, y — ¥y € Dx, x,,..x, (%0, G), and so

Dy, x,,...x, (X0, G) + Y0 = Dsysy (%0 + 10, G+ ¥0). (4.27)
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.....

X 1
dxbxs ..... X (X)G) = mdxz,ﬁg ..... Xy (x)AG)
1
=i (% = x0, %2, %35 . s %[ + Dy, (X0,AG)) (4.28)
_||x_*o X0
- H/\ A » X2 X355 Xy ‘x+dxz,x3,...,xﬂ< /1 )G>
Therefore, x/A € Dy, x,, . x, (%0/A, G).
Conversely, let x € Dy, 4, x, (x0/A,G). Then
dxz,x3 ..... X (Ax’AG) = M|dxz,x3 ..... X (x,G)
= |A| ( X = @,xz,x%...,xn +dxz,x3,...,xn<@,G)> (429)
A " A

= || Ax = x0,%2, X3, . s X[ + iy x5, (X0,AG).

.....

.....

THEOREM 4.7. Let G C G and xy € X, where G is a subset of X such that
dxz,X3,...,x,, (XO) G) = dxz,x3,...,x,, (xO: G1 ) . (430)
Then sz,x3,...,xn (XOJ Gl) C sz,x3,...,xn (XOJ G)

.....

dXz,X; ..... Xn (x,G) = dxz,xh..,x,, (x, Gl)
= ||x_xo)x2>-x3>~--)xn||a+dxz,x3 ..... X (xO,Gl) (4.31)
= ||x_x0>x2’x3’---)xn||a+dx2,X3 ..... Xn (Xo,G).

By (4.2), it follows that

dXz,X3 ,,,, X (x,G) = ||x — X05X2,X35... >xn||(x + dxz,x3 ..... X (x0> G)) (4.32)

,,,,

.....

(ii) Dy, xs,...x, (%0, G) = PGl 4. (x0) for every xo € G.

Proof. (i) Let x € Dy, x,,..x, (%0, G) and g € Pgx, x,,...x, (%0)-
Now,

dxz,X3,...,Xn (X) G)

% = X0, %2, X35> X |, + s, x, (%0, G) (4.33)

= ||x — x0,%2, X35 . s X || + || X0 — 0> %2, X35> X[ -
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By Theorem 4.4(i), we have

dxz,x3 ..... xn(xaG) = ||x_g0>x2’x3>~--)xn||aa

(4.34)

which implies gy € P, x,...x, (X), which in turn implies Pg,y, x;....x, (X0) C PG xy,x5,..,x, (X)-

(i) Let xo € G and x € Dy, x,,..x, (X0, G). Then

dXz,X3,...,Xn (x’ G)

|X — X0,X2,X35. .. axn”a + dxz,x3,...,x,, (x(): G)

= ||x — x0,%2,%3,...,%n||,, Wherexy € G,
which implies x € Pgl . . (x). So
Dy, xs,..x, (X0, G) C Pé,lxz,X3,...,xn (x0).
Conversely, let x € Pgl .. (xo).
Then x, € P x, x,...x, ().

Since xg € G,dy, x,...x, (X0, G) = 0.
Hence, we have

dxz,m,...,x,1 (.X', G) = ||X — X05X2,X35. .. )xn”a + dXz,X3,...,X,, (.X'o, G)a

which implies x € Dy, .. x, (%0, G), which in turn implies

Pé,icz,x%...,x,, (Xo) c DXz,xa,...,Xn (Xo,G).

From (4.36) and (4.38), we have

DXZ)XS)---)xn (X(), G) = Pé,&cz,xg,...,xn (X()).
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