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We investigate Jordan automorphisms and Jordan derivations of a class of algebras called
generalized triangular matrix algebras. We prove that any Jordan automorphism on such
an algebra is either an automorphism or an antiautomorphism and any Jordan derivation
on such an algebra is a derivation.

1. Introduction

Throughout this paper, let R be a 2-torsion-free commutative ring with identity 1. Con-
sider an associative algebra A over R, then A can be viewed as a Jordan algebra with the
usual product x ◦ y = (1/2)(xy + yx). An R-linear map δ : A→ A is called a derivation
(resp., Jordan derivation) of A if

δ(ab)= δ(a)b+ aδ(b), ∀a,b ∈A
(
resp., δ

(
a2)= δ(a)a+ aδ(a)∀a∈A

)
.

(1.1)

An R-linear map θ : A→ A is said to be a Jordan homomorphism of A if

θ(a◦ b)= θ(a)◦ θ(b), ∀a,b ∈ A, or, equivalently, θ
(
a2)= (θ(a)

)2
, ∀a∈ A.

(1.2)

Derivations, Jordan derivations, as well as automorphisms and Jordan automorphisms
of the algebra of triangular matrices and some class of their subalgebras have been the
object of active research for a long time [1, 2, 5, 6, 9, 10].

A well-know result of Herstein [11] states that every Jordan isomorphism on a prime
ring of characteristic different from 2 is either an isomorphism or an anti-isomorphism.
We remark that the situation where the rings are semiprime rings does not hold. In the
same time, he showed that every Jordan derivation on a prime ring of characteristic dif-
ferent from 2 is a derivation [12]. A brief proof of this result can be found in [4]. This
result is extended by [3, 8] to the semiprime case.
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Let now � be the algebra of the form

�=
(
A M

B

)
, (1.3)

where A and B are unital R-algebras and M is an (A,B)-bimodule. This algebra �, en-
dowed with the usual formal matrix addition and multiplication, will be called a general-
ized triangular matrix algebra. Many widely studied algebras, including upper-triangular
matrix algebras, block-triangular matrix algebras, nest algebras, semi-nest algebras, and
triangular Banach algebras, may be viewed as triangular algebras.

Khazal et al. [13] discuss the automorphism group of � so that A and B have only triv-
ial idempotents. Cheung [7] gives sufficient conditions under which every Lie derivation
is a sum of derivation on � and a mapping from � to its center.

In this paper, we consider linear operators on a class of algebras of the form �; specifi-
cally, Jordan derivations and Jordan automorphisms. M is assumed to be faithful as a left
A-module as well as a right B-module. We will prove that if both A and B have only trivial
idempotents, any Jordan automorphism of the ring � is either an automorphism or an
antiautomorphism, and we will prove that any Jordan derivation of such an algebra � is
a derivation of �.

2. The Jordan automorphism of generalized triangular matrix algebra

In this section, we suppose that � is the algebra of the form

�=
(
A M

B

)
, (2.1)

where A and B are unital R-algebras and M is an (A,B)-bimodule, both A and B have
only trivial idempotents.

This section is devoted to prove the following result.

Theorem 2.1. If M is faithful as a left A-module as well as a right B-module and if both
A and B have only trivial idempotents, then any Jordan automorphism θ of � is either an
automorphism or an antiautomorphism.

First, we start by recalling the next statement concerning the set of all idempotents
of �.

Lemma 2.2 [13]. The idempotents of � are the elements of the forms ( 0 0
0 ), ( 1 0

1 ), ( 1 x
0 ), and

( 0 x
1 ), for any x ∈M.

We now introduce the notations Ex = ( 1 x
0 ) , Fx = ( 0 x

1 ), and X = ( 0 x
0 ) , for some

x ∈M.
Then it is easy to check the following relations:

(i) ExEy = Ey , FxFy = Fx, FxEy = 0, ExFy = ( 0 x+y
0 );

(ii) aE0 = E0 ◦ (aE0), bF0 = F0 ◦ (bF0), X = (2E0)◦X , X = (2F0)◦X ;
(iii) 2(aE0)◦X = ( 0 ax

0 ), 2(bF0)◦X = ( 0 xb
0 ).
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On the other hand, if θ is a Jordan automorphism of �, then either θ(E0) = Eu or
θ(E0)= Fu for some u∈M, since E0 is an idempotent.

The proof of Theorem 2.1 is an immediate consequence of the following two lemmas.

Lemma 2.3. Assume that θ(E0)= Eu for some u∈M, then θ is an automorphism of �.

Proof. Since θ(E0)= Eu, we have necessarily θ(F0)= Fv for some v ∈M. Indeed, if θ(F0)
= Ev for some v ∈M, we obtain the contradiction θ(E0 ◦ F0) �= 0. Now, by the relation
θ(E0 ◦ F0) = θ(E0) ◦ θ(F0), we have u+ v = 0, hence θ(F0) = F−u. We observe that W =
( 1 −u

1 ) is invertible of inverse ( 1 u
1 ). So, one may consider the inner automorphism σW

of � defined by σW (Y) =WYW−1. It is not difficult to see that θ(E0) = σW (E0) and
θ(F0)= σW (F0), which furnishes θ1(E0)= E0 and θ1(F0)= F0, where θ1 = σW−1 ◦ θ is also
a Jordan automorphism of �.

By applying θ1 to aE0 = E0 ◦ (aE0) and bF0 = F0 ◦ (bF0) for a ∈ A and b ∈ B, we get
that θ1(aE0)= ϕA(a)E0 and θ1(bF0)= ϕB(b)F0, where ϕA : A→ A and ϕB : B→ B are ad-
ditive and bijective maps.

Now if we apply θ1 to (a2E0) = (aE0)2 and (b2F0) = (bF0)2 for a ∈ A and b ∈ B, we
have ϕA(a2) = (ϕA(a))2 and ϕB(b2) = (ϕB(b))2, that is ϕA and ϕB are Jordan automor-
phisms of A and B, respectively.

Applying θ1 to X = 2E0 ◦X yields θ1(X)= ( 0 f (x)
0 ). It follows that

θ1

(
a x

b

)
=
(
ϕA(a) f (x)

ϕB(b)

)
. (2.2)

Applying again θ1 to ( 0 ax
0 )= 2(aE0)◦X and ( 0 xb

0 )= 2(bF0)◦X for a∈A, for x ∈M and
b ∈ B, we obtain f (ax)= ϕA(a) f (x) and f (xb)= f (x)ϕB(b).

Since θ = σW ◦ θ1, we deduce that

θ

(
a x

b

)
=
(
ϕA(a) f (x) +ϕA(a)u−uϕB(b)

ϕB(b)

)
, (2.3)

where �∈M, and ϕA : A→ A, ϕB : B→ B, f : M→M are maps satisfying that
(i) ϕA is a Jordan automorphism of A, f (ax)= ϕA(a) f (x),

(ii) ϕB is a Jordan automorphism of B, f (xb)= f (x)ϕB(b).
As a consequence, the following two identities are valid for all a1,a2 ∈A and x ∈M:

f
((
a1a2

)
x
)= ϕA

(
a1a2

)
f (x), f

(
a1
(
a2x

))= ϕA
(
a1
)
f
(
a2x

)= ϕA
(
a1
)
ϕA
(
a2
)
f (x).

(2.4)

Thus,

ϕA
(
a1a2

)
f (x)= ϕA

(
a1
)
ϕA
(
a2
)
f (x). (2.5)

Since M is faithful, we have ϕA(a1a2)= ϕA(a1)ϕA(a2), which means that ϕA is an au-
tomorphism of A. Similarly, ϕB is an automorphism of B. Finally, in view of these argu-
ments, one can easily check that θ is an automorphism of �, which concludes the proof
of the lemma. �
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Lemma 2.4. Assume that θ(E0)= Fu for some u∈M, then θ is an antiautomorphism of �.

Proof. By hypothesis, we have θ(F0) = Fv for some v ∈M. Hence, it follows from the
equality θ(E0 ◦F0)= θ(E0)◦ θ(F0) that u+ v = 0, so θ(F0)= E−u.

Applying θ to aE0 = E0 ◦ (aE0) and bF0 = F0 ◦ (bF0) for a∈A and b ∈ B, we have

θ
(
aE0

)=
(

0 uϕ1(a)
ϕ1(a)

)
, θ

(
bF0

)=
(
ϕ2(b) −ϕ2(b)u

0

)
, (2.6)

where ϕ1 : A→ B and ϕ2 : B→ A are obviously additive and bijective maps. In addition,
by application of θ to (a2E0) = (aE0)2 and (b2F0) = (bF0)2 for a ∈ A and b ∈ B, we can
show by simple calculus that ϕ1 and ϕ2 are Jordan isomorphisms.

Applying now θ to X = 2E0 ◦X gives θ(X)= ( 0 f (x)
0 ).

Therefore,

θ

(
a x

b

)
=
(
ϕ2(b) f (x) +uϕ1(a)−ϕ2(b)u

ϕ1(a)

)
. (2.7)

Applying θ to 2(aE0)◦X = ( 0 ax
0 ) and 2(bF0)◦X = ( 0 xb

0 ) for a∈ A, x ∈M, and b ∈M,
we have

f (ax)= f (x)ϕ1(a), f (xb)= ϕ2(b) f (x). (2.8)

It follows that

θ

(
a x

b

)
=
(
ϕ2(b) f (x) +uϕ1(a)−ϕ2(b)u

ϕ1(a)

)
, (2.9)

where u∈M and ϕ2 : B→ A, ϕ1 : A→ B, f : M→M are maps satisfying that
(i) ϕA is an Jordan isomorphism on A into B and f (ax)= f (x)ϕ1(a),

(ii) ϕB is an Jordan isomorphism on B into A and f (xb)= ϕ2(b) f (x).
Hence, we have the following two identities:

f
((
a1a2

)
x
)= f (x)ϕ1

(
a1a2

)
, f

(
a1
(
a2x

))= f
(
a2x

)
ϕ1
(
a1
)= f (x)ϕ1

(
a2
)
ϕ1
(
a1
)

(2.10)
for any a1,a2 ∈ A and x ∈M. Consequently,

f (x)ϕ1
(
a1a2

)= f (x)ϕ1
(
a2
)
ϕ1
(
a1
)
, (2.11)

which shows that ϕ1 is an anti-isomorphism from A onto B, since M is faithful. It is
proved analogously that ϕ2 is an anti- isomorphism from B onto A. Finally, the preceding
arguments allows us to get by simple calculus that θ is an antiautomorphism of �. This
completes the proof of the lemma. �
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3. The Jordan derivations of generalized triangular matrix algebra

In this section, we suppose that � is the algebra of the form

�=
(
A M

B

)
, (3.1)

where A and B are unital R-algebras and M is an (A,B)-bimodule. The first principal
result of this paper is the following.

Theorem 3.1. If M is faithful as a left A-module as well as a right B-module, then any
Jordan derivation of � is an ordinary derivation.

Before proving this theorem, we need to describe all Jordan derivations of �.

Lemma 3.2. Every Jordan derivation ∂ of � is of the from

∂

(
a x

b

)
=
(
gA(a) au−ub+ f (x)

gB(b)

)
, (3.2)

where u∈M and gA : A→ A, gB : B→ B, f : M→M are linear maps satisfying that
(i) gA is a Jordan derivation of A and f (ax)= gA(a)x+ a f (x),

(ii) gB is a Jordan derivation of B and f (xb)= xgB(b) + f (x)b.

Proof. Write

∂

(
a x

b

)
=
(
gA(a) +hB(b) + kA(x) fA(a) + fB(b) + f (x)

hA(a) + gB(b) + kB(x)

)
, (3.3)

where gA : A→ A, hB : B→ A, kA : M → A, fA : A→M, fB : B→M, f : M →M, hA : A→
B, gB : B→ B, and kB : M→ B are clearly linear maps.

Take X = ( 1 0
0 ) and Y = ( 0 x

0 ) in the equation

∂(X ◦Y)= ∂(X)◦Y +X ◦ ∂(Y). (3.4)

We have ∂(X ◦Y)= (1/2)
(
kA(x) f (x)

kB(x)

)
, while

2
(
∂(X)◦Y +X ◦ ∂(Y)

)=
(

2kA(x) gA(1)x+ xhA(1) + f (x)
0

)
. (3.5)

Hence, kA(x)= 0 and kB(x)= 0, which allow us to have

∂

(
a x

b

)
=
(
gA(a) +hB(b) fA(a) + fB(b) + f (x)

hA(a) + gB(b)

)
. (3.6)

Putting now X = (a 0
0 ) and Y = (a

′ 0
0 ), we obtain ∂(X ◦ Y) =

(
gA(a◦a′) fA(a◦a′)

hA(a◦a′)
)

and

∂(X)◦Y +X ◦ ∂(Y)= ( gA(a)◦a′+a◦gA(a′) a′ fA(a)+a fA(a′)
0 ).
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Then, gA(a ◦ a′) = gA(a) ◦ a′ + a ◦ gA(a′), that is, gA is a Jordan derivation of A, and
hA(a◦ a′)= 0. Replacing a′ by 1 in the last relation yields hA(a)= 0. Therefore,

∂

(
a x

b

)
=
(
gA(a) +hB(b) fA(a) + fB(b) + f (x)

gB(b)

)
. (3.7)

Let now X = ( 0 0
b) and Y = ( 0 0

b′ ). Then ∂(X ◦Y)=
(
hB(b◦b′) fB(b◦b′)

gB(b◦b′)
)

and

∂(X)◦Y +X ◦ ∂(Y)=
(

0 fB(b)b′ + fB(b′)b
gB(b)◦ b′ + b ◦ gB(b′)

)
, (3.8)

showing that

gB(b ◦ b′)= gB(b)◦ b′ + b ◦ gB(b′), (3.9)

which means that gB is a Jordan derivation of B, and hB(bb′ + b′b)= 0. Substituting now

b′ = 1 in the latter identity implies hB(b)= 0. Consequently, ∂(a x
b)= (

gA(a) fA(a)+fB(b)+ f (x)
gB(b) ).

We continue with the same method by taking X = (a 0
b ) and Y = ( 1 0

0 ). It furnishes

that ∂(X ◦Y)=
(
gA(2a) fA(2a)

0

)
and

∂(X)◦Y +X ◦ ∂(Y)=
(

2gA(a) + gA(1)a+ agA(1) fA(a) + fB(b) + fA(1)b+ a fA(1)
0

)

=
(

2gA(a) fA(a) + fB(b) + fA(1)b+ a fA(1)
0

)
,

(3.10)

since gA(1)= 0.
Hence fA(2a) = fA(a) + fB(b) + fA(1)b + a fA(1), which implies clearly that fA(a) =

a fA(1) and fB(b) + fA(1)b = 0. So, fA(a)= au and fB(b)=−ub, where u= fA(1).
It follows that

∂

(
a x

b

)
=
(
gA(a) au−ub+ f (x)

gB(b)

)
. (3.11)

Now, if we take X = (a 0
0 ) and Y = ( 1 x

0 ), we find that

∂(X ◦Y)=
(
gA(2a) 2au+ f (ax)

0

)
,

∂(X)◦Y +X ◦ ∂(Y)=
(

2gA(a) gA(a)x+ 2au+ a f (x)
0

)
,

(3.12)

deducing the identity f (ax)= gA(a)x+ a f (x).
Finally, putting X = ( 0 0

b) and Y = ( 0 x
0 ) gives ∂(XY +YX)= ( 0 f (xb)

0 ) and

∂(X)◦Y +X ◦ ∂(Y)=
(

0 xgB(b) + f (x)b
0

)
. (3.13)
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Hence, f (xb)= xgB(b) + f (x)b, which ends the proof of the lemma. �

Now we are ready to establish our first principal theorem.

Proof of Theorem 3.1. Let ∂ be a Jordan derivation of �, we have

∂

(
a x

b

)
=
(
gA(a) au−ub+ f (x)

gB(b)

)
, (3.14)

where u∈M, gA : A→ A, gB : B→ B, and f : M→M are linear maps satisfying that
(i) gA is a Jordan derivation of A, f (ax)= gA(a)x+ a f (x),

(ii) gB is a Jordan derivation of B, f (xb)= xgB(b) + f (x)b.
Hence, we have the following two identities:

f
(
(aa′)x

)= gA(aa′)x+ aa′ f (x),

f
(
a(a′x)

)= gA(a)a′x+ a f (a′x)= gA(a)a′x+ agA(a′)x+ aa′ f (x).
(3.15)

As a consequence, we get that

gA(aa′)x = gA(a)a′x+ agA(a′)x. (3.16)

Since M is faithful, gA(aa′) = gA(a)a′ + agA(a′) and gA is a derivation of A. A similar
argument shows that gB is a derivation of B.

Finally, one can now easily check that ∂ is a derivation of �. Indeed, let X = (a x
b) and

Y = (a
′ x′
b′ ) be arbitrary elements in �. By straightforward computations, we have

∂(XY)=
(
gA(aa′) aa′u−ubb′ + f (ax′ + xb′)

gB(bb′)

)
,

∂(X)Y +X∂(Y)=
(
gA(a)a′+agA(a′) aa′u−ubb′+gA(a)x′ + a f (x′)+xgB(b′)+ f (x)b′

gB(b)b′+bgB(b′)

)
.

(3.17)

This shows that ∂(XY)= ∂(X)Y +X∂(Y) and concludes the proof of the theorem. �

References

[1] G. P. Barker, Automorphisms of triangular matrices over graphs, Linear Algebra Appl. 160 (1992),
63–74.
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