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We discuss the uniqueness problem of meromorphic functions sharing one value and
obtain two theorems which improve a result of Xu and Qu and supplement some other
results earlier given by Yang, Hua, and Lahiri.

1. Introduction, definitions, and results

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. If for some a ∈ C∪ {∞}, f − a and g − a have the same set of zeros with the
same multiplicities, we say that f and g share the value a CM (counting multiplicities),
and if we do not consider the multiplicities, then f and g are said to share the value a IM
(ignoring multiplicities). We denote by T(r) the maximum of T(r, f ) and T(r,g). The
notation S(r) denotes any quantity satisfying S(r) = o(T(r)) as r →∞, outside a set of
finite linear measure.

We use I to denote any set of infinite linear measure of 0 < r <∞.
Due to Nevanlinna [9], it is well known that if f and g share four distinct values CM,

then f is a Möbius transformation of g.
Yang and Hua showed that similar conclusions hold for certain types of differential

polynomials when they share only one value. They proved the following result.

Theorem 1.1 [12]. Let f and g be two nonconstant meromorphic functions, n ≥ 11 an
integer, and a ∈ C− {0}. If f n f ′ and gng′ share the value a CM, then either f = dg for
some (n + 1)th root of unity d or g(z) = c1ecz and f (z) = c2e−cz where c, c1, and c2 are
constants satisfying (c1c2)n+1c2 =−a2.

Corresponding to entire functions, Xu and Qu proved the following result.

Theorem 1.2 [10]. Let f and g be two nonconstant entire functions, n≥ 12 an integer, and
a∈ C−{0}. If f n f ′ and gng′ share the value a IM, then either f = dg for some (n+ 1)th
root of unity d or g(z)= c1ecz and f (z)= c2e−cz, where c, c1, and c2 are constants and satisfy
(c1c2)n+1c2 =−a2.

To state the next result, we require the following definition.
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Definition 1.3 [4, 5]. Let k be a nonnegative integer or infinity. For a∈ C∪{∞}, denote
by Ek(a; f ) the set of all a-points of f , where an a-point of multiplicity m is counted m
times if m≤ k and k+ 1 times if m> k. If Ek(a; f )= Ek(a;g), say that f , g share the value
a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point
of f with multiplicity m (≤ k) if and only if it is an a-point of g with multiplicity m (≤ k)
and z0 is an a-point of f with multiplicity m (> k) if and only if it is an a-point of g with
multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a,k) to mean that f , g share the value a with weight k. Since
Ek(a; f ) = Ek(a;g) implies Ep(a; f ) = Ep(a;g) for any integer p (0 ≤ p < k), clearly if f ,
g share (a,k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g
share a value a IM or CM if and only if f , g share (a,0) or (a,∞), respectively.

With the notion of weighted sharing of values improving Theorem 1.1 the following
result is proved in [5].

Theorem 1.4 [5]. Let f and g be two nonconstant meromorphic functions, n ≥ 11 an in-
teger, and a∈ C−{0}. If f n f ′ and gng′ share (a,2), then either f = dg for some (n+ 1)th
root of unity d or g(z)= c1ecz and f (z)= c2e−cz, where c, c1, and c2 are constants satisfying
(c1c2)n+1c2 =−a2.

Now one may ask the following questions which are the motivations of the paper.
(i) What happens if in Theorem 1.2 the two nonconstant entire functions f and g are

replaced by two nonconstant meromorphic functions?
(ii) In Theorem 1.4, can the nature of sharing the value a be further relaxed? In the

paper, we investigate the solutions of the above questions. We now state the following
two theorems which are the main results of the paper.

Theorem 1.5. Let f and g be two nonconstant meromorphic functions such that n > 22−
[5Θ(∞; f ) + 5Θ(∞;g) + min{Θ(∞; f ),Θ(∞;g)}], where n is an integer. If for a∈ C−{0},
f n f ′ and gng′ share (a,0), then either f = dg for some (n+ 1)th root of unity d or g(z)=
c1ecz and f (z)= c2e−cz, where c, c1, and c2 are constants satisfying (c1c2)n+1c2 =−a2.

Theorem 1.6. Let f and g be two nonconstant meromorphic functions and n > max{8,12−
{3Θ(∞; f ) + 3Θ(∞;g)}} an integer. If for a ∈ C− {0}, f n f ′ and gng′ share (a,1), then
either f = dg for some (n+ 1)th root of unity d or g(z)= c1ecz and f (z)= c2e−cz, where c,
c1, and c2 are constants satisfying (c1c2)n+1c2 =−a2.

Remark 1.7. In Theorem 1.5 if we take f and g to be two nonconstant entire functions,
then the theorem is true for an integer n≥ 12. So Theorem 1.5 improves Theorem 1.2.

Remark 1.8. In Theorem 1.6 if we take f and g to be two nonconstant entire functions,
then the theorem is true for an integer n≥ 7.

Through the standard definitions and notations of the value distribution theory avail-
able in [2], we explain some definitions and notations which are used in the paper.

Definition 1.9 [3]. For a ∈ C∪{∞}, denote by N(r,a; f |= 1) the counting function of
simple a-points of f . For a positive integer m, denote by N(r,a; f |≤m) (N(r,a; f |≥m))
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the counting function of those a-points of f whose multiplicities are not greater (less)
than m where each a-point is counted according to its multiplicity.

N(r,a; f |≤m) (N(r,a; f |≥m)) are defined similarly, where in counting the a-points
of f we ignore the multiplicities.

Also N(r,a; f |< m), N(r,a; f |> m), N(r,a; f |< m) and N(r,a; f |> m) are defined
analogously.

Definition 1.10 [5]. Denote by N2(r,a; f ) the sum N(r,a; f ) +N(r,a; f |≥ 2).

Definition 1.11 [1, 15, 16]. Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point
of g with multiplicity q. Denote by NL(r,1; f ) the counting function of those 1-points of

f and g where p > q, denote by N1)
E (r,1; f ) the counting function of those 1-points of f

and g where p = q = 1, and denote by N
(2
E (r,1; f ) the counting function of those 1-points

of f and g where p = q ≥ 2, each point in these counting functions is counted only once.

In the same way, one can define NL(r,1;g), N1)
E (r,1;g), N

(2
E (r,1;g).

Definition 1.12 (cf. [1]). Let k be a positive integer. Let f and g be two nonconstant
meromorphic functions such that f and g share the value 1 IM. Let z0 be a 1-point of
f with multiplicity p, and a 1-point of g with multiplicity q. Denote by N f >k(r,1;g) the
reduced counting function of those 1-points of f and g such that p > q = k. Ng>k(r,1; f )
is defined analogously.

Definition 1.13 [4, 5]. Let f , g share a value IM. Denote by N∗(r,a; f ,g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplici-
ties of the corresponding a-points of g.

Clearly N∗(r,a; f ,g)≡N∗(r,a;g, f ) and N∗(r,a; f ,g)=NL(r,a; f ) +NL(r,a;g).

Definition 1.14 [6]. Let a,b ∈ C∪{∞}. Denote byN(r,a; f | g = b) the counting function
of those a-points of f , counted according to multiplicity, which are the b-points of g.

Definition 1.15 [6]. Let a,b ∈ C∪{∞}. Denote byN(r,a; f | g 
= b) the counting function
of those a-points of f , counted according to multiplicity, which are not the b-points of g.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel. Let f , g, F,
G be four nonconstant meromorphic functions. Henceforth, we will denote by h and H
the following two functions:

h=
(
f ′′

f ′
− 2 f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
,

H =
(
F′′′

F′′
− 2F′′

F′ − 1

)
−
(
G′′′

G′′
− 2G′′

G′ − 1

)
.

(2.1)

Lemma 2.1 [15, 16]. If f , g are two nonconstant meromorphic functions such that they
share (1,0) and h 
≡ 0, then

N1)
E (r,1; f )≤N(r,h) + S(r, f ) + S(r,g). (2.2)
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Lemma 2.2 [7]. If N(r,0; f (k) | f 
= 0) denotes the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to its multiplicity, then

N
(
r,0; f (k) | f 
= 0

)≤ kN(r,∞; f ) +N
(
r,0; f |< k

)
+ kN

(
r,0; f |≥ k

)
+ S(r, f ). (2.3)

Lemma 2.3. Let f and g be two nonconstant meromorphic functions sharing (1,0). Then

NL(r,1; f ) + 2NL(r,1;g) +N
(2
E (r,1; f )−N f >1(r,1;g)−Ng>1(r,1; f )

≤N(r,1;g)−N(r,1;g).
(2.4)

Proof. Let z0 be a 1-point of f of multiplicity p a 1-point of g of multiplicity q. We denote
by N1(r), N2(r), and N3(r) the counting functions of those 1-points of f and g when
1 ≤ q < p, 2 ≤ q = p and p < q, respectively, where in the first counting function each
point is counted q− 1 times and in the remaining two counting functions each point is
counted q− 2 times.

Since f , g share (1,0), we note that a simple 1-point of g is either a simple 1-point of
f or a 1-point of f with multiplicity ≥ 2. So we can write

N(r,1;g)−N(r,1;g)=N
(2
E (r,1; f ) +NL(r,1;g) +N1(r) +N2(r) +N3(r). (2.5)

Also we note that

N1(r)≥NL(r,1; f )−N f >1(r,1;g), (2.6)

N2(r)≥N
(2
E (r,1; f )−N

(
r,1; f ,g |= 2

)
, (2.7)

N3(r)≥NL(r,1;g)−Ng>1(r,1; f ), (2.8)

where by N(r,1; f ,g |= 2) we mean the reduced counting functions of 1-points of f and
g with multiplicities two for each one.

Using (2.6)–(2.8) in (2.5), we deduce that

N(r,1;g)−N(r,1;g)

≥NL(r,1; f ) + 2NL(r,1;g) + 2N
(2
E (r,1; f )

−N
(
r,1; f ,g |= 2

)−N f >1(r,1;g)−Ng>1(r,1; f ).

(2.9)

Now (i) follows from (2.9). This proves the lemma. �

Lemma 2.4 [1]. If f , g are two nonconstant meromorphic functions such that they share
(1,1), then

2NL(r,1; f ) + 2NL(r,1;g) +N
(2
E (r,1; f )−N f >2(r,1;g)≤N(r,1;g)−N(r,1;g). (2.10)
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Lemma 2.5. Let f , g share (1,0) and h 
≡ 0, then

N(r,h)≤N
(
r,0; f |≥ 2

)
+N

(
r,0;g |≥ 2

)
+N

(
r,∞; f |≥ 2

)
+N

(
r,∞;g |≥ 2

)
+N∗(r,1; f ,g) +N0(r,0; f ′) +N0(r,0;g′),

(2.11)

where N0(r,0; f ′) is the reduced counting function of those zeros of f ′ which are not the zeros
of f ( f − 1) and N0(r,0;g′) is similarly defined.

Proof. We can easily verify that possible poles of h occur at (i) multiple zeros of f and
g, (ii) multiple poles of f and g, (iii) those 1-points of f and g whose multiplicities are
distinct from the multiplicities of the corresponding 1-points of g and f , respectively, (iv)
zeros of f ′ which are not the zeros of f ( f − 1) and (v) zeros of g′ which are not zeros of
g(g − 1).

Since h has only simple poles, the lemma follows from above. This proves the lemma.
�

Lemma 2.6 [15]. Let f , g share (1,0). Then

NL(r,1; f )≤N(r,0; f ) +N(r,∞; f ) + S(r). (2.12)

Lemma 2.7. Let f , g share (1,0). Then
(i) N f >1(r,1;g)≤N(r,0; f ) +N(r,∞; f )−N0(r,0; f ′) + S(r, f ),

(ii) Ng>1(r,1; f )≤N(r,0;g) +N(r,∞;g)−N0(r,0; f ′) + S(r,g).

Proof. We prove (i) because (ii) can be proved in a similar manner.
Using Lemma 2.2, we obtain

N f >1(r,1;g)≤N
(
r,1; f |≥ 2

)
≤N

(
r,0; f ′ | f = 1

)
≤N

(
r,0; f ′ | f 
= 0

)−N0(r,0; f ′)

≤N(r,0; f ) +N(r,∞; f )−N0(r,0; f ′) + S(r, f ).

(2.13)

�

Lemma 2.8. Let f , g share (1,1). Then

N f >2(r,1;g)≤ 1
2
N(r,0; f ) +

1
2
N(r,∞; f )− 1

2
N0(r,0; f ′) + S(r, f ). (2.14)

Proof. Using Lemma 2.2, we get

N f >2(r,1;g)≤N
(
r,1; f |≥ 3

)
≤ 1

2
N
(
r,0; f ′ | f = 1

)
≤ 1

2
N
(
r,0; f ′ | f 
= 0

)− 1
2
N0(r,0; f ′)

≤ 1
2
N(r,0; f ) +

1
2
N(r,∞; f )− 1

2
N0(r,0; f ′) + S(r, f ).

(2.15)

�
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Lemma 2.9 [14]. If h≡ 0 and

limsup
r→∞

N(r,0; f ) +N(r,∞; f ) +N(r,0;g) +N(r,∞;g)
T(r)

< 1, r ∈ I , (2.16)

where T(r)=max{T(r, f ),T(r,g)}, then f ≡ g or f · g ≡ 1.

Lemma 2.10 (cf. [8, 11]). Let f be a nonconstant meromorphic function and P( f )= a0 +
a1 f + a2 f 2 + ···+ an f n, where a0,a1,a2, . . . ,an are constants and an 
=0. Then T(r,P( f ))=
nT(r, f ) +O(1).

Lemma 2.11. Let f be a nonconstant meromorphic function and F = f n+1/a(n+ 1), n being
a positive integer. Then

T(r,F)≤ T(r,F′) +N(r,0; f )−N(r,0; f ′) + S(r, f ). (2.17)

Proof. By the first fundamental theorem and Milloux theorem, we get

m
(
r,

1
F

)
≤m

(
r,
F′

F

)
+m

(
r,

1
F′

)
, (2.18)

that is,

N(r,0;F) +m(r,0;F)≤N(r,0;F) +m(r,0;F′) + S(r,F), (2.19)

that is,

T(r,F)≤ T(r,F′) +N(r,0;F)−N(r,0;F′) + S(r,F). (2.20)

Since N(r,0;F)=(n+1)N(r,0; f ) and N(r,0;F′)=nN(r,0; f )+N(r,0; f ′) and by Lemma
2.10, S(r,F)= S(r, f ), then the lemma follows from (2.20). This proves the lemma. �

Lemma 2.12. Let f , g be two nonconstant meromorphic functions and F = f n+1/a(n+ 1),
G= gn+1/a(n+ 1), where n (> 2) is an integer. Then F′ ≡G′ implies F ≡G.

Proof. F′ ≡ G′ then F = G + c where c is a constant. If possible, let c 
= 0. Then by the
second fundamental theorem and Lemma 2.10, we get

(n+ 1)T(r, f )≤N(r,∞;F) +N(r,0;F) +N(r,c;F) + S(r,F)

=N(r,∞; f ) +N(r,0; f ) +N(r,0;g) + S(r, f )

≤ 2T(r, f ) +T(r,g) + S(r, f )

≤ 3T(r) + S(r).

(2.21)

In a similar manner, we get

(n+ 1)T(r,g)≤ 3T(r) + S(r). (2.22)
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This shows that

(n− 2)T(r)≤ S(r), (2.23)

which is a contradiction for n > 2. This proves the lemma. �

Lemma 2.13 [12]. Let f , g be two nonconstant meromorphic functions and n > 6. If
f n f ′gng′ = 1, then g = c1ecz, f = c2e−cz, where c, c1, c2 are constants and (c1c2)n+1c2 =−1.

Lemma 2.14. Let f , g be two nonconstant meromorphic functions such that they share (1,0)
and h 
≡ 0. Then

T(r, f )≤N2(r,0; f ) +N2(r,∞; f ) +N2(r,0;g) +N2(r,∞;g) + 2N(r,0; f )

+ 2N(r,∞; f ) +N(r,0;g) +N(r,∞;g) + S(r, f ) + S(r,g).
(2.24)

Proof. By the second fundamental theorem, we get

T(r, f ) +T(r,g)

≤N(r,0; f ) +N(r,∞; f ) +N(r,0;g) +N(r,∞;g) +N(r,1; f )

+N(r,1;g)−N0(r,0; f ′)−N0(r,0;g′) + S(r, f ) + S(r,g).

(2.25)

By Lemmas 2.1, 2.3, and 2.5, we get

N(r,1; f ) +N(r,1;g)

≤N1)
E (r,1; f ) +NL(r,1; f ) +NL(r,1;g) +N

(2
E (r,1; f ) +N(r,1;g)

≤N1)
E (r,1; f ) +N(r,1;g)−NL(r,1;g) +N f >1(r,1;g) +Ng>1(r,1; f )

≤N
(
r,0; f |≥ 2

)
+N

(
r,0;g |≥ 2

)
+N

(
r,∞; f |≥ 2

)
+N

(
r,∞;g |≥ 2

)
+N∗(r,1; f ,g) +T(r,g)−m(r,1;g) +O(1)−NL(r,1;g) +N f >1(r,1;g)

+Ng>1(r,1; f ) +N0(r,0; f ′) +N0(r,0;g′) + S(r, f ) + S(r,g).

(2.26)

Since N∗(r,1; f ,g)=NL(r,1; f ) +NL(r,1;g), by Lemmas 2.6 and 2.7, we get from (2.25)
and (2.26) in view of Definition 1.10 that

T(r, f )≤N2(r,0; f ) +N2(r,∞; f ) +N2(r,0;g) +N2(r,∞;g) + 2N(r,0; f )

+ 2N(r,∞; f ) +N(r,0;g) +N(r,∞;g) + S(r, f ) + S(r,g).
(2.27)

�

Lemma 2.15. Let f , g be two nonconstant meromorphic functions such that they share (1,1)
and h 
≡ 0. Then

T(r, f )≤N2(r,0; f ) +N2(r,∞; f ) +N2(r,0;g) +N2(r,∞;g)

+
1
2
N(r,0; f ) +

1
2
N(r,∞; f ) + S(r, f ) + S(r,g).

(2.28)
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Proof. By the second fundamental theorem, we get

T(r, f ) +T(r,g)

≤N(r,0; f ) +N(r,∞; f ) +N(r,0;g) +N(r,∞;g) +N(r,1; f )

+N(r,1;g)−N0(r,0; f ′)−N0(r,0;g′) + S(r, f ) + S(r,g).

(2.29)

Since f , g share (1,1), N1)
E (r,1; f ) = N(r,1; f |= 1). So using Lemmas 2.1, 2.4, 2.5, and

2.8, we get

N(r,1; f ) +N(r,1;g)

≤N
(
r,1; f |= 1

)
+NL(r,1; f ) +NL(r,1;g) +N

(2
E (r,1; f ) +N(r,1;g)

≤N
(
r,1; f |= 1

)
+N(r,1;g)−NL(r,1; f )−NL(r,1;g) +N f >2(r,1;g)

≤N
(
r,0; f |≥ 2

)
+N

(
r,0;g |≥ 2

)
+N

(
r,∞; f |≥ 2

)
+N

(
r,∞;g |≥ 2

)
+N∗(r,1; f ,g) +T(r,g)−m(r,1;g) +O(1)−NL(r,1; f )−NL(r,1;g)

+
1
2
N(r,0; f ) +

1
2
N(r,∞; f ) +N0(r,0; f ′) +N0(r,0;g′) + S(r, f ) + S(r,g).

(2.30)

From (2.29) and (2.30), we obtain in view of Definition 1.10 that

T(r, f )≤N2(r,0; f ) +N2(r,∞; f ) +N2(r,0;g) +N2(r,∞;g)

+
1
2
N(r,0; f ) +

1
2
N(r,∞; f ) + S(r, f ) + S(r,g).

(2.31)

This proves the lemma. �

Lemma 2.16 [13]. Let f be a nonconstant meromorphic function. Then

N
(
r,0; f (k))≤ kN(r,∞; f ) +N(r,0; f ) + S(r, f ). (2.32)

3. Proofs of the theorems

Proof of Theorem 1.5. Let F = f n+1/a(n+ 1) and G = gn+1/a(n+ 1). Then F′ = f n f ′/a
and G′ = gng′/a. Since f n f ′ and gng′ share (a,0), it follows that F′, G′ share (1,0). If
possible, we suppose that H 
≡ 0. Then by Lemma 2.14, we obtain

T(r,F′)≤N2(r,0;F′) +N2(r,∞;F′) +N2(r,0;G′) +N2(r,∞;G′) + 2N(r,0;F′)

+ 2N(r,∞;F′) +N(r,0;G′) +N(r,∞;G′) + S(r,F′) + S(r,G′).
(3.1)

We see that

N2(r,0;F′) +N2(r,∞;F′)≤ 2N(r,0; f ) +N(r,0; f ′) + 2N(r,∞; f ),

N2(r,0;G′) +N2(r,∞;G′)≤ 2N(r,0;g) +N(r,0;g′) + 2N(r,∞;g),

2N(r,0;F′) + 2N(r,∞;F′)≤ 2N(r,0; f ) + 2N(r,0; f ′) + 2N(r,∞; f ),

N(r,0;G′) +N(r,∞;G′)≤N(r,0;g) +N(r,0;g′) +N(r,∞;g).

(3.2)
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Also by Lemma 2.10, we get

T(r,F′)≤ 2T(r,F) + S(r,F)= 2(n+ 1)T(r, f ) + S(r, f ),

T(r,G′)≤ 2T(r,G) + S(r,G)= 2(n+ 1)T(r,g) + S(r,g).
(3.3)

So S(r,F′)= S(r, f ) and S(r,G′)= S(r,g). So by Lemmas 2.11 and 2.16, we get from (3.1)
for ε (> 0) that

T(r,F)≤ T(r,F′) +N(r,0; f )−N(r,0; f ′) + S(r, f )

≤ 4N(r,0; f ) +N(r,0; f ) + 3N(r,0;g) + 4N(r,∞; f )

+ 3N(r,∞;g) + 2N(r,0; f ′) + 2N(r,0;g′) + S(r, f ) + S(r,g)

≤ 7T(r, f ) + 5T(r,g) +
(
6− 6Θ(∞; f ) + ε

)
T(r, f )

+
(
5− 5Θ(∞;g) + ε

)
T(r,g) + S(r, f ) + S(r,g)

≤ {23− 6Θ(∞; f )− 5Θ(∞;g) + 2ε
}
T(r) + S(r).

(3.4)

So using Lemma 2.10, we get

(n+ 1)T(r, f )≤ {23− 6Θ(∞; f )− 5Θ(∞;g) + 2ε
}
T(r) + S(r). (3.5)

In a similar manner, we obtain

(n+ 1)T(r,g)≤ {23− 5Θ(∞; f )− 6Θ(∞;g) + 2ε
}
T(r) + S(r). (3.6)

From (3.5) and (3.6), we obtain

[
n− 22 + 5Θ(∞; f ) + 5Θ(∞;g) + min

{
Θ(∞; f ),Θ(∞;g)

}− 2ε
]
T(r)≤ S(r). (3.7)

Since ε (> 0) is arbitrary, (3.7) implies a contradiction. Hence H ≡ 0.
Since

N(r,0; f ′)≤ T(r, f ′)−m

(
r,

1
f ′

)
≤ 2T(r, f )−m

(
r,

1
f ′

)
+ S(r, f ), (3.8)

we note that

N(r,0;F′) +N(r,∞;F′) +N(r,0;G′) +N(r,∞;G′)

≤N(r,0; f ) +N(r,∞; f ) +N(r,0;g) +N(r,∞;g) +N(r,0; f ′) +N(r,0;g′)

≤ 4T(r, f ) + 4T(r,g)−m(r,0; f ′)−m(r,0;g′) + S(r)

≤ 8T(r)−m(r,0; f ′)−m(r,0;g′) + S(r).

(3.9)
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Also using Lemma 2.10, we get

T(r,F′) +m

(
r,

1
f ′

)
=m

(
r,

f n f ′

a

)
+m

(
r,

1
f ′

)
+N

(
r,∞;

f n f ′

a

)

≥m

(
r,

f n

a

)
+N

(
r,∞; f n

)
= T

(
r, f n

)
+O(1)

= nT(r, f ) +O(1).

(3.10)

Similarly

T(r,G′) +m

(
r,

1
g′

)
≥ nT(r,g) +O(1). (3.11)

From (3.10) and (3.11), we get

max
{
T(r,F′),T(r,G′)

}≥ nT(r)−m

(
r,

1
f ′

)
−m

(
r,

1
g′

)
+O(1). (3.12)

By (3.9) and (3.12) applying Lemma 2.9, we get either F′ ≡G′ or F′G′ ≡ 1.
If F′ ≡G′, then by Lemma 2.12 we obtain F ≡G or f ≡ dg, where d is some (n+ 1)th

root of unity.
If F′G′ ≡1, then f n f ′gng′ =a2. Set f1=a−1/(n+1) f and g1=a−1/(n+1)g, then f n1 f ′1 g

n
1 g
′
1=

1. So using Lemma 2.13, we get g = c1ecz, f = c2e−cz, where c, c1, and c2 are constants and
satisfy (c1c2)n+1c2 =−a2. This completes the proof of the theorem. �

Proof of Theorem 1.6. Let F= f n+1/a(n+ 1) andG= gn+1/a(n+ 1). Then F′ = f n f ′/a and
G′ = gng′/a. Since f n f ′ and gng′ share (a,1), it follows that F′, G′ share (1,1). Suppose
that H 
≡ 0. Then by Lemma 2.15, we obtain

T(r,F′)≤N2(r,0;F′) +N2(r,∞;F′) +N2(r,0;G′) +N2(r,∞;G′)

+
1
2
N(r,0;F′) +

1
2
N(r,∞;F′) + S(r,F′) + S(r,G′).

(3.13)

We see that

N2(r,0;F′) +N2(r,∞;F′)≤ 2N(r,0; f ) +N(r,0; f ′) + 2N(r,∞; f ),

N2(r,0;G′) +N2(r,∞;G′)≤ 2N(r,0;g) +N(r,0;g′) + 2N(r,∞;g),

1
2
N(r,0;F′) +

1
2
N(r,∞;F′)≤ 1

2

[
N(r,0; f ) +N(r,0; f ′) +N(r,∞; f )

]
.

(3.14)

Again using Lemma 2.10 and proceeding in the same way as done in the proof of Theorem
1.5, we can show that S(r,F′)= S(r, f ) and S(r,G′)= S(r,g). So by Lemmas 2.11 and 2.16,
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we obtain from (3.13) for ε > 0 that

T(r,F)≤ T(r,F′) +N(r,0; f )−N(r,0; f ′) + S(r, f )

≤ 2N(r,0; f ) +
1
2
N(r,0; f ) +

3
2
N(r,0; f ) + 2N(r,0;g) +N(r,0;g)

+ 3N(r,∞; f ) + 3N(r,∞;g) + S(r, f ) + S(r,g)

≤ (7− 3Θ(∞; f ) + ε)T(r, f ) + (6− 3Θ(∞;g) + ε)T(r,g) + S(r)

≤ {13− 3Θ(∞; f )− 3Θ(∞;g) + 2ε
}
T(r) + S(r).

(3.15)

So using Lemma 2.10, we get

(n+ 1)T(r, f )≤ {13− 3Θ(∞; f )− 3Θ(∞;g) + 2ε
}
T(r) + S(r). (3.16)

Similarly, we can obtain

(n+ 1)T(r,g)≤ {13− 3Θ(∞; f )− 3Θ(∞;g) + 2ε
}
T(r) + S(r). (3.17)

From (3.16) and (3.17), we obtain

[
n− 12 + 3Θ(∞; f ) + 3Θ(∞;g)− 2ε

]≤ S(r). (3.18)

Since ε (> 0) is arbitrary, we get a contradiction from (3.18). Hence H ≡ 0.
Now proceeding in the same way as in the proof of Theorem 1.5, we obtain either F′ ≡

G′ or F′G′ ≡ 1. Again proceeding in the same manner as in the proof of Theorem 1.5, we
obtain the conclusion of Theorem 1.6. This proves the theorem. �
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