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Let f (z) be an arbitrary entire function and M( f ,r)=max|z|=r | f (z)|. For a polynomial
P(z) of degree n, having no zeros in |z| < k, k ≥ 1, Bidkham and Dewan (1992) proved
max|z|=r |P′(z)| ≤ (n(r + k)n−1/(1 + k)n)max|z|=1 |P(z)| for 1 ≤ r ≤ k. In this paper, we
generalize as well as improve upon the above inequality.

1. Introduction and statement of results

Let P(z) be a polynomial of degree n and M(P,r) =max|z|=r |P(z)|, then according to
Bernstein’s inequality

max
|z|=1

∣∣P′(z)
∣∣≤ nmax

|z|=1

∣∣P(z)
∣∣. (1.1)

The result is best possible and equality in (1.1) is obtained for P(z)= αzn, α �= 0.
If we restrict ourselves to the class of polynomials not vanishing in |z| < 1, then Erdös

conjectured and Lax [4] proved

max
|z|=1

∣∣P′(z)
∣∣≤ n

2
max
|z|=1

∣∣P(z)
∣∣. (1.2)

Inequality (1.2) is best possible and the extremal polynomial is P(z)= α+βzn with |α| =
|β|.

As an extension of (1.2), Malik [5] proved the following.

Theorem 1.1. If P(z) is a polynomial of degree n which does not vanish in |z| < k, k ≥ 1,
then

max
|z|=1

∣∣P′(z)
∣∣≤ n

1 + k
max
|z|=1

∣∣P(z)
∣∣. (1.3)

The result is best possible and equality holds for P(z)= (z+ k)n.

Further, as a generalization of (1.3), Bidkham and Dewan [1] proved the following
theorem.
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Theorem 1.2. If P(z) =∑n
v=0 avz

v is a polynomial of degree n having no zeros in |z| < k,
k ≥ 1, then for 1≤ ρ≤ k,

max
|z|=ρ

∣∣P′(z)
∣∣≤ n(ρ+ k)n−1

(1 + k)n
max
|z|=1

∣∣P(z)
∣∣. (1.4)

The result is best possible and equality in (1.4) holds for P(z)= (z+ k)n.

In this paper, we obtain the following result which is a generalization as well as an
improvement of Theorem 1.2.

Theorem 1.3. If P(z) =∑n
v=0 avz

v is a polynomial of degree n having no zeros in |z| < k,
k ≥ 1, then for 0≤ r ≤ ρ ≤ k,

max
|z|=ρ

∣∣P′(z)
∣∣

≤ n(ρ+ k)n−1

(k+ r)n

{
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)n(

k2 + ρ2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
(
ρ− r

k+ ρ

)(
k+ r

k+ ρ

)n−1
}
×M(P,r).

(1.5)

Remark 1.4. Since it is well known that if P(z) =∑n
v=0 avz

v, P(z) �= 0 in |z| < k, k ≥ 1,
then |a1|/|a0| ≤ n/k, the above theorem with r = 1 gives a bound that is much better
than obtainable from Theorem 1.2.

If we assume P′(0)= 0 in the above theorem, we get the following result.

Corollary 1.5. If P(z)=∑n
v=0 avz

v is a polynomial of degree n having no zeros in |z| < k,
k ≥ 1 and P′(0)= 0, then for 0≤ r ≤ ρ ≤ k,

max
|z|=ρ

∣∣P′(z)
∣∣≤ n(ρ+ k)n−1

(k+ r)n

{
1− k(k− ρ)(ρ− r)n(

k2 + ρ2
)
(k+ ρ)

(
k+ r

k+ ρ

)n−1
}
M(P,r). (1.6)

2. Lemmas

We require the following lemmas for the proof of the theorem. The first lemma is due to
Govil et al. [2].

Lemma 2.1. If P(z)=∑n
v=0 avz

v is a polynomial of degree n having all its zeros in |z| ≥ k ≥
1, then

max
|z|=1

∣∣P′(z)
∣∣≤ n

n
∣∣a0
∣∣+ k2

∣∣a1
∣∣(

1 + k2
)
n
∣∣a0
∣∣+ 2k2

∣∣a1
∣∣max
|z|=1

∣∣P(z)
∣∣. (2.1)

Lemma 2.2. If P(z)=∑n
v=0 avz

v is a polynomial of degree n having no zeros in |z| < k, k > 0,
then for 0≤ r ≤ ρ ≤ k,

M(P,r)≥
(
r + k

ρ+ k

)n
M(P,ρ). (2.2)

There is equality in (2.2) for P(z)= (z+ k)n.
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The above lemma is due to Jain [3].

Lemma 2.3. If P(z) =∑n
v=0 avz

v is a polynomial of degree n having no zeros in |z| < k,
k ≥ 1, then for 0≤ r ≤ ρ ≤ k,

M(P,r)≥
(
k+ r

k+ ρ

)n{
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)n(

k2 + ρ2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
(
ρ− r

k+ ρ

)(
k+ r

k+ ρ

)n−1
}−1

×M(P,ρ).

(2.3)

Proof. Since P(z) has no zeros in |z| < k, k ≥ 1, therefore, the polynomial T(z) = P(tz)
where 0≤ t ≤ k has no zeros in |z| < k/t, where k/t ≥ 1. Using Lemma 2.1 with the poly-
nomial T(z), we get

max
|z|=1

∣∣T′(z)
∣∣≤ n

{
n
∣∣a0
∣∣+ k2/t2

∣∣ta1
∣∣(

1 + k2/t2
)
n
∣∣a0
∣∣+ 2

(
k2/t2

)∣∣ta1
∣∣
}

max
|z|=1

∣∣T(z)
∣∣, (2.4)

which implies

max
|z|=t

∣∣P′(z)
∣∣≤ n

{
n
∣∣a0
∣∣t+ k2

∣∣a1
∣∣(

t2 + k2
)
n
∣∣a0
∣∣+ 2k2t

∣∣a1
∣∣
}

max
|z|=t

∣∣P(z)
∣∣. (2.5)

Now for 0≤ r ≤ ρ≤ k and 0≤ θ < 2π, we have

∣∣P(ρeiθ)−P
(
reiθ

)∣∣≤
∫ ρ

r

∣∣P′(teiθ)∣∣dt
≤
∫ ρ

r
n

{
n
∣∣a0
∣∣t+ k2

∣∣a1
∣∣(

t2 + k2
)
n
∣∣a0
∣∣+ 2k2t

∣∣a1
∣∣
}

max
|z|=t

∣∣P(z)
∣∣dt (

by (2.5)
)
,

(2.6)

which implies on using inequality (2.2) of Lemma 2.2,

∣∣P(ρeiθ)−P
(
reiθ

)∣∣≤
∫ ρ

r
n

{
n
∣∣a0
∣∣t+ k2

∣∣a1
∣∣(

t2 + k2
)
n
∣∣a0
∣∣+ 2k2t

∣∣a1
∣∣
}(

k+ t

k+ r

)n
M(P,r)dt

≤ nM(P,r)
(k+ r)n

∫ ρ

r

{
n
∣∣a0
∣∣t+ k2

∣∣a1
∣∣(

t2 + k2
)
n
∣∣a0
∣∣+ 2k2t

∣∣a1
∣∣
}

(k+ t)ndt,

(2.7)
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which gives, for 0≤ r ≤ ρ≤ k,

M(P,ρ)

≤
[

1 +
n

(k+ r)n

∫ ρ

r

{
n
∣∣a0
∣∣t+ k2

∣∣a1
∣∣(

t2 + k2
)
n
∣∣a0
∣∣+ 2k2t

∣∣a1
∣∣
}

(k+ t)ndt

]
M(P,r)

≤
[

1 +
n(k+ ρ)
(k+ r)n

{
n
∣∣a0
∣∣ρ+ k2

∣∣a1
∣∣(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
}∫ ρ

r
(k+ t)n−1dt

]
M(P,r)

=
[

1−
{

(k+ ρ)
(
n
∣∣a0
∣∣ρ+ k2

∣∣a1
∣∣)(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
}

+

{
(k+ ρ)

(
n
∣∣a0
∣∣ρ+ k2

∣∣a1
∣∣)(

ρ2 +k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
}(

k+ρ
k+r

)n]
M(P,r)

=
[

k(k− ρ)
(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣ +

{
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
}(

k+ ρ

k+ r

)n]
M(P,r)

=
(
k+ ρ

k+ r

)n[
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)(

k2 + ρ2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
{

1−
(
k+ r

k+ ρ

)n}]
M(P,r)

=
(
k+ ρ

k+ r

)n[
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣ × ρ− r

(k+ ρ)
{

1− ((k+ r)/(k+ ρ)
)}

×
{

1−
(
k+ r

k+ ρ

)n}]
M(P,r)

≤
(
k+ ρ

k+ r

)n[
1− k(k− ρ)

(
n
∣∣a0
∣∣− k

∣∣a1
∣∣)n(

ρ2 + k2
)
n
∣∣a0
∣∣+ 2k2ρ

∣∣a1
∣∣
(
ρ− r

k+ ρ

)(
k+ r

k+ ρ

)n−1
]
M(P,r),

(2.8)

from which inequality (2.3) follows. �

3. Proof of theorem

Since the polynomial P(z) =∑n
v=0 avz

v has no zero in |z| < k, where k ≥ 1, therefore, it
follows that F(z) = P(ρz) has no zeros in |z| < k/ρ where k/ρ ≥ 1. Applying inequality
(1.3) to the polynomial F(z), we get

max
|z|=1

∣∣F′(z)
∣∣≤ n

1 + k/ρ
max
|z|=1

∣∣F(z)
∣∣, (3.1)

which gives

max
|z|=1

∣∣P′(z)
∣∣≤ n

ρ+ k
max
|z|=ρ

∣∣F(z)
∣∣. (3.2)

Now if 0≤ r ≤ ρ ≤ k, then applying inequality (2.3) of Lemma 2.3 to (3.2), it follows that

max
|z|=ρ

∣∣P′(z)
∣∣≤ n(k+ρ)n−1

(k+r)n

[
1− k(k−ρ)

(
n
∣∣a0
∣∣−k∣∣a1

∣∣)n(
k2 +ρ2

)
n
∣∣a0
∣∣+2k2ρ

∣∣a1
∣∣
(
ρ−r
k+ρ

)(
k+r
k+ ρ

)n−1
]

×max
|z|=r

∣∣P(z)
∣∣,

(3.3)

which is (1.5) and the theorem is proved.
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