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The well-known necessary and sufficient criteria for the Riemann hypothesis of M. Riesz
and of Hardy and Littlewood, based on the order of certain entire functions on the pos-
itive real axis, are here embedded in a general theorem for a class of entire functions,
which in turn is seen to be a consequence of a rather transparent convolution criterion.
Some properties of the convolutions involved sharpen what is hitherto known for the
Riesz function.

1. Introduction

RH stands for the Riemann hypothesis, and RHS for RH and simple zeros. In this paper,
the expression f (x)� xa+ε always means that f (x)�ε xa+ε as x→ +∞ for all ε > 0.

Riesz [7] proved the following criterion.

Theorem 1.1. If

R(x) :=
∞∑
n=1

(−1)n+1xn

(n− 1)!ζ(2n)
, (1.1)

then

RH⇐⇒ R(x)� x1/4+ε. (1.2)

Likewise, Hardy and Littlewood [6], modifying Riesz’s original idea, proved a similar
theorem.

Theorem 1.2. If

H(x) :=
∞∑
n=1

(−x)n

n!ζ(2n+ 1)
, (1.3)

then

RH⇐⇒H(x)� x−1/4+ε. (1.4)
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We will see easily below that both theorems are included in a general RH criterion for
a class of entire functions, which in turn is derived from a rather transparent, not to say
trivial criterion for RH, Theorem 3.5, predicated on the order at infinity of convolutions
with g(x) :=∑n≤x µ(n)n−1. As a consequence, the known properties of both R(x) and
H(x) can be sharpened. For example, it is shown that both have an infinite number of
positive, real zeros, in contrast with Riesz’s statement that R(x) has at least one such zero.

While approaching these theorems, the author is well aware, not without trepidation,
of E. C. Titchmarsh’s trenchant comment in [8, 9]:

“These conditions have a superficial attractiveness since they depend explicitly only on
values taken by ζ(s) at points in σ > 1; but actually no use has ever been made of them.”

It has also been stated by Borwein et al. in [5], in reference to both Riesz’s and Hardy-
Littlewood’s criteria, that

“It is unclear whether there be any computational value whatsoever to these equivalen-
cies, especially as the big-O statement is involved and therefore infinite computational
complexity is implicit, at least on the face of it. Still if there be any reason to evaluate such
sums numerically, the aforementioned methods for recycling of ζ(even) or ζ(odd) values
would come into play.”

In this context, we have recently proved a discrete version of Riesz criterion in [4, 2]
that lends itself well to calculations. K. Maslanka (personal communication) has carried
out for us extensive numerical work that fits well with RH being true. It should seem
appropriate to provide a general recipe to transform the power series criteria into corre-
sponding sequential criteria.

2. Preliminaries and notation

Throughout, s stands for a complex variable with σ = �(s). If J is an interval, open,
closed, or semiclosed, then AJ is the family of functions which are analytic in the strip
σ ∈ J , and AcJ is the family of functions which are continuous in the strip and analytic in
its interior.

In this paper, the (left)-Mellin transform of f : (0,∞)→ C is defined by

f ∧(s) :=
∫∞

0
t−s−1 f (t)dt, (2.1)

when the integral converges absolutely. For a∈R, introduce the associated norms

Na( f ) :=
∫∞

0
t−a−1

∣∣ f (t)
∣∣dt. (2.2)

Na(·) is indeed the norm of L1((0,∞), t−a−1dt).
Clearly

N0(φ)= ‖φ‖L1(R×), (2.3)

where R× := (0,∞)× is the multiplicative group of positive reals provided with its Haar
measure x−1dx.
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The following lemma is standard.

Lemma 2.1. If Nσ( f ) <∞ for σ ∈ J , then f ∧ ∈AcJ .
We will say that φ is proper when Nσ(φ) <∞ at least for σ ∈ (−1/2,0]. In this case,

obviously φ∧ ∈ Ac(−1/2,0]. We say that φ is Mellin-proper if it is proper and φ∧(s) �= 0 in
the strip σ ∈ (−1/2,0).

The Fourier transform � in f ∈ L1(R×) is a continuous function which coincides with
the Mellin transform on the line σ = 0:

�( f )(τ)= f ∧(iτ), τ ∈R, f ∈ L1(R×). (2.4)

Note. We reserve ‖ · ‖p to denote the norm of the spaces Lp((0,∞),dx), except, of course,
for p =∞, which is the same for the measures dx and x−1dx.

Let, as usual,

M(x) :=
∑
n≤x

µ(n), g(x) :=
∑
n≤x

µ(n)
n

, (2.5)

and define

g1(x) := g(x−1)x−1. (2.6)

Partial summation readily gives

M(x)� xα⇐⇒ g(x)� xα−1, α∈
[

1
2

,1
)

, (2.7)

hence Littlewood’s RH criterion becomes the following theorem.

Theorem 2.2.

RH⇐⇒ g(x)� x−1/2+ε, (2.8)

g(x)� x−1/2 =⇒ RHS . (2.9)

The prime number theorem in the form M(x)� x(logx)−3 yields

g(x)� (logx)−2, (2.10)

hence

g ∈ Lp(R×), p ∈ [1,∞]. (2.11)

Summing by parts the Dirichlet series of (ζ(s+ 1))−1, one obtains

1
sζ(s+ 1)

= g∧(s)=
∫∞

0
x−s−1g(x)dx, σ ≥ 0, (2.12)

where the integral is absolutely convergent, and g∧ ∈A[0,∞). Setting s= 0 above yields
∫∞

0
x−1g(x)dx = 1. (2.13)
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The Littlewood criterion for RH, (2.8) of Theorem 2.2, can be translated to a criterion
based on Lp-norms, which may have some theoretical significance.

Theorem 2.3. With g1(x) := x−1g(x−1),

RH⇐⇒ (‖g1‖p <∞, ∀p ∈ [1,2)
)
, (2.14)

and, unconditionally, ‖g1‖2 =∞.

Proof. Note that ‖g‖1 <∞ is unconditionally true. The direct implication follows imme-
diately from Theorem 2.3. For the converse, assuming that ‖g1‖p <∞ for some p ∈ (1,2),
an application of Hölder’s inequality gives

∫∞
0
x−σ−1

∣∣g(x)
∣∣dx =

∫ 1

0
xσ
∣∣g1(x)

∣∣dx ≤ ∥∥g1
∥∥
p

(∫ 1

0
xσqdx

)1/q

<∞, (2.15)

for σ > 1/p− 1. Since this ranges in (−1/2,0), we apply Lemma 2.1 to the integral on the
right-hand side of (2.12) to obtain the analytic extension of (sζ(s+ 1))−1, and hence, RH.

Now let f (x) := ∫ x0 g(t)dt, then
∫∞

1 x−s−1 f (x)dx = (s(s− 1)ζ(s))−1, a calculation easily
justified at least for σ ≥ 1. The right-hand side has poles on the line σ = 1/2, hence, by
the order [1, Lemma 2.1], f (x) �= o(x1/2), and [1, Lemma 2.3] implies that ‖g‖2 =∞; but
‖g‖2 = ‖g1‖2. �

3. Convolution criterion for the Riemann hypothesis

3.1. The convolution operator G. For measurable φ : (0,∞)→ C, and any given x > 0,
we define

Gφ(x) :=
∫∞

0
g(xt)φ

(
t−1)t−1dt, (3.1)

provided the integral converges absolutely. A rather general condition for existence is this:
Gφ(x) exists and is continuous for all x > 0 when φ is bounded on every interval (δ,∞),
δ > 0. So far, the most interesting class of examples arises as follows: for any power series
of type

φ(z) :=
∞∑
n=1

anz
n, (3.2)

write

φ∗(z) :=
∞∑
n=1

anzn

nζ(n+ 1)
. (3.3)

One must note the trivial fact that there exists another series φ1(z) such that φ(z)= φ∗1 (z).
At first blush, the following proposition seems only interesting for entire functions, and
for z = x > 0; it is nevertheless convenient not to lose sight of the general case.
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Proposition 3.1. If φ(z) and φ∗(z) are as above, and R > 0 is their common radius of
convergence, then

φ∗(z)=
∫ 1

0
g1(t)φ(zt)dt, |z| < R, (3.4)

φ∗(x)=Gφ(x), 0 < x < R. (3.5)

Proof. Write (2.12) for s= n as (nζ(n+ 1))−1 = ∫ 1
0 g(t−1)tn−1dt, and substitute in the def-

inition of φ∗ to obtain (3.4), since the interchange of sum and integral is totally trivial.
Now, take z = x ∈ (0,R) and change variables to obtain

φ∗(x)=
∫∞

0
g(xt)φ

(
t−1)t−1dt =Gφ(x), 0 < x < R. (3.6)

�

Clearly, the Riesz and Hardy-Littlewood functions defined in (1.1), and (1.3), satisfy

x−1R
(
x2)=Gα(x), α(x)= x(1− 2x2)e−x2

,

H
(
x2)=Gβ(x), β(x)=−2x2e−x

2
,

(3.7)

for all x > 0. It is quite easy to see that both α and β are Mellin-proper.
We now establish in some generality the main elementary properties of G, in a context

relevant to RH.

Lemma 3.2. Assuming that φ∈ L1(R×), then

Gφ= g ∗φ∈ L1(R×) (3.8)

in the sense of R×-convolutions. Gφ is continuous and vanishes both at 0 and at ∞. In par-
ticular, Gφ is bounded,

N0(Gφ)≤N0(g)N0(φ). (3.9)

The left-Mellin transform of Gφ exists at least on the line σ = 0:

∫∞
0
x−s−1Gφ(t)dx = 1

sζ(s+ 1)

∫∞
0
t−s−1φ(t)dt, σ = 0, (3.10)

where both integrals converge absolutely. A fortiori,

∫∞
0
x−1Gφ(x)dx =

∫∞
0
x−1φ(x)dx. (3.11)

Proof. g ∈ L1(R×), hence the integral in (3.1) is absolutely convergent for a.e. x, and
Gφ ∈ L1(R×). Since g is bounded, the continuity as well as the vanishing at the ends
follow from Lebesgue’s dominated convergence theorem. The inequality (3.9) is just ad
hoc notation for the Banach algebra property. On account of (2.12), �(Gφ)=�(g ∗φ)=
�(g)�(φ),φ∈ L1(R×) translates into (3.10), and letting s= 0, one obtains (3.11). �
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It is quite natural to seek conditions to extend the range of the identity (3.10) to ob-
tain a sufficient condition for RH. It proves convenient to identify separately some of the
simple steps of the process.

Lemma 3.3. If N0(φ) <∞, then

h(s) :=
∫ 1

0
x−s−1Gφ(x)dx (3.12)

is in Ac(−∞,0].

Proof. Note that the analyticity in the half-plane σ ∈ (−∞,0) is trivial since Gφ is
bounded by Lemma 3.2. But we need continuity at the boundary, so we argue that in
the interval of integration, we have x−σ ≤ 1 for all σ ≤ 0, hence by (3.9),

∫ 1

0
x−σ−1

∣∣Gφ(x)
∣∣dx ≤N0(Gφ)≤N0(g)N0(φ) <∞. (3.13)

Now apply Lemma 2.1. �

Lemma 3.4. If φ is proper, and Gφ(x)� x−1/2+ε, then

(Gφ)∧(s)= 1
sζ(s+ 1)

φ∧(s), σ ∈
(
− 1

2
,0
]

, (3.14)

where both sides are in Ac(−1/2,0].

Proof. On account of (3.10) and Lemma 2.1, all we are required to do is to show that
Nσ(Gφ) <∞ for σ ∈ (−1/2,0], then invoke analytic continuation. Accordingly, we split
the Nσ(Gφ) integral at x = 1: the interval (0,1) is already taken care of by Lemma 3.3.
Now, for the interval (1,∞), we have

∫∞
1
x−σ−1

∣∣Gφ(x)
∣∣dx�

∫∞
1
x−1−((σ+1/2)−ε)dx <∞, (3.15)

when 0 < ε < σ + 1/2. �

We therefore have the following necessary and sufficient condition for RH.

Theorem 3.5 (RH convolution criterion). Let φ be proper, then

RH=⇒Gφ(x)� x−1/2+ε, (3.16)

Gφ(x)� x−1/2+ε =⇒ (ζ(s+ 1)= 0=⇒ φ∧(s)= 0
)
, (3.17)

where only σ >−1/2 is considered. A fortiori, if φ is Mellin-proper, then

RH⇐⇒Gφ(x)� x−1/2+ε. (3.18)

It is easily seen that one also has the following general equivalence:

RH⇐⇒ (Gφ(x)� x−1/2+ε, ∀ proper φ
)
. (3.19)
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Proof of Theorem 3.5. The necessity implication (3.16) follows using the Littlewood cri-
terion (2.8), and a simple estimate of the integral (3.1) defining Gφ(x). The implication
(3.17) is just read off from Lemma 3.4. After this, the necessary and sufficient condition
(3.18) becomes trivial. �

As a corollary, we get the generalization of Riesz’s criterion to entire functions.

Theorem 3.6 (entire function RH criterion). Let φ be an entire function vanishing at zero
as in (3.2) and φ∗ the associated entire function defined in (3.3). If φ is Mellin-proper, then

RH⇐⇒ φ∗(x)� x−1/2+ε. (3.20)

If an entire function φ vanishes at zero, and φ(x)� x−a for some a ≥ 1/2, then it is
proper. In view of (3.7), the above criterion immediately proves the Riesz and the Hardy-
Littlewood criteria in Theorems 1.1 and 1.2.

4. Further properties of Gφ

The same argument used to prove the necessity implication in the main theorem
(Theorem 3.5) gives the following: g(x)� x−1/2 and N−1/2(φ) <∞ imply that Gφ(x)�
x−1/2. In view of (2.9), it is more interesting to show the next implication.

Theorem 4.1. If φ is Mellin-proper, and additionally φ∧ ∈ Ac[−1/2,0] does not vanish on
the line σ =−1/2, then

Gφ(x)� x−1/2 =⇒ RHS . (4.1)

Proof. By the hypotheses, and Lemmas 3.3 and 3.4, we have

1
sζ(s+ 1)

φ∧(s)= h(s) +
∫∞

1
x−s−1Gφ(x)dx, σ ∈

[
− 1

2
,0
]

, (4.2)

where h(s) ∈ Ac(−∞,0]. Now assume that s0 = −1/2 + iτ is a zero of ζ(s+ 1). We take
s= σ + iτ and let σ ↓ −1/2. While this happens, |h(s)| < a <∞, and |φ(s)| > b > 0; hence
the main assumption that Gφ(x)� x−1/2 yields

∣∣∣∣∣
1

sζ(s+ 1)

∣∣∣∣∣≤
a

b
+

1
b

∫∞
1
x−σ−1

∣∣Gφ(x)
∣∣dx�

∫∞
1
xσ−3/2dx� 1

σ − 1/2
, (4.3)

which shows that s0 is a simple zero. �

Theorem 3.5 admits a variant quite like the Lp-criterion of Theorem 2.3. Conditions
on φ need to be a bit stronger than in the main RH criterion (Theorem 3.5), namely, they
are set as in the above sufficiency theorem (Theorem 4.1) for RHS.

Theorem 4.2. Let φ be Mellin-proper, and define

ψ(x) := x−1Gφ
(
x−1), (4.4)
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then

RH⇐⇒ (‖ψ‖p <∞, ∀p ∈ [1,2)
)
. (4.5)

Furthermore, unconditionally on RH, if φ∧(s)∈ A[−1/2,0) does not vanish on the line σ =
−1/2, then

‖ψ‖2 =∞. (4.6)

Proof. First note that ‖ψ‖1 =N0(Gφ) <∞ is unconditionally true by (3.9). Now assume
RH. Pick any p ∈ (1,2) and write

‖ψ‖pp =
∫∞

0

∣∣Gφ(x)
∣∣pxp−2dx =

∫ 1

0
+
∫∞

1
. (4.7)

Gφ is bounded by Lemma 3.2 so the first integral is finite. For the second, note that
RH ⇒ g(x) � x−1/2+ε ⇒ Gφ(x) � x−1/2+ε, so the integral is finite when p < 2/(1 + 2ε).
Conversely, assume that ‖ψ‖p <∞ for an arbitrary p ∈ (1,2). Write the fundamental
identity (3.10) as

(Gφ)∧(s)= 1
sζ(s+ 1)

φ∧(s)= h(s) +
∫ 1

0
tsψ(t)dt, σ = 0, (4.8)

where h(s) is as in Lemma 3.3, thus in Ac(−∞,0]. On the other hand, Hölder’s inequality
shows that the last integral above converges absolutely for σ > 1/p− 1, thus (Gφ)∧(s) is
analytic in the strip σ ∈ (1/p− 1,0], and this implies that ζ(s) does not vanish in σ > 1/p.
This means that RH is true.

For the additional statement of the theorem, we now show that under the stronger
hypotheses for φ, one has ‖ψ‖2 =∞ unconditionally. Define f (x) := ∫ x0 Gφ(t)dt. The cal-
culation

∫∞
0
x−s−1 f (x)dx = φ∧(s− 1)

(s− 1)sζ(s)
(4.9)

is easily justified by Fubini’s theorem for σ = 1 in a way similar to (3.10). The additional
hypothesis for φ implies that φ∧(s− 1) is in A[1/2,1), and does not vanish on the critical
line, thus the left-hand side transform has a meromorphic continuation that certainly
has poles on the critical line. On the other hand, one easily shows that

∫ 1
0 x

−s−1 f (x)dx is
analytic in σ < 1. Hence, order [1, Lemma 2.1] can be applied to obtain f (x) �= o(x−1/2).
Finally, [1, Lemma 2.3] yields ‖Gφ‖2 =∞; but ‖Gφ‖2 = ‖ψ‖2. �

With mild restrictions on φ, but without assumption of RH, the order of Gφ(x), like
that of g, is limited between o(1) and O(x−1/2). For the maximal order, it is clear that

Gφ(x)= o(1), x −→ +∞, (4.10)

whenever φ∈ L1(R×) by Lemma 3.2. Using the error term of the prime number theorem,
one could be more specific about the order implied in o(1). At present, we do not think
this is worthwhile.
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As for the minimal order, if φ satisfies the conditions in Theorem 3.5 farther to the left,
that is, for some δ > 0, one has both Nσ(φ) <∞ and φ∧(s) �= 0 for σ ∈ (−1/2− δ,0], then

Gφ(x) �� x−1/2−ε, (4.11)

as follows easily from the reasoning in the proof of Theorem 3.5. But more is true without
strengthening the hypotheses on φ.

Proposition 4.3. If φ is Mellin-proper, then

Gφ(x) �= o(x−1/2). (4.12)

Proof. On account of Lemmas 3.3 and 3.4, we see that the integral

f (s) :=
∫∞

1
x−s−1Gφ(x)dx =−h(s) +

1
sζ(s+ 1)

φ∧(s), (4.13)

where h(s)∈ A(−∞,0], has a finite abscissa of convergence α≥−1/2. In this half-plane,
there are poles for f (s), therefore, by the order [1, Lemma 2.1], we get Gφ(x) �= o(x−1/2).

�

Finally, we deal with the oscillations of Gφ. If φ ∈ L1(R×) is real, and
∫∞

0 φ(t)t−1dt = 0,
then

∫∞
0 Gφ(t)t−1dt = 0 by (3.11), so, unless φ = 0, there must be at least one change of

sign in x > 0. This is simpler than Riesz’s argument in [7] to establish the existence of at
least one sign change for R(x). But again, one can prove more, namely, that the infinite
number of oscillations of g(x) is transmitted to Gφ(x) unconditionally.

Theorem 4.4. If φ is real and Mellin-proper, then there exists a β ∈ [0,1/2) such that

liminf
x→∞ xβ+εGφ(x)=−∞,

limsup
x→∞

xβ+εGφ(x)= +∞,
(4.14)

for all ε > 0.

Proof. Consider the same integral f (s) defined in (4.13) with abscissa of convergence α∈
(−1/2,0]. It is obvious that s= α cannot be a singularity of f (s), therefore the oscillation
[1, Lemma 2.2], based on Landau’s theorem for Laplace tranforms (see [10]), yields the
conclusion that β =−α. �

Obviously, the above results apply to Riesz’s and Hardy-Littlewood’s functions through
the relations x1R(x)=Gα(x) andH(x2)=Gβ(x). This clearly extends and sharpens some
of the properties of R(x) stated by Riesz in [7].

It might be of some interest to explore the connection between the general convolution
criterion in this paper and “A general strong Nyman-Beurling criterion for the Riemann
hypothesis” established by the author in [3].
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