

ON THE MAXIMUM MODULUS OF A POLYNOMIAL AND ITS DERIVATIVES

K. K. DEWAN AND ABDULLAH MIR

Received 18 February 2005 and in revised form 5 April 2005

Let $f(z)$ be an arbitrary entire function and $M(f, r) = \max_{|z|=r} |f(z)|$. For a polynomial $P(z)$ of degree n , having no zeros in $|z| < k$, $k \geq 1$, Bidkham and Dewan (1992) proved $\max_{|z|=r} |P'(z)| \leq (n(r+k)^{n-1}/(1+k)^n) \max_{|z|=1} |P(z)|$ for $1 \leq r \leq k$. In this paper, we generalize as well as improve upon the above inequality.

1. Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $M(P, r) = \max_{|z|=r} |P(z)|$, then according to Bernstein's inequality

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|. \quad (1.1)$$

The result is best possible and equality in (1.1) is obtained for $P(z) = \alpha z^n$, $\alpha \neq 0$.

If we restrict ourselves to the class of polynomials not vanishing in $|z| < 1$, then Erdős conjectured and Lax [4] proved

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \max_{|z|=1} |P(z)|. \quad (1.2)$$

Inequality (1.2) is best possible and the extremal polynomial is $P(z) = \alpha + \beta z^n$ with $|\alpha| = |\beta|$.

As an extension of (1.2), Malik [5] proved the following.

THEOREM 1.1. *If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < k$, $k \geq 1$, then*

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{1+k} \max_{|z|=1} |P(z)|. \quad (1.3)$$

The result is best possible and equality holds for $P(z) = (z+k)^n$.

Further, as a generalization of (1.3), Bidkham and Dewan [1] proved the following theorem.

THEOREM 1.2. *If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having no zeros in $|z| < k$, $k \geq 1$, then for $1 \leq \rho \leq k$,*

$$\max_{|z|=\rho} |P'(z)| \leq \frac{n(\rho+k)^{n-1}}{(1+k)^n} \max_{|z|=1} |P(z)|. \quad (1.4)$$

The result is best possible and equality in (1.4) holds for $P(z) = (z+k)^n$.

In this paper, we obtain the following result which is a generalization as well as an improvement of Theorem 1.2.

THEOREM 1.3. *If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having no zeros in $|z| < k$, $k \geq 1$, then for $0 \leq r \leq \rho \leq k$,*

$$\begin{aligned} \max_{|z|=\rho} |P'(z)| & \\ & \leq \frac{n(\rho+k)^{n-1}}{(k+r)^n} \left\{ 1 - \frac{k(k-\rho)(n|a_0| - k|a_1|)n}{(k^2+\rho^2)n|a_0| + 2k^2\rho|a_1|} \left(\frac{\rho-r}{k+\rho} \right) \left(\frac{k+r}{k+\rho} \right)^{n-1} \right\} \times M(P, r). \end{aligned} \quad (1.5)$$

Remark 1.4. Since it is well known that if $P(z) = \sum_{v=0}^n a_v z^v$, $P(z) \neq 0$ in $|z| < k$, $k \geq 1$, then $|a_1|/|a_0| \leq n/k$, the above theorem with $r = 1$ gives a bound that is much better than obtainable from Theorem 1.2.

If we assume $P'(0) = 0$ in the above theorem, we get the following result.

COROLLARY 1.5. *If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having no zeros in $|z| < k$, $k \geq 1$ and $P'(0) = 0$, then for $0 \leq r \leq \rho \leq k$,*

$$\max_{|z|=\rho} |P'(z)| \leq \frac{n(\rho+k)^{n-1}}{(k+r)^n} \left\{ 1 - \frac{k(k-\rho)(\rho-r)n}{(k^2+\rho^2)(k+\rho)} \left(\frac{k+r}{k+\rho} \right)^{n-1} \right\} M(P, r). \quad (1.6)$$

2. Lemmas

We require the following lemmas for the proof of the theorem. The first lemma is due to Govil et al. [2].

LEMMA 2.1. *If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having all its zeros in $|z| \geq k \geq 1$, then*

$$\max_{|z|=1} |P'(z)| \leq n \frac{n|a_0| + k^2|a_1|}{(1+k^2)n|a_0| + 2k^2|a_1|} \max_{|z|=1} |P(z)|. \quad (2.1)$$

LEMMA 2.2. *If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having no zeros in $|z| < k$, $k > 0$, then for $0 \leq r \leq \rho \leq k$,*

$$M(P, r) \geq \left(\frac{r+k}{\rho+k} \right)^n M(P, \rho). \quad (2.2)$$

There is equality in (2.2) for $P(z) = (z+k)^n$.

The above lemma is due to Jain [3].

LEMMA 2.3. If $P(z) = \sum_{v=0}^n a_v z^v$ is a polynomial of degree n having no zeros in $|z| < k$, $k \geq 1$, then for $0 \leq r \leq \rho \leq k$,

$$M(P, r) \geq \left(\frac{k+r}{k+\rho} \right)^n \left\{ 1 - \frac{k(k-\rho)(n|a_0| - k|a_1|)n}{(k^2+\rho^2)n|a_0| + 2k^2\rho|a_1|} \left(\frac{\rho-r}{k+\rho} \right) \left(\frac{k+r}{k+\rho} \right)^{n-1} \right\}^{-1} \times M(P, \rho). \quad (2.3)$$

Proof. Since $P(z)$ has no zeros in $|z| < k$, $k \geq 1$, therefore, the polynomial $T(z) = P(tz)$ where $0 \leq t \leq k$ has no zeros in $|z| < k/t$, where $k/t \geq 1$. Using Lemma 2.1 with the polynomial $T(z)$, we get

$$\max_{|z|=1} |T'(z)| \leq n \left\{ \frac{n|a_0| + k^2/t^2|ta_1|}{(1+k^2/t^2)n|a_0| + 2(k^2/t^2)|ta_1|} \right\} \max_{|z|=1} |T(z)|, \quad (2.4)$$

which implies

$$\max_{|z|=t} |P'(z)| \leq n \left\{ \frac{n|a_0|t + k^2|a_1|}{(t^2+k^2)n|a_0| + 2k^2t|a_1|} \right\} \max_{|z|=t} |P(z)|. \quad (2.5)$$

Now for $0 \leq r \leq \rho \leq k$ and $0 \leq \theta < 2\pi$, we have

$$\begin{aligned} |P(\rho e^{i\theta}) - P(re^{i\theta})| &\leq \int_r^\rho |P'(te^{i\theta})| dt \\ &\leq \int_r^\rho n \left\{ \frac{n|a_0|t + k^2|a_1|}{(t^2+k^2)n|a_0| + 2k^2t|a_1|} \right\} \max_{|z|=t} |P(z)| dt \quad (\text{by (2.5)}), \end{aligned} \quad (2.6)$$

which implies on using inequality (2.2) of Lemma 2.2,

$$\begin{aligned} |P(\rho e^{i\theta}) - P(re^{i\theta})| &\leq \int_r^\rho n \left\{ \frac{n|a_0|t + k^2|a_1|}{(t^2+k^2)n|a_0| + 2k^2t|a_1|} \right\} \left(\frac{k+t}{k+r} \right)^n M(P, r) dt \\ &\leq \frac{nM(P, r)}{(k+r)^n} \int_r^\rho \left\{ \frac{n|a_0|t + k^2|a_1|}{(t^2+k^2)n|a_0| + 2k^2t|a_1|} \right\} (k+t)^n dt, \end{aligned} \quad (2.7)$$

which gives, for $0 \leq r \leq \rho \leq k$,

$$\begin{aligned}
M(P, \rho) &\leq \left[1 + \frac{n}{(k+r)^n} \int_r^\rho \left\{ \frac{n|a_0|t + k^2|a_1|}{(t^2 + k^2)n|a_0| + 2k^2t|a_1|} \right\} (k+t)^n dt \right] M(P, r) \\
&\leq \left[1 + \frac{n(k+\rho)}{(k+r)^n} \left\{ \frac{n|a_0|\rho + k^2|a_1|}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \right\} \int_r^\rho (k+t)^{n-1} dt \right] M(P, r) \\
&= \left[1 - \left\{ \frac{(k+\rho)(n|a_0|\rho + k^2|a_1|)}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \right\} + \left\{ \frac{(k+\rho)(n|a_0|\rho + k^2|a_1|)}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \right\} \left(\frac{k+\rho}{k+r} \right)^n \right] M(P, r) \\
&= \left[\frac{k(k-\rho)(n|a_0|-k|a_1|)}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} + \left\{ 1 - \frac{k(k-\rho)(n|a_0|-k|a_1|)}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \right\} \left(\frac{k+\rho}{k+r} \right)^n \right] M(P, r) \\
&= \left(\frac{k+\rho}{k+r} \right)^n \left[1 - \frac{k(k-\rho)(n|a_0|-k|a_1|)}{(k^2 + \rho^2)n|a_0| + 2k^2\rho|a_1|} \left\{ 1 - \left(\frac{k+r}{k+\rho} \right)^n \right\} \right] M(P, r) \\
&= \left(\frac{k+\rho}{k+r} \right)^n \left[1 - \frac{k(k-\rho)(n|a_0|-k|a_1|)}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \times \frac{\rho-r}{(k+\rho)\{1 - ((k+r)/(k+\rho))\}} \right. \\
&\quad \left. \times \left\{ 1 - \left(\frac{k+r}{k+\rho} \right)^n \right\} \right] M(P, r) \\
&\leq \left(\frac{k+\rho}{k+r} \right)^n \left[1 - \frac{k(k-\rho)(n|a_0|-k|a_1|)n}{(\rho^2 + k^2)n|a_0| + 2k^2\rho|a_1|} \left(\frac{\rho-r}{k+\rho} \right) \left(\frac{k+r}{k+\rho} \right)^{n-1} \right] M(P, r),
\end{aligned} \tag{2.8}$$

from which inequality (2.3) follows. \square

3. Proof of theorem

Since the polynomial $P(z) = \sum_{v=0}^n a_v z^v$ has no zero in $|z| < k$, where $k \geq 1$, therefore, it follows that $F(z) = P(\rho z)$ has no zeros in $|z| < k/\rho$ where $k/\rho \geq 1$. Applying inequality (1.3) to the polynomial $F(z)$, we get

$$\max_{|z|=1} |F'(z)| \leq \frac{n}{1+k/\rho} \max_{|z|=1} |F(z)|, \tag{3.1}$$

which gives

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{\rho+k} \max_{|z|=\rho} |F(z)|. \tag{3.2}$$

Now if $0 \leq r \leq \rho \leq k$, then applying inequality (2.3) of Lemma 2.3 to (3.2), it follows that

$$\begin{aligned}
\max_{|z|=\rho} |P'(z)| &\leq \frac{n(k+\rho)^{n-1}}{(k+r)^n} \left[1 - \frac{k(k-\rho)(n|a_0|-k|a_1|)n}{(k^2 + \rho^2)n|a_0| + 2k^2\rho|a_1|} \left(\frac{\rho-r}{k+\rho} \right) \left(\frac{k+r}{k+\rho} \right)^{n-1} \right] \\
&\quad \times \max_{|z|=r} |P(z)|,
\end{aligned} \tag{3.3}$$

which is (1.5) and the theorem is proved.

Acknowledgment

The authors are grateful to the referee for valuable suggestions.

References

- [1] M. Bidkham and K. K. Dewan, *Inequalities for a polynomial and its derivative*, J. Math. Anal. Appl. **166** (1992), no. 2, 319–324.
- [2] N. K. Govil, Q. I. Rahman, and G. Schmeisser, *On the derivative of a polynomial*, Illinois J. Math. **23** (1979), no. 2, 319–329.
- [3] V. K. Jain, *Converse of an extremal problem in polynomials. II*, J. Indian Math. Soc. (N.S.) **60** (1994), no. 1-4, 41–47.
- [4] P. D. Lax, *Proof of a conjecture of P. Erdős on the derivative of a polynomial*, Bull. Amer. Math. Soc. **50** (1944), 509–513.
- [5] M. A. Malik, *On the derivative of a polynomial*, J. London Math. Soc. (2) **1** (1969), 57–60.

K. K. Dewan: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India

E-mail address: kkdewan123@yahoo.co.in

Abdullah Mir: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India

E-mail address: abdullah_mir@rediffmail.com

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br