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Using *-congruences and implications, Weaver (1993) introduced the concepts of pre-
variety and quasivariety of first-order structures as generalizations of the corresponding
concepts for algebras. The notion of functional completeness on algebras has been de-
fined and characterized by Burris and Sankappanavar (1981), Kaarli and Pixley (2001),
Pixley (1996), and Quackenbush (1981). We study the notion of functional completeness
with respect to * -congruences. We extend some results on functionally complete alge-
bras to first-order structures A = (A;FA;R*) and find conditions for these structures to
have a compatible Pixley function which is interpolated by term functions on suitable
subsets of the base set A.

1. Introduction

Functional completeness on algebras has been studied in [2, 3, 4], and some results are
given in [1]. Some basic notions in this field are listed in the definition below.

Definition 1.1. Let s = (A;F*!) be an algebra and let f : A3 — A be a function.
(i) f is called a majority function if for all a,b € A, f(a,a,b) = f(b,a,a) = f(a,b,a) =
a.
(ii) f is called a Pixley function if foralla,b € A, f(a,b,b) = f(a,b,a) = f(b,b,a) = a.
(iii) The ternary function d: A3 — A defined by d(a,a,c) = cand d(a,b,c) = aifa+# b
is called the discriminator function on A.
Moreover, if o is a finite nontrivial algebra, then s is called
(iv) primal if every n-ary function on A, n > 1, is a term function of s{;
(v) quasiprimal if the discriminator function on A is a term function of &{;
(vi) functionally complete if every n-ary function on A is a polynomial function of .

Our aim here is to formulate and characterize a notion of functionally complete first-
order structure A = (A;FA;R?), which takes care (in some sense) of the relations in RA.

Throughout, A = (A; FA; RA) is a nontrivial first-order structure. We denote by Con(A)
the set of congruences of A.
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Definition 1.2 [7]. An element 8 € Con(A) is called a * -congruence if for any m-ary r in
R and any pairs (a;,b;) € 0 for 1 <i<m, (ay,...,an) € r* ifand only if (by,...,b,) € rA.

Cony (A) will denote the set of *-congruences of A; it is easy to see that Conx (A)
is a sublattice of Con(A); in fact Con, (A) is a complete lattice, and its largest element
denoted by 14 is generally different from A? = V4.

Let A4 be the smallest congruence of A; when Ay C 15 C V4, Ais not simple, and the
discriminator function d on A is not a term function of A. However, d may be interpolated
by term functions on some parts of A.

For each a in A, the 1, class of a will be denoted by a.

Definition 1.3 [6]. Let A be a structure, and let f : A" — A, n > 1, be an n-ary function.

(i) f is said to be 15 compatible if 14 is a congruence of (4; f); that is, for any pairs
(ai,bi) € 1xfor 1 <i<mn, (f(ar,...,an), f(b1,...,b,)) € 1a.

(ii) f is said to be termal on classes if for each a € A, there is an n-ary term t, such that
f and t2 coincide on a.

(iii) f is said to be term representable on classes if there is an n-ary term ¢ such that f
and tA coincide on every 1 class.

(iv) Let A be finite; then A is said to be * -primal if every 14 compatible n-ary function
on A is term representable on classes.

(v) Let A be finite; then A is said to be * -quasi-primal if the discriminator function on
A is term representable on classes.

We note that a unary function f which is term representable on classes is a term func-
tion.

For any elements a,b € A, let 0(a,b) be the principal congruence on A generated by
(a,b); if a,b € A", let Cong(a,b) := /1<, 0(a(i),b(i)).

For any a',...,a"™ € U,cad", let a; := (a'(i),...,a™(i)) for 1 <i < n; then B(ay,...,a,)
= {x e A";(x(k),x(])) € Cong(ak,al) for 1 < k,I < m} is a subuniverse of A™.

The next theorem characterizes * -primality.

THEOREM 1.4 [6]. A finite structure A is % -primal if and only if the following properties are
satisfied.
(i) The only subuniverses of A> are Ay, 15, and V 4.
(ii) For any nonzero natural numbers m, n, and elements a',...,a™ € U,ecaa", if a; :=
(a'(i),...,a™(i)) for 1 <i<n, then B(ay,...,a,) = Sg(ai,...,a,) as subuniverses of
A™.

Condition (i) in this theorem implies that A is minimal (i.e., it has no proper substruc-
ture) and rigid (i.e., id4 is the only automorphism of A).
2. *-Functionally complete structure

Given a structure A = (A;FA;RA), we will make use of the structure (of different type)
A4 = (A;FA U {cs3a € A};RA) by adding a constant function with value a for each ele-
ment a of A. So terms of A4 are exactly polynomials of A.
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We can rephrase Definition 1.3(ii), (iii), and (iv) in terms of polynomials and obtain
the following definition.

Definition 2.1. (i) f is said to be polynomial on classes if for each a € A, there is an n-ary
polynomial p, such that f and p2 coincide on a.

(ii) f is said to be polynomially representable on classes if there is an n-ary polynomial
p such that f and p* coincide on each class a.

(iii) Let A be finite; A is said to be * -functionally complete if any n-ary 1, compatible
function on A is polynomially representable on classes.

The following results give a relationship between * -primality and * -functional com-
pleteness; the first one is a direct consequence of the definitions.

THEOREM 2.2. A is x -functionally complete if and only if A, is * -primal.

THEOREM 2.3. A is *-primal if and only if each subuniverse of A™, m > 2, contains the set
Aa(m) = {(a,a,...,a) :a € A} and A is x -functionally complete.

Proof. “If” part. Any constant function on A is a term function of A. Let C be a sub-
universe of A™, m > 2. Then there is some u = {(uy,us,...,u,,) in A™ such that u € C.
Let a € A, the constant function with value a is representable by a term t on A. Then
(a,a,...,a) = {t(u1),..., (1)) = A" ({u1,..., um)) € C.So Ax(m) < C.

“only if” part. Let f be a 14 compatible n-ary function. Then f is representable by
a polynomial p(xi,...,%n,¢Cq,5-.-5Cq,) On classes. Let A= {by,...,bi}; then (a;...,a;) €
Sg({by,...,bx)) AF. There is a unary term t; such that t;(b;) = a; for 1 < j <k. So t;
represents ¢, on A.

The term q(x1,...,%,) = p(X1,...,%n, 11 (X1),..., tm(X1)) represents f on classes. O

Now we introduce some important ideas on * -functional completeness.

LEMMA 2.4. Let A be a * -functionally complete structure and let C be a subuniverse of 14
which is a subdirect product of A* such that the projection m; : C — A is not an isomorphism
fori=1ori=2. Then there is some b in A such that (y,b) € C forall y € b.

Proof. Suppose that 71, : C — A is not one-to-one. Then there are (ay,b), (a2,b) € C such
that a; # a,. Let n be a natural number such that 2" > |b|. Let f: A" — A be a function
which satisfies the following conditions.
(1) f(x150.520) = x1 if (x;,x;) & 14 for some i < j.

(ii) f(@") caforeacha € A.

(ifi) f({a1,a2}") = b.
f is 15 compatible. Let t(xy,...,Xy,Cyy5- .- >Cy,, ) be @ polynomial representing f on classes.
For 1 <i<m,letb; € A such that (u;,b;) € C.

Let ' :=t(b,...,b,b1,...,by,); if y € b, then there are di,...,d, € {a;,a,} such that

y = f(di,...,dy). So y = t(dy,...,dn, t1,...,Upy); and

(3, b'Y = (t(dr s dstt1serer i)y £ By By b1se e b))

= A" ((dy,b),..., {dny b, (1,01 s (Ui b)) € C. @D

So, b’ = band (y,b’) € Cforall y € b. O
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LemMaA 2.5. If A is x -functionally complete and minimal, then every subuniverse of 1a
either is the graph of an automorphism of A or contains A4 properly.

Proof. Let C be a subuniverse of 1. Since A is minimal, C is a subdirect product of A2.

Suppose that C is the graph of a permutation « of A.

Let f be an n-ary operation of A; then (a;,a(a;)),...,{(a,a(a,)) € C implies that
(f(ai,...,an), f(alar),...,a(a,))) € C, thus f(a(ar),...,a(a,)) = a(f(ai,...,a,)). Also,
let » be an m-ary relation of A; since C is a subunlverse of 14, for any elements (aj,
alar)),....{am>alan)) €C, (ay,...,an) €r if and only if (a(ay),...,a(a,)) € r. Therefore
« is an automorphism of A.

If C is not the graph of a permutation of A, it contains two elements (a;,b) and {(a,,b)
with a; # a,, or two elements {(a,b;) and {(a,b,) with b; # b,. Then from Lemma 2.4,
there is some b such that b x {b} = C; so (b,b) € C. Since A has no proper subuniverse,
Ay is contained in C. |

THEOREM 2.6. If A is *-functionally complete and minimal, then there is a unary term t
such that for each {a,b) € t(14), there is an automorphism o of A such that o(a) = b.

Proof. Let B = {[t(A)|; t an unary term}; then B € N*. Let ny = min(B) and let t; be a
unary term with [£o(A)| = ng. Let (a,b) € to(14); then C = Sg({a,b)) is a subuniverse of
14. From Lemma 2.5, C is the graph of an automorphism of A or Ay is a proper subset
of C.

If Ay € C, then there is a unary term #; such that t,(a) = t,(b); thus [£;£,(A)| < no, a
contradiction. Therefore C is the graph of an automorphism ¢ of A, and o(a) = b. O

CoROLLARY 2.7. If A is *-functionally complete and minimal, and there is a unary term
t and a € A such that t(A) < a; then there is a unary term t, such that for all b,c € ty(A),
there is an automorphism o of A such that o(b) = c.

Proof. LetB:= {|t(A)|; t a unary term and ¢(A) < a}; then the result follows by using the
same argument as in the proof of Theorem 2.6. O
3. Interpolation of Pixley functions

In this section, we examine some links between *-functional completeness and term
interpolation of 14 compatible Pixley functions.

THEOREM 3.1. If A is x -functionally complete and minimal, then for each a € A, there is a
14 compatible Pixley function which is representable by a term on a.

Proof. Let d € A be fixed, and let p be the ternary function defined by

a if(@a=b=candce {a,b})or(a+b=7c),
pla,b,c) =4c¢ 1f(a—7 tanda="b)or (ae {b,c} and b # ), (3.1)

b elsewhere.

p is a 15 compatible Pixley function. So p is representable by a polynomial py(x, y,2) :=
t(x, ¥,2,Cay>--.>Ca, ) ON classes. Let £y be the unary term of Theorem 2.6. The subuniverse



E.R. A. Temgoua and M. Tonga 2211

of A generated by e = ty(d) is A. There are m unary terms t,...,t, such that a; =
t1(e)s...,am = tm(e). So po(x, ¥,2) = t(x, y,z,t1(€),...,tm(e)).

The term s(x, y,z,w) := t(x, y,2,t1(W),..., t;m(w)) is a 4-ary term and p(x,y,z) =
s(x,y,z,e) on classes. Consider the term m(x, y,z) := s(x, ¥,z,f(x)) and b,c € d; then
(to(b),e) € to(14); from Theorem 2.6 there is an automorphism ¢ of A such that #,(b) =
o(e). Then |o(b)| = |a(b)]; so,

m(b,b,c) = s(b,b,c,ty(b)) = s(b,b,c,0(e)) = os(c7'b,07'b,07 ¢ e); (3.2)
that is
m(b,b,c) =ap(c~'b,07'b,07'c) =a07'(c) =c. (3.3)

Similarly, m(b,c,b) = b and m(b,c,c) = b. So m is a ternary term which is Pixley’s on
d. O

CoROLLARY 3.2. If A is *-functionally complete and minimal, and there is a unary term
t(x) and a € A such that t(A) < a, then A has a 15 compatible Pixley function which is term
representable on classes.

The proof is similar to the proof of Theorem 3.1, using the unary term #, of Corollary
2.7.
A first-order structure A is * -arithmetical if Con« (A) is arithmetical.
Let K be a class of first-order structures, and consider the following classes.
(i) H*(K) is the class of *-quotients of structures in K.
(ii) S(K) is the class of substructures of structures in K.
(iii) P(K) is the class of products of structures in K.
(iv) A *-variety is a class of structures preserved by H*, S, and P. So H*SP(K) is the
* -variety generated by K.
It is proved in [7] that a x-variety " is *-arithmetical if and only if there is a ternary
term g(x, ,z) such that for any A in V" and a,b € A, (a,b) € 1, implies that g*(a,b,a) =
q(b,b,a) = q*(a,b,b) = a.
This result says that there is a term which is Pixley’s on 1, classes for each A in V. The
remark below gives some criteria for a * -variety generated by a * -functionally complete
structure to be * -arithmetical.

Remark 3.3. Suppose that A is * -functionally complete, minimal, and there is a unary
term t and a € A such that t(A) c a.

If for each B € H*SP(A), the ternary term m(x, y,z) of Corollary 3.2 is a Pixley func-
tion on 1p classes, then H*SP(A) is * -arithmetical; in particular, if 1z < (14) for each
non empty set I and each B < Al.

THEOREM 3.4. If A is *-functionally complete and minimal, and there is a unary term t
and a € A such that t(A) € G, then A is x -quasiprimal.
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Proof. Let q: A3 — A be the function defined by

ifa=b=c, b,
4(a,b,c) = {“ pa-boaal (3.4)
¢ ifnot.
q is 1o compatible. So g is representable on classes by a polynomial t(x, y,z,cp,,...,cp,)-

Let ty be the unary term of Corollary 2.7 and e € #;(A); then Sg(e) = A. There are k unary
terms ti,...,t such that by = t(e),...,bx = tx(e). So q(x,y,2) = t(x,y,z,t1(e),...,tx(e))
on classes. Consider the term m'(x, y,z) := t(x, y,z, 11 (to(x)),..., t(to(x))) and a,b,c € A
such that @ = b = ¢. Then there is an automorphism ¢ of A such that f(a) = o(e).

If a # b, then m'(a,b,c) = t(a,b,c,t1(ty(a)),...,tx(tzx(a))), that is, m’'(a,b,c) =
oq(o7'a,07'b,07'¢c) = 007 (a) = a.

Similarly, if a = b, then m’(a,b,¢) = 0g(07'a,07'b,07'c) = 007! (c) = c.

So m’(x, y,z) represents the discriminator function on classes; and A is x -quasiprimal.

U

THEOREM 3.5. If A is * -functionally complete, minimal, and there is a unary term t such
that [t(A)| = 1, then A is x -primal.

Proof. Using Theorem 2.3, we will show that any subuniverse of A™ contains A4 (m).
Let t(A) = {a}; we have Sg(a) = A. Let C be a subuniverse of A" and u € C; (a,...,a) =
tA" (u) € C. So Aa(m) = Sg((a,...,a)) < C because A is minimal. O

4. Some examples of * -functionally complete structure

We begin with a version of a Baker-Pixley lemma (see [1, Section IV-10]) suitable for our
purpose.

LEmMA 4.1. Let A be a finite first-order structure such that there is a majority function which
is term representable on classes and let f : A" — A be an n-ary function, n = 1.

If for each nonzero natural number m < |A/1a| + 1, and any elements a,...,a, in
Usea@”, B =Sg({ai(1),...,am(1)),...,{a1(n),...,am(n))) is preserved by f, then there is
a term p(x1,...,x,) representing f on classes.

The proof is similar to the proof of the original lemma in [1].

Example 4.2. Let Z = (Z;+,—,0; <) be the ordered group of integers. Let 8 be an equiva-
lence relation on Z; 6 is a congruence if and only if there is a natural number # such that
(a,b) € Oifand onlyifa—b € nZ.

Claim (i). We have 17 = Ay.

Proof. Let 0 be an equivalence relation on Z such that 6 # Az. Then there is some (a,b) €
6 such that a # b. Thus a < b or b < a. By symmetry, we can consider only the first case;
since {(a,b),(b,a) €0,a<band b jé a, 0 is not a * -congruence. So Ay is the only *-
congruence on Z. ]

Let A:=7/27 = {0,1} and A = (A;+,—,0;p), where p is the binary relation defined by
p:=1{(0,0),(0,1),(1,1)}; then it is easy to see that 1, = A4.
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Claim (ii). Ais x-functionally complete.

Proof. Let h be an n-ary function on {0,1}, n > 1.

If 4(0,...,0) = 0 and h(1,...,1) = 0, then A is representable on classes by the polyno-
mial cg.

If h(0,...,0) =0 and h(1,...,1) = 1, then h is representable on classes by the first pro-
jection.

If h(0,...,0) = 1 and h(1,...,1) = 0, then h is representable on classes by the polyno-
mial t(x1,...,%,) := x1 + 1.

If h(0,...,0) = 1 and h(1,...,1) = 1, then h is representable on classes by the polyno-
mial ¢;.

Therefore h is polynomially representable on classes. O

Since {0} is a subuniverse the A, A is not * -primal.
The function m defined on A by

a ifa=bora=c,
m(a,b,c)=1b ifb=c, (4.1)

¢ elsewhere

is not a polynomial function of s = (A;+,—,0). So s is not functionally complete.

Example 4.3. Consider the set A = {a,b,c} and the operations f, ¢ on A defined as fol-
lows:

d(x,y,z) ifu=aand
f(xy,z,u) = ((x,y,z€ {b,c})or (x=a# y)or(y=a#x)), (4.2)
a if not.

gla)=a, g(b) =c,and g(c) = b.

Consider the structure A = (4; f,g,a;1), where r = {{a,b),(a,c),(b,a),{c,a)}. It is
easy to see that Con(A) = {A4,0,Va}, where 0=A U {(b,c),{c,b)}. Since (a,a),(b,a) €
Va, {a,b) € r and (a,a) € r, V4 is not a *-congruence. We can easily verify that 0 is a
* -congruence; thus 14 = 0, and |A/0] = 2.

We prove that A4 is * -primal.

We have Con(A4) = Con(A); so 14, = 6. The term f (x, y,z,¢,) represents the discrim-
inator function on classes. Let i be an n-ary function on A, n > 1, which preserves 0; using
Lemma 4.1, we will prove that for each nonzero natural number m < 3, for all elements
ars...am in Jyeq @, h preserves the subuniverse B = Sg({a;(1),...,an(1)),...,{ai(n),...,
am(n))) of (Ax)™.

(i) If m = 1, then B = A (A4 is minimal); so h preserves B.

(ii) If m = 2, then the following hold.
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If B is not a subset of 0, then there is (x, y) € B such that (x, y) ¢ 0; since g preserves
B, we have {(a,b),{a,c)} < B or {(b,a),(c,a)} < B. By symmetry, we can consider only
the first case.

Since (b,c) = f({b,b),(a,b),(a,c),{a,a)) € B, {c,b) = g({b,c)) € B, and (b,a) =
f((b,b),{a,b),(a,a),(a,a)) € B, so (c,a) = g({b,a)) € B; therefore B = A2.

If Aa & B < 6, then there is {(x, y) € B such that x # y; so (x,y) = (b,¢c) or (x,y) =
(c,b). Since (b,c) € B if and only if {(c,b) € B, we have B = 0. Therefore, B is one of the
subuniverses Ay, 8, and V4. Thus h preserves B.

(iii) If m = 3, for 1 <i < 3, we denote by ||a;|| the set {a;(1),...,ai(n)}.

If [la; || = {a}, llaxll = {a}, and ||as|l = {a}, B = A4(3) and h preserves B.

If la; |l = {a}, llaz |l = {a}, and |las|| = {b}, then (a,a,b) € B;so {(a,a,¢) = g({a,a,b)) €
B, and (b,b,a) = f({b,b,b),{a,a,b),(a,a,a),{a,a,a)) € B; moreover, {c,c,a) =
g(b,b,a)), (b,b,c) = f({b,b,b),({a,a,b),(a,a,c),(a,a,a)), and (c,c,b) = g({b,b,c)) are
in B; thus B = A4 X A and h preserves B.

If lla1ll = {a}, llazll = {a}, and |[as || = {c}, then B = A4 X A.

If [la; |l = {a}, llaz|l = {a}, and |las|| = {b,c}, then B = A, X A.

If [la || = {a}, llax |l = {b}, and ||las || = {c}, then (a,b,c) € B,and (a,¢,b) = g({a,b,c)) €
B, (b,a,a) = f({b,b,b),{a,b,c),{a,a,a),{a,a,a)) € B, and (c,a,a) = g({b,a,a)) € B;
(a,b,b) = f({b,b,b),(b,a,a),{a,a,a),{a,a,a)) € B,and {a,c,c) € B; (b,c,c) = f({b,b,b),
(a,b,b),{a,c,c),(a,a,a)) € B, and (c,b,b) € B; (b,c,b) = f({b,b,b),(a,b,c),(b,c,c),
(a,a,a)) € B, and {(c,b,c) € B; (b,b,c) = f({b,b,b),{a,b,b),{c,b,c),{a,a,a)) € B, and
{¢,c,b) € B.

Thus B = {(x, y,z) € A% (y,z) € 0}. So h preserves B.

Let & be a permutation of {1,2,3}; the function . : A*> — A3 defined by a(x1,x2,%3) =
(Xe(1)>Xe(2)>Xe(3)) is an automorphism of A3,

Therefore the subuniverse B is one of the elements of the set E, where E=J{a.({A4(3),
Aa XA, Ax0}); eapermutation of {1,2,3}}. Thus h preserves B. So h is term repre-
sentable on classes and A4 is * -primal.

The set B := {{a,a),{a,b),{a,c)} is a subuniverse of A%; thus A is not * -primal.

We prove that D := {{(a,a,b),({b,c,a),{a,a,c),{c,b,a),{a,a,a)} is a subuniverse of A>.

If x € {{a,a,b),(a,a,c),{a,a,a)} and y, u, v are in D, then f(x,y,u,v) € {{a,a,b),
(a,a,c),{a,a,a)} < D.

If x, v arein {{b,c,a),{c,b,a)} and y, u are in D, then f(x, y,u,v) € {{a,a,b),(a,a,c),
{(a,a,a)} € D.

If x = (b,c,a), y € {{a,a,b),{a,a,c)}, u € D, and v is an element of {{a,a,b),(a,a,c),
(a,a,a)}, then f(x,y,u,v) = (b,c,a) € D.

If x =(b,c,a), y = (b,c,a), u € {{b,c,a),{c,b,a)}, and v € {{a,a,b),(a,a,c),
(a,a,a)}, then f(x,y,u,v) € {{b,c,a),{c,b,a)} = D.

If x = (b,c,a), y = (c,b,a), and u,v € {{a,a,b),(a,a,c),{a,a,a)t}, then f(x,y,u,v) €
{{a,a,b),{a,a,c),{a,a,a)} < D.

Ifx = (b,c,a), y = (c,b,a), u € {{b,c,a),{c,b,a)},and v € {{a,a,b),(a,a,c),{a,a,a)},
then f(x, y,u,v) = (b,c,a) € D.

We can also show that if x = {c¢,b,a) and y,u,v € D, then f(x, y,u,v) € D. Therefore
D is a subuniverse of A3.
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The function h: A2 — A defined by

y ifx=7y,
h(x,y)=4b if(x=aand y="b)or (x=cand y = a), (4.3)
¢ elsewhere

is 6 compatible. The subuniverses of A are A4, C = {{b,c),{(a,a),{c,b)}, 0, {a} X A, A X
{a} and A?; so h preserves the subuniverses of A2, Since (b,c,c) = h({a,a,b),(b,c,a)) &
D, using [1, Lemma IV-10.4], we see that there is no majority term for A.

The algebra A = (4; f,g,a) is not primal since {a} is a subuniverse of A. Con(A) =
{A4,0,V 4}, thus A is not quasiprimal and is not functionally complete.
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