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In 1999, Kanas and Rønning introduced the classes of starlike and convex functions,
which are normalized with f (w) = f ′(w)− 1 = 0 and w a fixed point in U . In 2005,
the authors introduced the classes of functions close to convex and α-convex, which are
normalized in the same way. All these definitions are somewhat similar to the ones for
the uniform-type functions and it is easy to see that for w = 0, the well-known classes
of starlike, convex, close-to-convex, and α-convex functions are obtained. In this pa-
per, we continue the investigation of the univalent functions normalized with f (w) =
f ′(w)− 1= 0, where w is a fixed point in U .

1. Introduction

Let �(U) be the set of functions which are regular in the unit disc U = {z ∈ C : |z| < 1},
A= { f ∈�(U) : f (0)= f ′(0)− 1= 0}, and S= { f ∈A : f is univalent in U}.

We recall here the definitions of the well-known classes of starlike and convex func-
tions:

S∗ =
{
f ∈ A : Re

z f ′(z)
f (z)

> 0, z ∈U
}

,

Sc =
{
f ∈ A : Re

(
1 +

z f ′′(z)
f ′(z)

)
> 0, z ∈U

}
.

(1.1)

Let w be a fixed point in U and A(w)= { f ∈�(U) : f (w)= f ′(w)− 1= 0}.
In [3], Kanas and Rønning introduced the following classes:

S(w)= { f ∈ A(w) : f is univalent in U
}

,

ST(w)= S∗(w)=
{
f ∈ S(w) : Re

(z−w) f ′(z)
f (z)

> 0, z ∈U
}

,

CV(w)= Sc(w)=
{
f ∈ S(w) : 1 + Re

(z−w) f ′′(z)
f ′(z)

> 0, z ∈U
}
.

(1.2)
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It is obvious that a natural “Alexander relation” exists between the classes S∗(w) and
Sc(w):

g ∈ Sc(w) iff f (z)= (z−w)g′(z)∈ S∗(w). (1.3)

Denote with �(w) the class of all functions p(z)= 1 +
∑∞

n=1Bn · (z−w)n that are reg-
ular in U and satisfy p(w)= 1 and Re p(z) > 0 for z ∈U .

2. Preliminary results

If is easy to see that a function f(z) ∈ A(w) has the series of expansions:

f (z)= (z−w) + a2(z−w)2 + . . . . (2.1)

In [8], Wald gives the sharp bounds for the coefficients Bn of the function p ∈�(w).

Theorem 2.1. If p(z)∈�(w), p(z)= 1 +
∑∞

n=1Bn · (z−w)n, then

∣∣Bn

∣∣≤ 2
(1 +d)(1−d)n

, where d = |w|, n≥ 1. (2.2)

Using the above result, Kanas and Rønning obtain the following theorem in [3].

Theorem 2.2. Let f ∈ S∗(w) and f (z)= (z−w) + b2(z−w)2 + . . . . Then

∣∣b2
∣∣≤ 2

1−d2
,

∣∣b3
∣∣≤ 3 +d(

1−d2
)2 ,

∣∣b4
∣∣≤ 2

3
· (2 +d)(3 +d)(

1−d2
)3 ,

∣∣b5
∣∣≤ 1

6
· (2 +d)(3 +d)(3d+ 5)(

1−d2
)4 ,

(2.3)

where d = |w|.
Remark 2.3. It is clear that the above theorem also provides bounds for the coefficients of
functions in Sc(w), due to the relation between Sc(w) and S∗(w).

In [1], are also defined the following sets:

D(w)=
{
z ∈U : Re

[
w

z

]
< 1, Re

[
z(1 + z)

(z−w)(1− z)

]
> 0
}

for w �= 0, D(0)=U ;

s(w)= { f : D(w)−→ C}∩ S(w); s∗(w)= S∗(w)∩ s(w),
(2.4)

where w is a fixed point in U .
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The authors consider the integral operator La : A(w)→ A(w) defined by

f (z)= LaF(z)= 1 + a

(z−w)a
·
∫ z

w
F(t) · (t−w)a−1dt, a∈R, a≥ 0. (2.5)

The next theorem is a result of the so called “admissible functions method” introduced
by Mocanu and Miller (see [3, 4, 6]).

Theorem 2.4. Let h be convex in U and Re[βh(z) + γ] > 0, z ∈U . If p ∈�(U) with p(0)=
h(0) and p satisfied the Briot-Bouquet differential subordination

p(z) +
zp′(z)

βp(z) + γ
≺ h(z), (2.6)

then p(z)≺ h(z).

3. Main results

Deffinition 3.1. Let w be a fixed point in U , n∈N. Dn
w denotes the differential operator:

Dn
w : A(w)−→ A(w) with ,

D0
w f (z)= f (z),

D1
w f (z)=Dw f (z)= (z−w) · f ′(z),

Dn
w f (z)=Dw

(
Dn−1

w f (z)
)
.

(3.1)

Remark 3.2. For f ∈A(w), f (w)= (z−w) +
∑∞

j=2 aj(z−w) j , we have

Dn
w f (z)= (z−w) +

∞∑
j=2

jn · aj · (z−w) j . (3.2)

It easy to see that if we take w = 0, we obtain the Sălăgean differential operator (see [7]).

Deffinition 3.3. Let w be a fixed point in U , n ∈ N and f ∈ S(w). f is said to be an
n-w-starlike function if

Re
Dn+1

w f (z)
Dn

w f (z)
> 0, z ∈U. (3.3)

The class of all these functions is denoted by S∗n (w).

Remark 3.4. (1) S∗0 (w)= S∗(w) and S∗n (0)= S∗n , where S∗n is the class of n-starlike func-
tions introduced by Sălăgean in [7].

(2) If f (z)∈ S∗n (w) and we denote Dn
w f (z)= g(z), we obtain g(z)∈ S∗(w).

(3) Using the class s(w), we obtain s∗n (w)= S∗n (w)∩ s(w).

Theorem 3.5. Let w be a fixed point in U and n∈N. If f (z)∈ s∗n+1(w) then f (z)∈ s∗n (w).
This means

s∗n+1(w)⊂ s∗n (w). (3.4)
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Proof. From f (z)∈s∗n+1(w), we have Re(Dn+2
w f (z)/Dn+1

w f (z))>0, z∈U . We denote p(z)=
(Dn+1

w f (z)/Dn
w f (z)), where p(0)= 1 and p(z)∈�(U). We obtain

Dn+2
w f (z)

Dn+1
w f (z)

= Dw
(
Dn+1

w f (z)
)

Dw
(
Dn

w f (z)
) = (z−w)

(
Dn+1

w f (z)
)′

(z−w)
(
Dn

w f (z)
)′ =

(
Dn+1

w f (z)
)′

(
Dn

w f (z)
)′ ,

p′(z)=
(
Dn+1

w f (z)
)′ · (Dn

w f (z)
)− (Dn+1

w f (z)
) · (Dn

w f (z)
)′

(
Dn

w f (z)
)2

=
(
Dn+1

w f (z)
)′

(
Dn

w f (z)
)′ ·

(
Dn

w f (z)
)′

Dn
w f (z)

− p(z) ·
(
Dn

w f (z)
)′

Dn
w f (z)

.

(3.5)

Thus we have

(z−w) · p′(z)=
(
Dn+1

w f (z)
)′

(
Dn

w f (z)
)′ · (z−w) · (Dn

w f (z)
)′

Dn
w f (z)

− p(z) · (z−w) · (Dn
w f (z)

)′
Dn

w f (z)
,

(z−w) · p′(z)=
(
Dn+1

w f (z)
)′

(
Dn

w f (z)
)′ · p(z)− [p(z)

]2
,

(
Dn+1

w f (z)
)′

(
Dn

w f (z)
)′ = p(z) +

1
p(z)

· (z−w) · p′(z).

(3.6)

From Re(Dn+2
w f (z)/Dn+1

w f (z)) > 0 we obtain p(z) + (1/p(z)) · (z−w) · p′(z) ≺ ((1 +
z)/(1− z)) or

p(z) +
zp′(z)

1/
(
1− (w/z)

) · p(z)
≺ 1 + z

1− z
≡ h(z), with h(0)= 1. (3.7)

By hypothesis, we have Re[1/(1− (w/z)) · h(z)] > 0, and thus from Theorem 2.4 we ob-
tain p(z)≺ h(z) or Re p(z) > 0. This means f ∈ s∗n (w). �

Remark 3.6. From Theorem 3.5, we obtain s∗n (w)⊂ s∗0 (w)⊂ S∗(w), n∈N.

Theorem 3.7. If F(z)∈ s∗n (w) then f (z)= LaF(z)∈ S∗n (w), where La is the integral oper-
ator defined by (2.5).

Proof. From (2.5) we obtain

(1 + a) ·F(z)= a · f (z) + (z−w) · f ′(z). (3.8)

By means of the application of the operator Dn+1
w we obtain

(1 + a) ·Dn+1
w F(z)= a ·Dn+1

w f (z) +Dn+1
w

[
(z−w) · f ′(z)

]
(3.9)
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or

(1 + a) ·Dn+1
w F(z)= a ·Dn+1

w f (z) +Dn+2
w f (z). (3.10)

Similarly, by means of the application of the operator Dn
w, we obtain

(1 + a) ·Dn
wF(z)= a ·Dn

w f (z) +Dn+1
w f (z). (3.11)

Thus

Dn+1
w F(z)
Dn

wF(z)
=
(
Dn+2

w f (z)/Dn+1
w f (z)

) · (Dn+1
w f (z)/Dn

w f (z)
)

+ a · (Dn+1
w f (z)/Dn

w f (z)
)

(
Dn+1

w f (z)/Dn
w f (z)

)
+ a

.

(3.12)

Using the notation Dn+1
w f (z)/Dn

w f (z)= p(z), with p(0)= 1, we have

(z−w) · p′(z)
p(z)

= Dn+2
w f (z)

Dn+1
w f (z)

− p(z) (3.13)

or

Dn+2
w f (z)

Dn+1
w f (z)

= p(z) +
(z−w) · p′(z)

p(z)
. (3.14)

Thus

Dn+1
w F(z)
Dn

wF(z)
= p(z)

[
p(z) +

(
(z−w)p′(z)/p(z)

)
+ a
]

p(z) + a

= p(z) +
zp′(z)(

1/
(
1− (w/z)

))
p(z) +

(
a/
(
1− (w/z)

)) .
(3.15)

From F(z)∈ s∗n (w) we obtain (Dn+1
w F(z)/Dn

wF(z))≺ ((1 + z)/(1− z))≡ h(z) or

p(z) +
zp′(z)(

1/
(
1− (w/z)

))
p(z) +

(
a/
(
1− (w/z)

)) ≺ h(z). (3.16)

By hypothesis, we have Re[(1/(1− (w/z))) ·h(z)+(a/(1− (w/z)))] > 0 and from Theorem
2.4 we obtain p(z) ≺ h(z) or Re{Dn+1

w f (z)/Dn
w f (z)} > 0, z ∈ U . This means f (z) =

LaF(z)∈ S∗n (w). �

Remark 3.8. If we consider w = 0 in Theorem 3.7 we obtain that the integral operator
defined by (2.5) preserves the class of n-starlike functions, and if we consider w = 0 and
n= 0 in the above theorem we obtain that the integral operator defined by (2.5) preserves
the well-known class of starlike functions.
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Theorem 3.9. Let w be a fixed point in U and f ∈ S∗n (w) with f (z)= (z−w) +
∑∞

j=2 aj ·
(z−w) j . Then

∣∣a2
∣∣≤ 1

2n−1 · (1−d2
) ,

∣∣a3
∣∣≤ 3 +d

3n · (1−d2
)2 ,

∣∣a4
∣∣≤ (2 +d)(3 +d)

22n−1 · 3 · (1−d2
)3 ,

∣∣a5
∣∣≤ (2 +d)(3 +d)(3d+ 5)

5n · 6 · (1−d2
)4 ,

(3.17)

where d = |w|.
Proof. From Remark 3.4 for f ∈ S∗n (w) we obtain

Dn
w f (z)= g(z)∈ S∗(w). (3.18)

If we consider g(z) = (z−w) +
∑∞

j=2 bj · (z−w) j , using Remark 3.2, from (3.18) we
obtain jn · aj = bj , j = 2,3, . . . .

Thus we have aj = 1/ jn · bj , j = 2,3, . . ., and from the estimates (2.3) we get the result.
�
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