ON THE FOURIER TRANSFORM AND
THE EXCHANGE PROPERTY

DRAGU ATANASIU AND PIOTR MIKUSINSKI

Received 19 June 2005

A simplified construction of tempered Boehmians is presented. The new construction
shows that considering delta sequences and convergence arguments is not essential.

1. Introduction

Since Boehmians were introduced, extensions of the Fourier transform to spaces of
Boehmians attracted a lot of attention (see [2, 3, 4, 5, 6, 7, 8, 9]). In some cases, the
range of the extended Fourier transform is a space of functions. In other constructions,
the range is a space of distributions or a space of Boehmians.

In this paper, we would like to consider the space of tempered Boehmians presented
in [8]. In this case, the range of the Fourier transform is the space of all distributions %’.
This work is motivated by [1].

First we recall briefly the construction of the space of tempered Boehmians. A con-
tinuous function f : RN — C is called slowly increasing if there is a polynomial p on RV
such that | f(x)| < p(x) for all x € RN. The space of slowly increasing functions will be
denoted by W (RN) or simply W

An infinitely differentiable function f : RN — C is called rapidly decreasing if

sup sup (1+x3+---+x%)" | D¥f(x)] < oo (1.1)
|| <m xeRN
for every nonnegative integer m, where x = (x1,...,xn), & = (a1,...,0N), &S are nonneg-
ative integers, |a| = a; + - - - + an, and

ol ol

b= Ox®  OxTT - oxl (12)
The space of rapidly decreasing functions is denoted by #(RY) or simply &.
If f € W and ¢ € ¥, then the convolution
fHolx) = Jw felx=y)dy (1.3)

is well defined and f * ¢ € W
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A sequence (¢,) € N is called a delta sequence if it satisfies the following conditions:
(@) gy @n(x)dx =1forallneN,
(b) Jgv 19n(x)|dx < C for some constant C and all n € N,
(¢) limy—co [y [1%[1*[@n (x)|dx = O for every k € N.and & > 0.
The space of tempered Boehmians R is defined as the space of equivalence classes of
pairs of sequences ( f,,¢,), where f, € W and (¢,) is a delta sequence as defined above,
satisfying

Jn*@n=fakom VmneN, (1.4)

with respect to the equivalence relation defined by

(fm(Pn) ~ (gn)yn) lffm * Yn = &n * P> Vm,ﬂ eN. (15)

It is shown in [8] that the Fourier transform can be defined for tempered Boehmians
and that the range is exactly the space of all distributions %’. Thus, the space of tempered
Boehmians can be identified with the space of ultradistributions %’ (see, e.g., [10]). In
the construction, the particular choice of delta sequences and the fact that the Fourier
transform of a delta sequence converges to 1 uniformly on compact subsets of RN seem
to be essential. In this paper, we show that this is not the case. In fact, we give an equivalent
construction where convergence plays no role. This approach indicates that the results of
[8] follow from a more general principle.

In what follows, we will denote by &’ the space of tempered distributions, that is, the
space of continuous linear functionals on ¥. If f € " and ¢ € ¥, then the convolution
f * ¢ is defined as (f * ¢)(x) = f(¢@x), where ¢.(z) = ¢(x — 2). It can be shown that, if
fed and ¢ € ¥, then f * ¢ € W. The Fourier transform of a tempered distribution
f, denoted by f, is the functional on ¥ defined by f(¢) = f($), where ¢ is the Fourier
transform of ¢.

2. The exchange property

For a family {¢;} jcj = {¢;};, where J is an index set and ¢; € ¥ for all j € ], we define

M({g;};) = {xeRN:§;(x) =0 Vje]). (2.1)

A family of pairs {(f},¢;)};, where f; € ¥ and ¢; € ¥, is said to have the exchange
property if

fixor=fixo; Vijke] (2.2)

Tueorem 2.1. If {(f;,¢;)}; has the exchange property and O = M({¢;};)¢ (the comple-
ment of M({g;}j) in RN), then there exists a unique F € @' (Q) such that

~

fi=F¢; VjeI (2.3)

Proof. For every x € Q there exists a j € J and & > 0 such that |¢;(x)| > ¢ in an open
neighborhood of x. Then we can define F = f;/¢; in that neighborhood. We need to show
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that this definition of F is independent of j. Suppose, for some ¢ > 0, we have |¢j (x)| >¢
for all x € U and |@x(x)| > ¢ for all x € V. Then, since f; * ¢x = fx * ¢;, we have ]?](Apk =

ﬁ(Apj and

Q = Q (2.4)
Pi Pk
on U N V. Clearly, F is unique. ]

We will denote by & the collection of all families of pairs {( fi>@j)};, where J is an
index set, f; € ¥" and ¢; € ¥ for all j € J, satisfying the exchange property and such that
M({g;l;) = @.

Note that in the definition of s the index set is not fixed. If f € ¥ is arbitrary and
w(x) =e ¥, then {(f,w)} € s. In this case the index set has only one element.

If (¢;) is a delta sequence, then obviously M({¢;}n) = @. However, it is possible that
M({¢;};) = @ and {¢;} does not contain any subsequence which is a delta sequence.
Consider, for example, a sequence {¢;}y such that {¢;}y is a partition of unity. More
generally, let {U;}; be an open covering of RN and let {¢;}; be such that [$;(x)| > 0 for
x € U;. A family {¢;}; such that M({¢;};) = @ will be called total.

LEmMA 2.2. If {@;}; and {yk}k are total, then {@; * yi}jxk is total.
TueoreM 2.3. {(f;,¢;)}; € sl if and only if there exists a unique F € %' (RN) such that

fj = @;F forall j €]J.
Proof. We only need to show that existence of such an F € @' (RY) implies the exchange
property. Indeed, for any j,k € ] we have

[i#x = F9ipx = For; = fipj. (2-5D)

Definition 2.4. If {(f;,¢;)}; € o, then the unique F € %’ (RN) such that f] = @F for all
j € J will be denoted by 9'7({(]‘]-,%)}]) and called the Fourier transform of {(f;,¢;)};.

THEOREM 2.5. For every F € %' (RN) there exists {(fj»9j)}; € A such that F = F({(f;,
@iy

Proof. Let {¢;}n be a total sequence such that ¢; € D(RN) for all j € N, where B(RN)
denotes the space of smooth functions with compact support. Then, for every j € N,

there is an f; € ¥’ such that f] = @,F. Clearly, {(fj,¢;j)}n € s and F = F({(f},9j)In)-
O

Let {(f;,9)}{(gy)tk € A If fj % yr = gk x ¢; for all j € ] and k € K, then we
write {(fj,9;)}; ~ 1(gk> yx)} k. This relation is clearly symmetric and reflexive. We will
show that it is also transitive.

Let {(fj,9)}7, {(ge yi) b { (s yo) b € S TE{(fj,905) 37 ~ {(gk> yi) Ik and {(gk, yi) Ik ~
{(h,y1)}1, then

fi*ye=g*@j  gkxwi=h*p (2.6)
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forallje], ke K, e L. Hence

fikvexyi=gex@i*yn  g*kyrke;=hxyxg; (2.7)

forall j €],k € K, € L. Since * is commutative, we have

fikwikye=h*e;*ypk (2.8)

forall jeJ,keK,le€ L. Now fix j € Jand ] € L. Since M({yx}x) = & and (2.8) holds
for every k € K, we conclude that f; % y; = hy x ¢; for all j € ] and I € L, which means

that {(f;,¢;)}; ~ {(h,y1)}1.
Note that

{(fj)goj)}]N{(fj*V/k’ (Pj*wk)}]xK (2.9)
for any total family {yx} k.
TuEOREM 2.6. Let {(f,9j)}y, {(gksyi)tx € SA. Then

[fo}y ~ (et iff F(1Fe)l) = F (1o ). (2.10)

Proof. Let F = F({(fj,¢;)}7) and G = F({(gk, yx)}k)-
If {(fj»9;)}; ~ {(gk>yx)} k> then

FQiYk = fiYk = &Pj = GYxd; (2.11)

forall j € Jand k € K. Hence F = G, by Lemma 2.2.
Now assume F = G. Then

Tk = F§ix = G = 8 (2.12)
forall j € J and k € K. Hence {(fj,¢;)}; ~ {(gxyx) k- 0

Now we define B = s/ ~, the space of equivalence classes. In view of Theorems 2.5
and 2.6, the Fourier transform is a bijection from % to 9’. Consequently, 9B can be iden-
tified with the space of ultradistributions %’. We will show that, with a properly defined
convergence in 9B, the spaces are isomorphic.

Note that the space ¥’ can be identified with a subspace of B via f — [{(f * w,w)}],
where w(x) = e .

THEOREM 2.7. There exists a delta sequence (¢,) such that for every T€ B, T=[{(fu, Pn) In]
for some f, € W.

Proof. Let (v,) be a delta sequence such that {, € %. Then, for any T € B, we have
f"l/?n e ¥, since Teg. Consequently, YA"t/A/n = g, for some g, € ¥'. It is easy to check
that T = [{(gn * ¥u, ¥ * W)} n]. Since fr = gn % ¥ € W and (¢,) = (W * ¥y) is a delta
sequence, the proof is complete. Note that (¢,) does not depend on T. O
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3. Algebraic properties and convergence

9B becomes a vector space with the operations defined as follows:

M{Unent ] =[{0 et ], rec

(3.1
Lo} |+ [ {govtc] = [1U % vt gex 05005 % v by -
If[{(fi @)} ]s (g vi) k] € B and gr € S for all k € K, then we can define
(e} ] [{gow) | = [ 1 % goi * vi) k|- (3.2)

It is easy to check that these operations are well defined. Note that, in view of
Theorem 2.7, the definition of addition can be simplified.

Definition 3.1. Let Ty, T, T,... € RB. It is said that the sequence (T},) is convergent to T
and is written as T,, — Ty if there exists a total family {¢;}; such that
(a) there exist tempered distributions f;,, where j € J and n € N, such that T,, =
[{fim@jljl foralln=0,1,2,...,
(b) fin— fioin S asn — oo forevery j €J.

THEOREM 3.2. The Fourier transform is an isomorphism from B to D’.

Proof. Note that, since T, — Ty in R if and only if T,, — Ty — 0, it suffices to prove conti-
nuity at 0.

Assume T, — 0 in 9. Then there exist tempered distributions f;,, where j € J and
n € N, such that T, = [{(fjx,¢;)};] for all n =1,2,... and fj, — 0in ¥ as n — o for
every j € J. If y € 9, then there are ji,..., jr such that suppy C Ufnzl supp ¢;,.. Then

k P
lim Ty = lim > (,5,) < 22—
m=1 m-1 |¢jm | (3.3)
k ~ )
. Pin¥
= Z limfj ») = —>5=0,
m=1 <”a°° ) 21:11:1 | P, |2

since lim,— « fj,n = 0 for every j € J, by continuity of the Fourier transform in &. This
proves continuity of % : B — 9, because lim,,., T,y = 0 in & for every v € & implies
limy e Ty = 0in 9.

Now assume lim,,— TA‘” = 01in 9’. By Theorem 2.7, there exists a delta sequence (¢;),
j € N, such that for every n € N we have T;, = [{(fj»,¢;)}n] for some f;,, € W. Let (yx),
k € N, be a delta sequence such that s € @ for every k € N. Then lim,, .o, T,,$ Wk =0in
I’ for every j,k € N. Since f"n(ﬁj = fjn for every j,k € N, we have limnawﬁ‘,n{/}k =01in
&', which implies lim, .o fj» * Y& = 0in ¥, But

T, = [{(fj,m(Pj)}]] = [{(f]” * Yk, @k Wk)}]xK] (3.4)

foralln=0,1,2,..., so we have T,, — 0 in %B. O
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