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By means of variational structure and Z, group index theory, we obtain multiple peri-
odic solutions to a class of second-order mixed-type differential equations x"'(t — 7) +
f(t,x(t),x(t —7),x(t —27)) = 0 and x""(t — 1) +A(¢) fi (£, x(t), x(t—7),x(t —27)) =x(t — 7).

1. Introduction

Recently, the existence and multiplicity of periodic solutions for second-order functional
differential equations has received a great deal of attention (e.g., see [8, 9, 12]). In [9],
Wang and Yan studied the second-order functional differential equation

[x(t) + cx(t — 1)) +g(t,x(t — 0)) = p(t), (1.1)

where 7, 0, and ¢ are constants in R with 7> 0, 0 =2 0, |c| < 1, g(t,x) is a T(> 0)-periodic
function in ¢ > 0, and for an arbitrary bounded domain E C R, g(t,x) is a Lipschitz func-
tion in [0,T] X E, p € C(R,R), p(t+T) = p(t), and foTp(t)dt = 0. They obtained some
sufficient conditions to guarantee the existence, at least a T-periodic solution, for this
system.

But, for the existence of periodic solutions of functional differential equations, one
commonly uses methods of fixed point theory, coincidence degree theory, Fourier anal-
ysis, and so forth. Critical point theory has rarely been used. In [10, 11], the authors ob-
tained multiple periodic solutions for a class retarded differential equations by means of
critical point theory and Z, group index theory. Nevertheless, we noted that these results
were obtained by reducing retarded differential equations to related ordinary differential
equations.

The purpose of our paper is to establish a kind of variational framework with delayed
variables for a class of mixed-type differential equations. Unlike [10, 11], our approach
enables us to obtain, by critical point theory and Z, group index theory, the existence of
nontrivial periodic solutions to such equations without reducing it to the one of ordinary
differential equations. Subsequently, we introduce Z, group index theory and knowledge
about critical points.
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2690 Periodic solutions of mixed-type FDE

Definition 1.1. A critical point of f is a point where f’(x) = 0. A critical value of f is a
number ¢ such that f(x) = ¢ for some critical points x. K is critical set where K = {x €
Elf'(x) =0}, K. ={x € E|f'(x) =0, f(x)=c}. frisalevel setif f. = {x € E| f(x) < c}.

Definition 1.2. Let E be real Banach space, and f € C!'(E,R), we say that f satisfies the
Palais-Smale condition if every sequence {x,} C E such that {f(x,)} is bounded and
f'(xy) = 0(n — c0) has a converging subsequence.

Definition 1.3. Let E be real Banach space,and >, = {A | A C E\ {0} is closed, symmetric
set}. Define y: > — Z*J{+o0} as following:

min {n € Z : there exists an odd continuous map ¢ : A — R"\ {6} };
y(A) =40 if A=

+oo if there is no odd continuous map ¢ : A — R"\ {0} forany n € Z.
(1.2)

Then we say y is the genus of .. Denote i; (f)=lim,— ¢ y(f2) and ix(f)=limg— o y( f2)-

LemMmA 1.4 (Rabinowitz [7]). Let f € CY(X,R") be an even functional which satisfies the
Palais-Smale condition and f(0) = 0. If
(1) thereexists p > 0, a > 0, and a finite dimensional subspace E of X, such that f | . ns, =
a.
(ii) for all finite dimensional subspaces E of X, thereisanr = r(E) >0, such that f(x) <
0 forx e E\B,,
Then, f possesses an unbounded sequence of critical values.

Lemma 1.5 (Chang [1]). Let f € C'(E,R") be an even functional which satisfies the Palais-
Smale condition and f(0) = 0. Then,
(Py) If there exists an m-dimensional subspace X of E and p > 0 such that

sup f(x) <0, (1.3)

xX€XNS,

then we have i1 (f) = m;

(Py) If there exists an j-dimensional subspace X of E such that

inf f(x)>—oo, (1.4)

xeXt
we have i,(f) < j.
Ifm = j, and (Py) and (P;) hold, then f at least has 2(m — j) distinct critical points.

LEMMA 1.6. Let E be Hilbert space, if the weak convergence sequence {x,} C E satisfies
Ixall = llxoll (n — 0), then {x,} is convergent in E, that is, X, — Xo.
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Proof. By
||xn*xo||2: n = X0,Xn — Xo)
(1.5)
=lxall” = (xorxn) = (tmro) + ||x0]]  (n=1,2,3,...)

and continuity of inner product, it is easy to see that

. 2 2 2

Lim ||y — xol|” = lxo][” = 2 (x0,x0) +|lx0[[” = 0, (1.6)
that is, x, — xo(n — ). O

First, we use Lemma 1.4 to deal with multiple periodic solutions of the following
second-order mixed-type delay equations

X'(t—1)+ f(t,x(8),x(t = 7),x(t — 27)) = 0. (1.7)

Our basic assumptions are that

(A1) f(t,ur,uz,u3) € C(RY,R) and O f (t,uy,up,u3)/0t # 0, as well as there exists a con-
tinuous function g(t,u,v) € C(R*,R) that satisfies dg/du, and dg/0v are well de-
fined such that

f(tur,uz,u3) = g(tur,uz) +J’0>g;z(t,u2,w)dw — Uy (1.8)

(Ay) f(t+1,u1,u,u3) = f(tur,uz,u3),

f(ta_uly_uz’—%) = —f(t,ul,uz,ua). (1.9)

2. Variational structure
Let

H,,, = {x(t) € L*[0,2y7] | x'(t) € L*[0,2y7]x(t) is 2yT—periodic functionin f,
2.1
where y is a given positive integer}. @1

It is obvious that Hzlyr is a Sobolev space by defining the inner product (-, -) and the norm

-1

2yt
(b, = | Ixyo +x @y 0)dr
1/2 (2.2)
, Vx,y€ Hzly,,

Iy, = H;W“x(t) ArCIRE

as well as x(t) can be expressed as

Z (akcos—t+bksml;—Tt> (2.3)
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Let us consider the function defined on Hzlyr,

ux>=Jjw[§(|x%ﬂ|2+|xu>f)-ﬁftﬂg(gxaxa»dw]dt

Then, forall x, y € Hzlyf and ¢ > 0, we know that

2yt

I(x+sy)=I(x)+s<J [x(0)y(5) + ' () (1) ]dt

0

- f” [(un_r)g;l (1,5(0)+£(0) (1), 0) ) (1)

0 0

g (x(1),x(E— 1) + ey(t — 7)) (¢ — T)]dt)
2 2yt
+5 [ o+ ol

where 0 < 0(f) < 1. It is easy to see that

x(t—1)

291
U%ww>=Ly[fUU%ﬂ+Mﬂﬂﬂ—J

0

S (t>x(t),w)dw] y(t)dt
2yt

- g(tx(8),x(t — 1)) y(t — 7)dt.
0

By the periodicity g(t,u,v), x(t), x(t — 7), and y(t), we get that

2yt 2y-1r
L g(6,x(0),x(t — 1) y(t — T)dt = J g(t+7,x(t+7),x(8) y(1)dt

-7

_ Jzyrg(t,x(t+T),x(t))y(t)dt.
0

Hence,

291 x(t—1)
(I'(x),y) = Ly [—x”(t) Fx(t) — L g (bx(t), ) da

—g(t,x(t+r),x(t))]y(t)dt.

Therefore, the Euler equation corresponding to the function I(x) is as follows:

x(t—71)

X () — x(t) + L g, (6x(t),0)dw +g (6,x(t +7),x(8)) = 0.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

It is easy to see that (2.9) is equivalent to (1.7), so the system (1.7) is the Euler equa-
tion corresponding to the function I(x). Then, we may get 2y7-periodic solutions of the

system (1.7), by seeking critical points of the function I(x).
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3. Main results

THEOREM 3.1. Under the assumptions (Ay) ~ (Az) and the function g(t,uy,u,) satisfying
the following conditions:
(Cy) there exists a constant T > 0 such that

lim Jo g (tur,w)dw

<T, 3.1
|u|~0 lul? (3.1)
where |u| = \lu} + u3.
(C,) there exist constants 3 > 2 and « > 0 such that
0< G(tu,u) = J g(t,u,w)dw
0 (3.2)

S%[(J g;l(t,ul,w)dw>u1+g(t,u1,u2)u2], Viul =ul+ud > a,
0

then the problem (1.7) has an infinite number of nontrivial 2yt-periodic solutions.

It is not difficult to see that if x(¢) is a solution of the system (1.7), then —x(¢) is also
a solution of the system (1.7) by the assumption (A;). That is, the solution of the system
(1.7) is a set that is symmetric with respect to the origin in Hzlyr. On the other hand, if

we let (t,x) = G(t,x(t),x(t — 7)) = féc(H)g(t,x(t),w)dw, it is easy to see that 7(t,x) is an
even function in x, so I(x) is an even function in x and we may show that Theorem 3.1
holds by Lemma 1.4.

In order to exploit Lemma 1.4 to find the critical points of function I(x) in (2.4), one
needs to verify all the assumptions. First of all, we point out that the functional I(-), de-
fined on HzlyT, satisfies the Palais-Smale condition, that is, we have the following lemma.

LemMA 3.2. Under the assumptions (A1) ~ (Az) and the conditions (Cy) ~ (Cy), I(u) sat-
isfies the P. S. condition.

Proof. Let {u,} C Hzly, and the constants ¢, ¢, satisfy

¢ <1(u,) <c, (3.3)
I'(u,) — 0, (n— o). (3.4)

The above inequality (3.3) is equivalent to

2yt 1
a<, [
Replacing x and y by u,, in (2.6), we have
5 2y1 un(t—7) ,
llutnllpy, = L [(L gg,(t,un(t),w)dw)un(t)

g (bt (£), 1 (£ — 7))t (£ — T)]dt

+ (I (tn ), ).

uy(t—T)
()] + |un(D)]*) - JO g(t,x(t),w)dw]dt< . (3.5)

(3.6)
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By (3.6), we have

Lzyr [(Joun(tT)gél (t, un(t),w)dw) un (1) + g (6 un (), un(t — 7)) un(t — T)]dt (3.7)

2 ’
= ||un||H21y, = (L (), ).
Next, we show that a sequence {u,} satisfying condition (3.3) and (3.4) is bounded.

Denote By = {t € [0,2y7] | |un(t)| = \Ju(t) +ui(t —7) = a}, B, = [0,2y7] \ B;. By the

condition (C,) and (3.6), we have

I(u,) = %||un||2 - J:yr <Lun(tr)g(t, un(t),w)dw>dt

- %||un||2 - JBI G(t,un (), u,(t — 7)) dt — JBZ G(tyun(t),u,(t — 1)) dt

> %||u,1||2 - JBI ;[(Lun(tr)ggl (t,un(t),w)dw> un(t)

g (bt (), (£ — 7))t — T)]dt o

1 1 2yt un(t—1) (38)
2 ’
= gl =5 (), st b wtor0)da Jann
+g(t,un(t),uy,(t—T))un(t—‘r)]dt—c4
= gl = g [l = 0 ) )] e
= (5 g) el = 1 Gall| .
Remarks 3.3. In here and the following, ¢; > 0.
Then, by (3.3) and (3.4), it is easy to see
1 1 2 1.,
(5 gl = gl )l o

< cs|un]| + ce.

Since 8 > 2, we know that {||u,|l} is bounded.

Since Hzl),T is a reflexive Banach space and the sequence {u,} is bounded, so {u,} has
a weakly convergent subsequence. We still denote it by {u,} and suppose that u, — u in
Hj,, asn— oo

So by (3.7) and the boundedness of ||, ||, we get that

) 2y1 uy(t—7) ,
lanlly, = [ ([ st (0,00 )untordt
2yt

— | g(bun(t),un(t — 1)) un(t —7)dt — 0, (n— o0).
0

(3.10)
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On the other hand, the weak convergence of {u,} of HzlyT implies the uniform conver-
gence of {u,} in C([0,1],R) (see [6]). Hence,

2yt uo(t—1)
H”"”?ﬁy, — J (J 8, (t,uo(t),w)dw> uo(t)dt
P (3.11)
+ . g(tup(t),uo(t — 1)) up(t — 1)dt, (n— o).

This means that [lu,|| is convergent in Hzlyr, then, by Lemma 1.6, we get that the func-
tion I satisfies the P. S. condition. O

LEMMA 3.4. Under the assumptions (A1) ~ (A;) and the conditions (C,) ~ (C,), then there
exist p,a > 0 and finite dimensional subspace E of HzlyT, such that

I(-x)E*ﬂSp = . (312)

Proof. Let v(t) = (yr/km)sin(kn/y7)t, j = 1,2,..., then

2yt 2.2
J [vj(0)] dt = Z oy,
0 k22
e (3.13)
J vi(6) |Pdt = yr.
0
Define an n-dimensional linear space as follows:
E =span{vi,v,..., v}, X =E*. (3.14)
For all x(t) € S, (X, we get that
2yt 2yt
Ix(1)| < ‘ J x'(t)dt' < I | (£)] dt
’ ’ (3.15)

2yt ) 1/2
< 2yT<J |x'(t)|dt> s,IZyTHxIIHle.

0

By the periodicity of x(t), it is easy to see that [x(t — 7)| < \/2yT ||x||H211. On the other hand,
by the condition (C,), for all &y > 0, there exists § > 0, such that when u = (x(t),x(t — 7))
satisfies

2
)+ (t-1) < 2(1/2yTIIxIIHZ|yr) = 4yT||x||f{21 <&, (3.16)

we have

|G(t,x(t),x(t—1))| = J:(t_r)g(t,x(t),w)dw < (T+e)[x*(t)+x*(t—1)]. (3.17)
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At the same time, it is not difficult to see that

JZW Ix(t) 2t < L jm (1) dt (3.18)
0

k2m? Jo
holds when x(t) € S,(1X. So one gets

2.2

2yt T
I (0 Pdt <

By the above equality and (3.17) as well as the periodicity of x(¢ — 7), we have

2yT 1 , x(t—71)

10 = [ G5 @P+15017) - | glexouxte—) |ae
29T

> 1||x||22,y1—2(T+£0)Ly |x(t)|*dt (3.20)

~2
L Ly 2AT+a)y'e = _M) 250
=5 k2m? +y272 2 k22 +y212 .

Remark 3.5. We may choose T >0 and ¢y > 0 such that the above equality holds.
That is, Lemma 3.4 holds. O

LemMA 3.6. Under the assumptions (A1) ~ (Ay) and the conditions (Cy) ~ (C,), for all
finite dimensional subspace E 0fH21yT, there is an R = R(E) > 0, such that

I(x) <0, Vxe&E\Bx (3.21)

Proof. For an arbitrary finite dimensional subspace E; C Hzlyr, by (C,), we know that
there exist constant «; >0 and «a, > 0 such that

x(t—1)
J g(tx(t),w)dw > a; ‘\lu%+u§’ﬁ—(xz. (3.22)
0

So, for any given ¢ € E;, ||g0||H21y1 =1and y >0, we have

1 5 5 2yt up(t—T)
Hug) = 3lgly ~ |7 (7 gltug(t,w)do )dr

P2(t) + @ (t — 1) ‘ﬁdt+2‘r0¢2 — —0co, Y — +oo.

(3.23)

1 5 5 s 2yt
< Jwllgly — |

Then there exists yo > 0.
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Remark 3.7. In fact, o is a minimum value of g that the above inequality holds on the
unit ball of the finite dimensional subspace E;.

For any given ¢ € Ey, [l¢llyy, = 1, when y = o, such that I(u¢) < 0. So choosing R =
Uo, we get that

I(x) <0, Vxe&E \Br (3.24)

Since E; was arbitrary, we know Lemma 3.6 holds. O

By (Az), we get that I(8) = 0. So, by Lemmas 3.2, 3.4, and 3.6, we know that I has
infinite nontrivial critical points, that is, the problem (1.7) has infinite nontrivial 2y7-
periodic solutions.

We next consider the nonlinear mixed-type delay equations

x(t—1)+A) fi(6x(8),x(t—1),x(t —27)) =x(t—1), A(t) >0. (3.25)

Our basic assumptions is that
(A)) fi(t,ur,uz,u3) € C(R%,R), and 9 fi (¢, u1,uz,u3)/0t # 0, and there exists a contin-
uous function g (t,u,v) € C(R?,R) such that

filtur,uz,u3) = g1 (tur,u2) +L‘g{u2(t,uz,w)dw; (3.26)

(AY) f(t+T1,u1,up,u3) = f(t,ur,uz,u3), and A(t) € C(R,R) satisfies A(t+7) = A(t) as
well as

fi(t,—ur, —ua, —us) = — fi(t,ur, ua, u3). (3.27)

Under the assumptions (A]) ~ (A}), similar to Theorem 3.1, it is easy to see that the
corresponding energy functional of the system (3.25) is

I(x) = Lzyr [%(| | + |x(t t)J - T) (t,x(t )dw]d (3.28)

TueOREM 3.8. Under the assumptions (A]) ~ (A3), and the function g (t,u1,us) satisfying
the following conditions:
(Fy) limy, - Q(IW ™ g1(t,x(t), w)dw/|ul?) = 1 where |u| = \Ju} + u’;

(Fy) there exists an a > 0 such that g, (t,uy,&) < 0, for all (t,u;) € [0,7] X (R\ [, a]).
Denote k = minscqo,r) A(t), then when

2 (2 2,2
o ML, (3.29)

the problem (3.25) has at least 2n nontrivial 2yt-periodic solutions.
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Similar to Theorem 3.1, we may show that Theorem 3.8 holds by mean of Z, group
index theory, that is, Lemma 1.5.

Proof. Let
g(tbu,a), w>a,
h(t,u,up) =g (bu,wa),  |ul <a (3.30)
gl(tﬂll;_(x), u; < —a,
so h(t,—uy,—uy) = —h(t,u;,uy) is obvious. Let us consider the functional defined on
H,
yo

x(t—1)

1= [A(x 1+ 120 ) -2 |

: 0 h(t,x(t),w)da)]dt. (3.31)

First, we show that I(x) has a lower bound.

By the periodicity x(t), x(t — 1), one gets maxse[o,2yr] |X(t)| = maxie(o,2y7) |x(t — 7)I.
Then, we have max;c(o,2y7] |%(t)| < @ when maxe(027] [%(t — 7)| < &. On the other hand,
by (F,), we get x(t — T)h(t,x(t),x(t — 7)) < 0 when |x(t — )| = a. So, [;7"(J& Ih(t,x(t),
w)dw|)dt is bounded. Denote M = OZVT(JO“ |h(t,x(t),w)dw|)dt, and L = maxe[o,;] A(£),
then we get

1 2y1 x(t—1) 1
I10) = Sl = | A(t)L h(tx(t),0)dw = S|l ~ LM. (3.32)

So, I(x) has a lower bound, by the condition (P;) of Lemma 1.5, we get i,(I) = 0.
Secondly, we will show that I(x) satisfies the P. S. condition. Let {x,} C Hzlyr, and the
constants ¢y, ¢, satisfy

(3.33)

By (3.32), we know
||x||H21yT < V2LM + 2. (3.34)

So, |1x,]| H,, is bounded. Similarly to the proof of Lemma 3.2, it is easy to see I(x) satisfies
the P. S. condition.

Finally, we show that Theorem 3.8 holds by Lemma 1.5.

Denote Bi(t) = (yt/km) cos(kn/yT)t, k = 1,2,3,...,n, then

2yt 2.[2
Jo |Bu(e)|"de = ;:27'[2 e

Zy‘r 2
L 1BL(0)|2dt = yr.

(3.35)
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Define the n-dimensional space
Ey = span {B1(£),f2(1);....fu(D) }. (3.36)

It is obvious that E, is a symmetric set. Suppose p > 0, then

E.()S, —SLZbkﬁk' Zbky‘r<l+%) =p2} (3.37)

On the other hand, we may choose ¢ such that 0 < & < kn?n?/y*72(2y*1%/n?> — (7% +
y212)/x). By (F;), we know that there exists 8 > 0, when ||lx,(t)[I% + lx(t — 7)[I12 < &
(where ||x,(#)[Ig = maxo<;<ayr [x(£)]) such that

x(t—1)
A [ h(ex(o),)do
0
> ()t(t)—e)[|x(t)|2+ |x(t—1-)|2] (3.38)

> (K—s)[|x(t)|2+ |x(t—r)|2], vt e [0,2y1].

So, choose p = §, when x € E,[S,, we have

I(x):J:yT[ (1@ 1P+ |x0)]*) -2 JX(t_T)h(t,x(t),w)dw]dt

s>J2y %0+ |x(t— )|t

2l i) o
15 2( y? 2) Y JZVT
< zlgoyrbk 1+k27'[2 2(k—¢) . | | “dt
. - (3.39)
1 y
Szkzyfbl%(l-{'kzﬂz)_ _S)zVTbkkz 2
0
n T2
Zyrb,%(1+yﬂ—2>72(xfs)2yrbk T
<m<ﬂ2+y212_4y2 yT )<O
T 2m? K 2 Cknin?

(The above equality makes use of x > n?(n2+y*1%)/4y7? and 0 < e < kn’m?/y* > (2y*1%/n? —
(2 +y*1%)/x).)

So, i1(I) = n. On the other hand, by (A}), we know I(0) = 0. By Lemma 1.5, we have
that the problem (3.25) has at least 2n nontrivial 2y7-periodic solutions. O
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Example 3.9. We consider periodic solutions of the following mixed-type differential
equations:

¥ (t— 1) +4[1 +sin? %t] (2(8) + 202t — 1) + 32 (£ — 21))x(t = 7) — x(t — 7) = 0.

(3.40)
By
f(tx(t),x(t —1),x(t — 27))
= 4[1 +sin® 7[71‘] (2 (t) + 2x*(t — 1) + 2 (t — 27))x(t — 1) — x(t — 7)
(3.41)
= 4[1 +sin? ﬂ?t] (x*(t) +x*(t—1))x(t — 1)
+4[1+sin2 ”{] (2(t = 1) + 52 (t = 20))x(t — 7) — x(t — 7),
we have
g(tx(t),x(t—1)) = 4[1 +sin’ n{] (x> (t) +x2(t — 1)) x(t — 1), (3.42)
that is,
) t
g(tuy,up) =4[1+sm 7](u%+u§)u2 (3.43)
So, we get
x(t—1) x(t—71)
J g(t,x(t),w)dw=f 4[1+sin2ﬂ](x2(t)+w)wdw
0 0 T
(3.44)

= [1+sin2ﬂ7t](x2(t)+x2(t—r))2.

It is easy to verify g(t,u;,u,) satisfies (A;) ~ (A;) and (Cy) ~ (Cy). So, by Theorem 3.1, we
know the mixed-type differential (3.40) has an infinite number nontrivial 2y7-periodic
solution.

Example 3.10. Let us consider the system
xX(t=1)+A@) fi (tx(8),x(t — 7)) = x(t — 1), (3.45)

where

Si(6x(t),x(t — 1),x(t — 27))

(3.46)
—ax(t—1)— 4[1 +sin? ”{] (2(8) + 252 (t — 1) + x2(t — 27))x(t — 1),
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then we get
. t
& (tur,uz) =2u2—4[1+sm2n7](u%+u%)uz. (3.47)
So, we have

x(t—1) 5 t
J <2u2—4[1+sin 7](x(t)2+u§)u2)duz

0

=x}(t)+x*(t—1) - [1 +sin2ﬂ7t] (O +x2(t-1))% (3.48)
lim I &1 (tyur,w)dw ~ lim w2+ 12 — [1+sin’(nt/1)] (3 +12)° .
[u] =0 |ul? [0 ud +us '

By Theorem 3.8, when (3.29) the problem (3.45) has at least 2n nontrivial 2y7-periodic
solutions.
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