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Let K be a compact Hausdorff space and C(K) the Banach space of all real-valued contin-
uous functions on K, with the sup-norm. Types over C(K) (in the sense of Krivine and
Maurey) can be uniquely represented by pairs (¢,u) of bounded real-valued functions on
K, where ¢ is lower semicontinuous, u is upper semicontinuous, £ < u, and €(x) = u(x)
for all isolated points x of K. A condition that characterizes the pairs (¢,u) that represent
double-dual types over C(K) is given.

1. Statement of the main theorem

The concept of type over a Banach space E was first introduced by Krivine and Maurey [7]
in the context of separable Banach spaces. The reader is referred to Garling’s monograph
[4] for more details. We consider general, not necessarily separable Banach spaces. Let E
be a Banach space. For every x € E, we define a function 7, : E — R by letting 7,.(y) =
lx+ yll forall y € E.

Definition 1.1. A function 7: E — R is a type over E if 7 is in the closure (with respect to
the topology of pointwise convergence) of the set {7, : x € E}.

The definition given here is equivalent to the definition given in [1]. That is, 7 is a type
over E if and only if there exists an ultrafilter U over an infinite index set A and a bounded
family of elements (xq)qe) in E such that 7(y) = limgeqy [l + y|l for all y € E. The reader
is referred to [5] for more details regarding the choice of the ultrafilter.

Throughout, we let K be a compact Hausdorff topological space. The topology on K
is denoted by Q. We let £ (K) denote the Banach lattice of bounded real-valued func-
tions on K equipped with the sup-norm. For f,g € €. (K), the lattice ordering is defined
pointwise.

An sc pair (semicontinuous pair) is a pair of functions (¢,u) from €. (K) such that £ is
lower semicontinuous (Isc), u is upper semicontinuous (usc), £ < u, and €(x) = u(x) for
all isolated points x € K.

The Banach space of continuous real-valued functions on K with sup-norm is denoted
by C(K). The constant function with value 1 is denoted by 1.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2533-2545
DOI: 10.1155/IJMMS.2005.2533


http://dx.doi.org/10.1155/S0161171205502692

2534  Double-dual types over the Banach space C(K)

The following theorem gives a concrete representation of types over C(K) in terms of
sc pairs [9, 10].

THEOREM 1.2. Let 7: C(K) — R be a function. Then the following are equivalent:
(i) 7 is a type over C(K);
(ii) there exists an sc pair (€,u) such that t(g) = max{||€ +gll,llu+gll} forall g € C(K).

The correspondence between types over C(K) and sc pairs (¢, u) is one-to-one.
The following proposition is immediate from Definition 1.1; see [9] for more equiva-
lent conditions and a detailed proof.

ProrosiTioN 1.3. Let E be a Banach space and 7 : E — R a function. Then the following are
equivalent:
(i) 7 is a type over E;
(ii) for every finite subset a < E and every € > 0, there exists an element x = x(a,¢) € E
such that |7(y) — lIx+ ylll < e forall y € a;
(iii) there exists a bounded net (x4)acr in E such that

lim ||xe + y[[ = 7(y) (1.1)

forall y € E.

If 7 is a type over E and (x4)aer is as in (iii) above, we say that (x,)qcr generates the
type 7. A net (xq)aer in E doubly generates 7 if for every A € [0,1] and every y € E,

lkl}llir}a||y+lxa+(l—/\)xﬁ|| =1(y). (1.2)

Let E be a Banach space and let E” be its second dual. Throughout, we consider E
as a subspace of E”. For every fixed g’ € E”, define the function 7, : E — R by letting
7y (x) = |lx+g" |l for all x € E. It is immediate from the principle of local reflexivity that
Ty is a type over E.

If 7 is a type over E that can be represented in this way, we call 7 a double-dual type
over E.

Maurey [8] and Rosenthal [11] have given a characterization of double-dual types
over separable Banach spaces. The author [9] has generalized this characterization to not
necessarily separable Banach spaces as follows.

TaeOREM 1.4. Let E be a Banach space and 7 : E — R a type over E. Then the following are
equivalent:

(i) 7 is a double-dual type over E;

(ii) there exists a net (Xy)qc1 in E that doubly generates 7.

This paper is devoted to proving the following characterization of double-dual types
over C(K) in terms of the representation using the sc pairs.
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THEOREM 1.5. Let 7 be a type over C(K), represented by the sc pair (€,u) as in Theorem 1.2.
Let

Y, = {x € K : x is not isolated and €(x) < lirﬁi}pff(y)},
} (1.3)

Y, = {x € K : x is not isolated and u(x) > limsup u(y)
y—x

The following are equivalent:
(i) 7 is a double-dual type over C(K);
(i) YonY, = O;
(iii) there exists a net ( fy)acr which doubly generates 7.

The next section will include a discussion of generating nets. In Section 3, several
properties of singular points of sc pairs will be proved. The main Theorem 1.5 will then
be proved in Section 4.

2. Generating nets in C(K)

In this section, we introduce concepts that are needed to prove the main theorem.
We use the standard notion for convergence of nets in topological spaces according to
[3, Section 1.6]. We recall the basic definitions for the convenience of the reader.

Definition 2.1. (i) A partially ordered set (I, <) is a directed set if for any a,8 € I there
exists y € I such that y = a and y = . Such an element y is called a successor of a (and f3).

(ii) Let (I, <) be a directed set. For every element oy € I, define |ag| = card ({a €1 :
a < ap}), the number of predecessors of ap.

(iii) Let (I,<) and (J, <) be directed sets. A function k:I — ] is order-preserving if
a < S eI implies k(«) < k(). A function k : I — ] is cofinal if for every y € J there exists
a € I such that y < k(a).

(iv) Let (I, <) be a directed set and K a topological space. We say that (x)qer is a net
in K indexed by I if x, € K for all « € I. If K is a normed space, then (xy)qcr is bounded
if {||x4]l : « € I} is bounded in R.

(v) Let (I, <) be a directed set, K a topological space, and (x4)4cr a net in K indexed by
I.1f j: T — I is a cofinal order-preserving function, then (x;())aer is a subnet of (x4)aer.

(vi) Let (I, <) be a directed set, K a topological space, and (x4)4cs @ net in K indexed
by I. Let x € K. Then lim,; x4 = x if and only if for every neighborhood U of x in K there
exists a € I such that xg € U for all > a.

(vii) Let (I, <) be a directed set and (74)4c; @ bounded net of real numbers. Then define

limsupr, = in?sup{r[; :feland B >al,
al ae
2.1
lim}nfra=supinf{rp:/361and/32(x}. (21
* acl

Observe that limsup,, ; 7, and liminf, 7, exist for every bounded net (74)qes in R.
We now consider the Banach lattice £, (K) of bounded real-valued functions on K,
equipped with the sup-norm.



2536 Double-dual types over the Banach space C(K)

A subset H < € is called bounded if sup{|| |l : f € H} < co. Let H be such a set. The
pointwise supremum of H is the real-valued function L defined by L(x) = sup{h(x):h €
H} for every x € K. We write L = \/ H for this function. Similarly, the pointwise infimum
of H is the real-valued function U defined by U(x) = inf {h(x) : h € H} for every x € K.
This function is denoted by A H. Note that both \/ H and /\ H are again in £, (K).

If H < £, (K) is a bounded set of usc functions, then the pointwise infimum A H is
usc. Similarly, the pointwise supremum of a bounded set of Isc functions is Isc. Finally,
it is clear that f € C(K) is continuous if and only if f is usc and Isc. Therefore, if H is a
bounded set of continuous functions on K, then /\ H is usc and \/ H is Isc.

Let 7 be a type over C(K) and let ( fy)acr generate 7 as in Proposition 1.3(iii) above.
We construct the sc pair (¢,u) of Theorem 1.2 as follows.

For every a € I, define a lower semicontinuous functions ¢, and an upper semicontin-
uous function u, on K by setting

ta=\/{fECK): f = fVp=al,

(2.2)
ue=\{f €CK): f= fy Vp=af.

Then set
u= /\ua, = \/f‘x. (2.3)

Here are some basic properties of the functions € and u defined in (2.3). See [10] for
details.

Remark 2.2. Let (fa)aer be a bounded net of functions and let &g, ¢, uy, and u be as in
(2.3) above.
(1) Ifag, 0 € I and o) < o, then €y, < €, < € and uy, = uy, = u.
(ii) If x € K and ¢ > 0, then there exists an ay = a(x,¢) € I such that for all indices
o> K,

Cu(x) = €(x) — &, Ug(x) < u(x)+e. (2.4)

(iii) For every 8 € I, every x € K, every § > 0, and every neighborhood U of x, there
exists y € U and y > f8 such that f,(y) < £s(x) + 6.

(iv) For every € I, every x € K, every § >0, and every neighborhood U of x, there
exists y € U and y = 8 such that f,(y) = ug(x) — 4.

Proof. (i) and (ii) are trivial. To prove (iii) let § € I, let x € K, § >0, and U a neighbor-
hood of x. Suppose that for every y € U and all y > 8 we have f,(y) > €3(x) + . Then we
may choose a function g € C(K) such that g < f, for all y > 8 and g(x) = €3(x) + J. This
would imply that £5(x) = \/{f € C(K): f < f, forall y > B} = g(x) = €s(x) + . This is a
contradiction. The proof of (iv) is dual to the proof of (iii). O

Let (fa)acr be a bounded net of functions in C(K) that generates a type 7 over C(K).
Choose £ and u as in (2.3) and assume x € K and u(x) = r. It can be shown that for every
neighborhood U of x and for every ¢ > 0, there exists an index ap such that for every
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« > ay, there exists y € U such that f,(y) >r —e. If U, ¢, and r are fixed, then we define
foreveryw €I,

Vai={y€eU: fuly) >r—¢}. (2.5)

Hence, for every x € K, every neighborhood U of x, and every € > 0, there exists an
index ap such that V, # @ for all a > «.
The following definition introduces stronger conditions.

Definition 2.3. Let (fy)qer be a bounded net of functions in C(K). Let £ and u be as in
(2.3).

(1) (fa)aer generates u at x within Q) if for every & >0 and every neighborhood U
of x, there exists an index ag such that for all a > ay, there exists Sy such that
Van Vg # & forall B> f.

(ii) The net (fo)acr generates u within Q if it generates u at x within Q for every x € K.

(iii) (fa)aer generates € at x within Q if (— fy)acs generates —€ at x within Q.
(iv) The net ( fa)aer generates € within Q) if it generates € at x within Q for every x € K.

ProrosITION 2.4. Let (fo)ac1 be a bounded net of functions in C(K) that generates a type
7. Let u be as in (2.3).
(i) If u is continuous at x, then ( fo)acr generates u at x within Q).
(ii) Iflimyr fa(x) = u(x), then (fy)aer generates u at x within Q.
(iii) If (xg)per is a net in K that converges to x and if limp;u(xg) = u(x) and lim,
falxg) = u(xp) for all B, then (fo)acr generates u at x within Q.
The statement is also true if u is replaced with €.

Proof. To show (i) let ¢ >0 and U a neighborhood of x. We may assume that [u(y) —
u(x)| < /2 forall y € U. By Remark 2.2(ii) there exists g € I such that for all & > ag,

Va={y e U: fuly) >ulx) — ¢} + @. (2.6)

Now fix such an « and choose y € V. Then (using Remark 2.2(iii)) there exists 3y such
that for every 5 > f3,

fi(zg) >u(y) =5 (2.7)
for some zg € V,. Therefore, zg € V, N V3, which shows that the net (fx)qcs generates u
at x within Q. Statement (ii) is immediate from the definition.

To show (iii) let U be a neighborhood of x and ¢ > 0. There exists § € I such that
x € U and |u(x) — u(xpg)| < &/2. Fix such a § € I and choose &y € I such that | fo(x5) —
u(xg)| < &/2 for all @ > ag. Then x5 € Voo = {y € U: fo(y) > u(x) — &} for all & > a; that
is, Vu NV # @ forall o, > . O

3. Singular points of semicontinuous pairs

Our next goal is to find necessary and sufficient conditions on ¢ and u for the existence
of a single net that generates both € and u within Q.
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Definition 3.1. Let u be a usc function and x € K. We call x a singular point of u, if x is
not an isolated point of K and

u(x) >limsupu(y). (3.1)
yax

Similarly, we call x a singular point of an Isc function ¢ if x is not isolated and

£(x) < lirﬂipfﬂ(y). (3.2)

We call x a regular point of u (resp., £) if x is not isolated and not a singular point of u
(resp., £).

It is immediate from the definition that x is a singular point of u if and only if there
exists an open neighborhood U of x such that

u(x) >sup{u(y):ye U\ {x}}. (3.3)
If U is such a neighborhood and V < U is another neighborhood of x, then
u(x) >sup{u(y):y € V\ {x}}. (3.4)

If x is a regular point of u, then there exists a net (x)ge; in K which converges to x
such that u(x) = limg ; u(xp) and xg # x forall p € I.

ProprosSITION 3.2. Let (£,u) be an sc pair in €-(K). Let x € K be a nonisolated point and
(fa)acr a net which generates both € and u within Q) at x.

(i) If x is a singular point of u, then x is a regular point of € and lim, 1 fo(x) = u(x).

(ii) If x is a singular point of €, then x is a regular point of u and lim, 1 fo(x) = €(x).

Proof. First we prove the following claim, which is the second statement of (i).

If x is a singular point of u, then lir}lfa(x) = u(x). (3.5)

Proof of the claim. Let x be a singular point of u and suppose limg; fo(x) # u(x). Choose
& >0 and an open neighborhood U’ of x such that

u(x) —e>sup{u(y):y e U\ {x}} (3.6)
and such that

limsup fy(x) < u(x) — 2e. (3.7)
o,

There exists a further open neighborhood U of x such that x € U< U < U’ and U is
compact. We may fix ay such that for all & > «ay,

Jfa(x) <u(x) —e, Vo = {y e U: foly) >u(x) - g} + . (3.8)
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Let o > ap. Then

Wa:{yeu:fa(y)w(x)—%} (3.9)

is an open neighborhood of x which is disjoint from V. Since ( fy)acr generates u at x
within Q, there exists ) such that for all 8 > ), we may choose

YBE {era:ﬁs(ybu(x)—%}. (3.10)

By passing to a subnet if necessary, we may assume that lim/;,l yp=Yy for some y € U. We
obtain ug(y) = u(x) — &/3 for all € I with 8 > 3 and hence

u(y)za(x)—%, (3.11)
which contradicts (3.6). So limg; f4(x) = u(x) and the claim is established. O

The dual statement of claim (3.5) reads as follows:

if x is a singular point of ¢, then lir}qfa(x) = £(x). (3.12)

It is proved using an argument dual to the proof of claim (3.5). This shows the second
part of (ii).

To prove the first part of (i) observe that x singular for u implies £(x) < u(x), and
therefore lim, fo(x) = u(x) # €(x). Using the contrapositive of statement (3.12) above
shows that x is not a singular point of ¢; that is, x is a regular point of £.

Likewise, (3.5) can be used to show that if x a singular point of ¢, then x is a regular
point of u. O

Let (¢,u) be an sc pair and Y, and Y, the sets of singular points of £ and u, respectively.
If (fa)aer s a net that generates both € and u within Q, then Y, and Y, are disjoint by
Proposition 3.2. The following proposition proves the existence of such a net, provided
that Y, and Y, are disjoint.

ProrosiTioN 3.3. Let K be a compact Hausdorff space and (€,u) an sc pair in €e(K).
Consider the sets Yy, Y, of singular points of €,u, respectively. Suppose that Y, n'Y, = &.
Then there exists a net (fu)acr of continuous functions which generates € and u within Q.

The proof of this proposition requires the following theorem.

THeOREM 3.4 (Edwards [2]). Let U be a usc function and L an Isc function on a compact
Hausdorff space K such that U < L. Then there exists a continuous function F such that
U<F<L

A proof of this theorem can be found in Kaplan [6, (48.5)].

Proof of Proposition 3.3. Let °U be a base for the topology € such that U does not contain
the empty set and the only finite sets in U are singletons. Let I = P (W) \ {D}, the set
of finite subsets of AU, be partially ordered by inclusion.
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By induction on |«| construct an increasing net of integers (kq)qcs and for every 1 <
k < kq construct functions g&l), g&z) and f, € C(K) and finite collections of nonempty
opensets By = {Vy1,..., Var, 2 aand elements zj o € Vi fori=1,2andall 1 <k <k,,
such that the following conditions hold for every o € I and every k = 1,...,k,:

1
u(zak) 2 sup {u(y): y € Varh =1 0 (3.13)
C(z20k) <inf{l(y):y € Vait + ﬁ (3.14)

g&l) (Zj,oc,k) = U(Zj,oc,k) forj = 1)2) (3.15)
gl(xz) (zjak) = €(zjak) forj=1,2, (3.16)
u<gh < A\g < lull1, (3.17)
P<a
e=g?=\/g? = —llel, (3.18)
PB<a
th (Zl,tx,k) = u(zl,tx,k)) fa(ZZ,a,k) = e(Zz,a,k)- (3.19)

Furthermore, for every < « and every 1 < k < kg, the following nonempty open sets
are required to be among the elements of B:

1
fo“g),k = {y € Vik: fo(y) > u(zipp) - W}’ (3.20)
1
Viigk = {y € Vi fy(y) <€(zapx) + m}. (3.21)
We use induction on |a|. If @ = &, let fz :gg) = |lul|1 and gg) = —||£]|1 and set

B = . With this choice, conditions (3.13)—(3.21) are either trivial or vacuously true.
If « € I and a # O, suppose as inductive hypothesis that the construction has been
completed for every € I with f < a. Let

Bo= Vi i= L% p<a 1 <k<ks}uaul)By (3.22)
P<a

where V) g and Vg are as in (3.20) for all 1 < k < k,. Observe that B, is a finite col-
lection of nonempty open sets. Say

%06 = {Va,l’---)Va,ka}) (323)

where (Va,k)l,z“: | are pairwise distinct. For i = 1,2 and 1 < k < kg, we choose ziqkx € Vi
satisfying (3.13) and (3.14), and such that for all 1 <k, j < kg, and 41,4, € {1,2}, we have
Ziak = Zipa,j if and only if either j = k and i} = i, or j = k and Vi is a singleton.

Note that such a choice is possible, since the singular points of £ and u are disjoint and
the only finite sets in U are singletons.

We now construct go(cl) and g&z) satistying (3.15) through (3.18).
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By inductive hypothesis in (3.17), u < /\ﬁ<a gl(;l) < |lu|l1. We define an Isc function L
on K by setting

u(x ifx =2z, forsome j=1,2; 1 <k <kg,
L(x ={ &) pek / (3.24)

/\ﬁ<ag[(31) (x) otherwise.

Because u < L, we may apply Theorem 3.4 and obtain g&l) € C(K) withu < g&l) < L. This
choice of gél) satisfies (3.15) and (3.17). We use a dual construction to define géz) satisfy-
ing conditions (3.16) and (3.18).

In order to construct f, define a usc function U and an Isc function L on K by setting
for everyx € K,

g&l)(x) ifx=2z14x forsomel <k <k(a),
Ulx) = 2) .
g (x) otherwise,
o (3.25)
g (x) ifx=2z, forsomel <k <k(a),
L(x) = 1) .
g '(x) otherwise.

Observe that U < L; by Theorem 3.4 there exists a continuous function f, with U <
fa < L. By construction of U and L and (3.15), we have

U(x1ak) = L(x1ak) = g9 (21,0k) = t(z1,0k) (3.26)
forall 1 <k < k,. Hence, fy(21,4k) = t(21,4k). Furthermore,

U(xZ,(x,k) = L(x2,(x,k) = g¢§¢2) (22,a,k) = 6(22,(x,k) (3-27)
forall 1 <k < kq. Thus, fu(22,0k) = €(22,4k). Condition (3.19) follows from these last two
observations.

This completes the construction and we now proceed to show that the net (fy)aer
generates u and € within Q.

Fixx € K, ¢ >0,and U € Q. Choose n € N such that 1/n < &/2. Fix f € I with |B] > n,
such that for some V € f we have x € V < U. Choose 1 < k < kg such that V = Vp; €
B. Applying (3.13) yields

1 1
— >u(x)— —.
B = 1
So by (3.19), fs(z1pk) = u(zipk). Now let a > f. By (3.20) there exists 1 < j < k4 such
that

u(zipr) = supfu(y):y € Vpx} - (3.28)

« 1
Vij = ViG, = {y € Vs f3(3) > u(zipr) - W}' (3.29)

In particular,

218k € Va,j- (3.30)
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Observe that by (3.13)

1
u(21,0,5) = sup{u(y):y € Voc,j}_m (3.31)

and zy4j € Vyj. Thus,

1
fp(21,0,j) > u(zipx) — Tal by (3.29)

> u(x) — LI by (3.28) (3.32)

1Bl lal

>u(x) —e.
On the other hand,

fa(zl,a,j) = u(zl,a,j) bY (3.19)

> sup {u(y) 1y € Vag} = 7 by (331)
> u(zps) - ﬁ by (3.30) (3.33)
> u(x) - |/3LI - ﬁ by (3.28)
> u(x) —
Therefore,
Ziaj EYEU: faly) >ulx)—efn{yeU: fy(y) >ulx) -} # @ (3.34)

for all & = B. This shows that the net (fy)qer generates u within Q. The proof that it
generates £ within Q follows from a similar argument. O

Let 7 be a type over C(K) that is represented by the sc pair (¢,u) as in Theorem 1.2.
Propositions 3.2 and 3.3 prove that the sets Y, and Y, of singular points of £ and u are
disjoint if and only if there exists a net ( fy)acs that generates both € and u within Q.

4. Proof of the main theorem

We now consider a net (fy)qes that generates a type 7 over C(K). As before, let this type
be represented by the sc pair (¢,u).

To establish the main theorem, we will now prove that the net doubly generates the
type 7 if and only if the net generates both ¢ and u within Q. This is accomplished in the
following two lemmas.

LEmMa 4.1. Let K be a compact Hausdorff space and © a type over C(K). Let (fa)acr be a
net that doubly generates . Let (€,u) be the sc pair such that T(g) = max{||€+gll,llu+gll}
forall g € C(K). Then ( fy)ac1 generates € and u within Q.
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Proof. Assume the conclusion does not hold. Then either (fy)qer does not generate u
within Q at some x € K, or it does not generate € within () at some x € K. We distinguish
between these two cases.

Case 1. (fa)acr does not generate u at x within Q. Let A = 1/2. There exists an open
neighborhood U of x and ¢ > 0 such that for all «y € I and ) € I there exist a > «p and
B > o, for which

yeU: i) >ux)—efniyeU: fyl(y) >ulx)—¢f =@ (4.1)

Let Uy = {y € U:u(y) <u(x)+¢/2} and choose an open neighborhood U, of x such
that U; < U; < Uy € U. We claim that there exists ag € I such that || fy|| < [|7|| +&/2 and
folg, <u(x)+e/2 forall a = . (Here, |I7]| = 7(0).)

Flrst observe that there exists a; such that for all « = a; we have || f4ll < |I7]| +&/2.
Suppose there does not exist ag > a; such that fy|7, < u(x) +¢&/2 for all @ = «. Then
there exist a cofinal order-preserving map i : I — I such that fi) (Vi) > u(x) +¢/2, where
Yitw) € U forall @ € I. We may assume that (yi(a))acs converges to yo € U;. Thus, u(y,) >
u(x) + ¢/2, which contradicts the choice of Uy and establishes the claim.

Fix a function g € C(K) such that g[x\y, = 0and g(x) = 3||7|| and 0 < g < 3||7[|. Ob-
serve that [[u+g|l = g(x) +u(x) = 3|7l + u(x).

Further, for each a > ay, there exists a; > « and a cofinal order-preserving function
j = ja : I — I such that

1 1 1 1 1 1

{y € Uri 2 fuly) > Julo) - Es} A {y € Uri 2 fiip (1) > 3ux) - Es} — 3. (42)

Fix such a; and j = j,,. If y € Uy,
1 1 £

g+ S )+ 5 fip () < 3lizll+ulx) = (4.3)

forall fel. If y € K\ U, we have
1 1 £
N+ 5L+ fip) <zl + 3. (4.4)
Observe that limg [|g +1/2 fo, + 1/2 f3| exists. Thus,

lim
B

+%fj(ﬁ)“ <3|l7ll +u(x) - Z. (4.5)

1
4= _
ZfﬁH BI

Hence,
. e e 1 1 & ..
hn;}nflg}l”g+ifa+5]ngs3||‘r||+u(X)—Z<lg}1||g+fa”- (4.6)

This contradicts the assumption that ( fy)ser doubly generates 7.

Case 2. (fa)aer does not generate € at x within Q. This case is handled with an argument
dual to the one in Case 1. a
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Lemma 4.2. Let K be a compact Hausdorff space and © a type over C(K). Let (€,u) be
the sc pair such that 1(g) = max{||[€ +gll,lu+gll} for all g € C(K). Assume that (fa)acI
generates € and u within Q. Then ( fy)ac1 doubly generates .

Proof. Fix g € C(K). Because 7(g) = max{[|€+gll,llu+gll}, we distinguish between two
cases.

Case 1. Suppose that 7(g) = ||lu+gll. Choose x € K such that ||+ gl = u(x) +g(x). Let
& >0 and choose a neighborhood U of x such that [g(y) — g(x)| < &/2 for all y € U.
Choose ag € I such that for all « > «y, there exists §y € I such that for all 5 > 3, we have
fa(2) > u(x) — &/2 and f3(z) > u(x) — &/2 for some z € U. Then

llg+Afa+ (1=A) f3|] = |g(2) + A fa(2) + (1 =) fz(2) | >u(x)+g(x) —e = lu+gl —e

(4.7)
Therefore,
lin;}nfl}gl}l||g+)tf/3+(l—A)f,xH2 lu+gll —e. (4.8)
On the other hand,
lin;)slupl/i;r’?||g+/\fa+ (1-1)f3l|
slin(lxsluplllgﬁall +lim( - VIl fs+gll (4.9)
< ||u4’—g||.
Because ¢ was arbitrary, this shows that
I;IXI’}’II};I}l”g-f—Af“-F(I—A)ﬁ;” (4.10)

exists and equals 7(g).

Case 2. If 7(g) = ||€ + gl|, consider the net (— fy)aecr, which generates —u and —¢ within
Q and the function —g € C(K). We infer from Case 1 that

l}jrplgpllgﬂfw (1= fpll = lkrplgrpll —g+tAM—f)+ A =-V(—fp)|| = lle+gll. (4.11)

Therefore, lim[;,I limgy g +Afo+ (1 —)t)fﬁll =1(g) forall g € C(K). O

Proof of Theorem 1.5. The equivalence between (i) and (iii) is Theorem 1.4 above. The
implication (ii) = (iii) follows from Proposition 3.2 and Lemma 4.1 and (iii) = (ii) follows
from Proposition 3.3 and Lemma 4.2. O
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