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Examples of complete D-metric spaces are given in which every convergent sequence
has at most two limits and in which there are convergent sequences with exactly two
limits. Also an example of a complete D-metric space having a convergent sequence with
infinitely many limits is given and, using the example, several fixed point theorems in
D-metric spaces are shown to be false. Modifications of some of these theorems and their
generalizations are obtained either by imposing restrictions on the number of limits of
certain convergent sequences in the space or by assuming the sequential continuity of the
D-metric in any two variables and the theorems so obtained are illustrated by means of
examples.

1. Introduction

In this paper, we give examples (Examples 3.1 and 3.2) of complete D-metric spaces in
which every convergent sequence has at most two limits and in which there are convergent
sequences having exactly two limits. We also provide a simple example (Example 3.3) of a
complete D-metric space in which there is a convergent sequence, which converges to ev-
ery element of the space. Using the last one, we show that several fixed point theorems in
D-metric spaces are false. In particular, we observe that Dhage [2, Theorem 2.1], Ahmad
et al. [1, Theorem 4.2], and Dhage et al. [3, Theorem 3.1] are false and we modify them.
We provide examples to illustrate these modifications. Further, we obtain generalizations
of these modifications.

2. Definitions

Definition 2.1 (see [2]). Let X be a nonempty set. A function p: X X X X X — [0,00) is
called a D-metric on X if
(i) p(x, y,2z) = 0if and only if x = y = z (coincidence);
(ii) p(x, y,2) = p(p(x, y,2)) for all x, y,z € X and for each permutation p(x, y,z) of x,
¥, z (symmetry);
(iii) p(x, ¥,2) < p(x, y,a) +p(x,a,z) +p(a, y,z) for all x, y,z,a € X (tetrahedral inequa-
lity).
Copyright © 2005 Hindawi Publishing Corporation
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If X is a nonempty set and p is a D-metric on X, then the ordered pair (X, p) is called
a D-metric space. When the D-metric p is understood, X itself is called a D-metric space.

Definition 2.2 (see [2]). A sequence {x,} in a D-metric space (X,p) is said to be con-
vergent (or p-convergent) if there exists an element x of X with the following property.
Given that € > 0, there exists an N € N such that p(x,,,x,,x) < € for all m,n = N. In such
a case, {x,} is said to converge to x and x is said to be a limit of {x,}.

Definition 2.3 (see [2]). A sequence {x,} in a D-metric space (X, p) is said to be a Cauchy
(or p-Cauchy) sequence if given that € > 0, there exists an N € N such that p(x,,x,,%,) < €
for all m,n,p = N.

Definition 2.4 (see [2]). A D-metric space X is said to be complete if every p-Cauchy
sequence in X converges to a point x in X.

Definition 2.5 (see [2]). A D-metric space (X,p) is said to be bounded if there exists a
positive real number M such that p(x, y,z) < M for all x,y,z € X. In such a case, M is
said to be a D-bound for the D-metric p.

Definition 2.6 (see [5]). A subset E of a D-metric space (X, p) is said to be p-bounded if
there exists a positive real number M such that p(x, y,z) < M for all x, y,z € E.

Definition 2.7 (see [6]). A pair (fi, f,) of self-maps on an arbitrary set E is said to be
weakly compatible, partially commuting, or coincidentally commuting if (f o f2)u =
(fa0 fi)u whenever u € Eand fiu = fou.

Remark 2.8. The definition of p-Cauchy sequence as given by Dhage [2] appears to be
slightly different from Definition 2.3 but it is actually equivalent to it. It can be shown
that in a D-metric space every convergent sequence is a Cauchy sequence.

3. Examples and theorems

Throughout this section, unless otherwise stated, R is the set of all real numbers, R*
is the set of all nonnegative real numbers, N is the set of all positive integers and for a
monotonically increasing function ¢ : R* — R* and t € R", ¢(t+) stands for the right-
hand limit of ¢ at ¢.

We now give examples of complete D-metric spaces in which every convergent se-
quence has at most two limits and in which there are convergent sequences having exactly
two limits.

Example 3.1. Let X = {0,1,1/2,1/3,...}. Define p : X X X x X — R* as follows:

le—y|+\y—z|+|z—x| ifx,y,z€ X\ {1},

0 ifx=y=2z=1,
1 if both 0 and 1 occur among x, y,z, or
p(x,y,2) = 1 if 1 occurs exactly twice among x, y,z,

min { max{x, y},
max{y,z},max{z,x}} if 1 occurs exactly once and 0

does not occur among x, y,z.
(3.1
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Then (X,p) is a complete D-metric space. Further {1/n} converges to both 0 and 1. If a
sequence {x,} in X converges to an element xy € X\{0,1}, then xy is the unique limit of

{x,}. In particular, a convergent sequence in X has at most two limits.

Proof. Clearly p is symmetric in all the three variables x, y, zand p(x,y,2) =0 e x = y =

z. Letx,y,z,u € X.
Case 1. x,y,z€ X\{1}.
If u € X\ {1}, then

p(x,y,2) =lx—yl+1y—zl+|z—x|
<lu—yl+ly—zl+lz—ul
+lx—ul+lu—-z|l+|z—-x|
+lx—=yl+ly—ul+|u—x|
= p(u, ,2) +p(x,u,2) + p(x, y, ).
If u =1, then
p(x,y,2) = lx—yl+ly—zl+|z—x|
< max{y,z} + max{z,x} + max{x, y}
<p(u,y,2) +p(x,u,2) + p(x, y,u)
since p(u, ¥,z) = p(1,y,z) = 1 or max{y,z}, and so forth.
Case 2. 1 occurs among x, ¥, z.
Subcase 1. x=y=z=1.
Then
p(x,y,2) =0 < p(u, y,2) + p(x,u,2) + p(x, y, u).

Subcase 2. 1 occurs exactly twice among x, ¥, z.
Without loss of generality, we may assume that x = y = 1. Then z € X\ {1}.
If u =1, then

p(x,v,2) = p(1,1,2) = p(u, y,2)
<p(u,y,2) +p(x,u,2) + p(x, y,u).

Ifu # 1, then

p(x,y,2) = p(1,1,2) =1 = p(1,1,u) = p(x, y,u)
<p(u,y,2) +p(x,u,2) + p(x, y,u).

Subcase 3. 1 occurs exactly once among x, y, z.
Without loss of generality, we may assume that x = 1. Then y,z € X\ {1}
assume that z < y.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

. We may
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If u =1, then
plx, y,2) = p(1,y,2) = p(u, y,2)
<p(u, y,2) +p(x,u,2) + p(x, y,u). (3.7)
If z =0, then
p(x,y,2z) = p(1,9,0) =1 = p(1,u,0) = p(x,u,2), (3.8)
and hence
p(x,9,2) < p(u, y,2) + p(x,u,2) + p(x, y, u). (3.9)

Ifu+# 1andz# 0, then

p(x,,2) = p(1,y,2) = maxiy,z} = y
< max{u, y} < p(1,y,u) = p(x, y,u) (3.10)
< p(u, y,2) +p(x,u,2) + p(x, y,u).

Thus for all x, y,z,u € X, we have

p(x, y,2) < p(u, y,2) + p(x,u,2) + p(x, y,u). (3.11)

Hence p is a D-metric on X.
We are going to show that (X, p) is complete. Let {x,} be a Cauchy sequence in X.

Case 1. There exists N € N such that x,, = xy for all n > N.
In this case, evidently, {x,} converges to xn.

Case 2. There does not exist N € N such that x,, = xy foralln > N.
In this case, given N € N, there exist i, j € N such thati > j > N and x; # Xj.

Subcase 1. There exists « € X such that x, = « for infinitely many n. Then given N € N,
there exist 4, j,k € Nsuchthatk > j >i >N, x; = x; = &, and xx # a. We have p(x;,xj,xx) =
lif a = 1. Since {x,} is a Cauchy sequence, it follows that & # 1. Hence, there exists Ny €
N such that x, € X\ {1} forall n > Ny. Hence, p(xi,Xj,xx) = [x; — ;| + [xj — Xk | + [xx — x;]
foralli, j,k = Ny. Since {x,} is a Cauchy, p(x;,x;,xx) — 0asi, j, k — 0. Since x, = a for in-
finitely many n, given i € N, there exist j, k € N such that k > j > iand x; = x; = a. Hence
given an integer i > N, there exist j,k € N such that k > j >iand 2|x; — a| = p(x;,x;j,x%).
Hence |x; — | — 0 as i — co. Hence for n,m = Ny, p(xp,Xm, @) = |Xy — X | + [X — | +
| — x,| — 0as n,m — co. Hence {x,} converges to a.

Subcase 2. For any « € X, x,, = « for only finitely many #.

Let € be a positive real number. Choose a positive integer M such that (1/M) < €. Let
Ny =sup{n e N:x, € {1,1/2,1/3,...,1/M}}, where we adopt the convention that the
supremum of the empty subset of R is zero. Since for any k € N, 1/k € X and x,, = 1/k
for only finitely many #, it follows that N; is a nonnegative integer. Let N = N; + 1. Then



S.V.R.Naiduetal. 1973

0<x,<1/M<eforalln= N since X = {0} U {1/k: k € N}. Hence {x,} converges to 0
in the usual sense.
For n,m > N, we have

p(0,%m,%m) = [0 =2, | + | %0 — Xm | + | Xm — 0]
<2|xp| +2|xm| (3.12)

— 0 asn,m— oo,

Hence {x,} converges to 0 with respect to p. Thus in any case, {x,} is convergent in X
with respect to p. Hence (X, p) is complete.

Evidently {1/n} converges to both 0 and 1.

Let {x,} be a sequence in X such that it converges to an element x, of X\ {0,1}. Since
p(1,1,x0) = 1 and p(xy,%m,X0) — 0 as n,m — oo, it follows that there exists Ny € N such
that x,, € X\ {1} for all n > Njy. For n,m > Ny, we have

p(xn>xm7x0) = |xn _xm| + |xm _x0| + |x0_xn|- (3.13)

Since p(x,Xm,x0) — 0 as n,m — oo, it follows that |x, — x| — 0 as n — co. Since xo is
positive, it follows that there exists Ny € N such that x,, > 0 for all n > N;. For m,n >
max{Ny,N;}, we have

p(1,%, %) = min { max {1,x,}, max {x,, %y },max {xm,, 1} } = max {x,,x,}

(3.14)
— Xo asmn,m — oo,
Hence {x,} does not converge to 1. Let y € X\{1}. For m,n = Ny, we have
P()’,mem) = \}/_xn| + |xn_xm| + |xm_)’|
—2|ly—x0| asn,m-— oo, (3.15)

2|y—x0| =0 <=y =x,.

Hence {x,} does not converge to y for any y € X\{1,xp}. Hence x is the only limit of
{x,}. O

Example 3.2. Let X = {0,1,1/2,1/3,...}. Define p: X x X x X — R* as

(lx—yl+1y—zl+ |z —x] ifx,y,z € X\{1},
0 ifx=y=z=1,
1 if both 0 and 1 occur among x, y,z,

2min { max{x, y},

p(x,y,2) = 1 .
max{y,z},max{z,x}} if 1 occurs exactly once and

0 does not occur among x, , 2,

2min{x, y,z} if 1 occurs exactly twice among x, y,z and

0 does not occur among x, y,z.
(3.16)

Then (X, p) is a complete D-metric space. Further {1/n} converges to both 0 and 1.
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If a sequence {x,} in X converges to an element xo € X\{0,1}, then x, is the unique
limit of {x,}. In particular, a convergent sequence in X has at most two limits.

Proof. Clearly, p is symmetric in all the three variables x, y, zand p(x,y,2) =0 e x = y =
z. Letx,y,z,u € X.

Case 1. x,y,z € X\{1}.
Ifu e X\{1}, then
px,y,2) = lx =yl + 1y —z| + |z — x|
<lu—yl+ly—zl+lz—ul
+lx—ul+|u—z|+|z—x| (3.17)
+lx—=yl+1y—ul+u—x|
=p(u,,2) +p(x,u,2) + p(x, y, ).
If u =1, then
p(x,y,2) = lx =yl +1y -zl +|z — x|
< max{y,z} + max{z,x} + max{x, y} (3.18)
<p(u,y,2) +p(x,u,2) + p(x, y, )
since p(u, y,z) = p(1,¥,z) = 1 or 2max{y,z}, and so forth.
Case 2. 1 occurs among x, ¥, 2.
Subcase 1. x=y=z=1.

Then

px,y,2) =0 < p(u, y,2) + p(x,u,2) + p(x, y, u). (3.19)

Subcase 2. 1 occurs exactly twice among x, y, z.
Without loss of generality, we may assume that x = y = 1. Then z € X\ {1}.
Ifu =1, then

p(x,v,2) = p(1,y,2) = p(u, ¥,2)

Sp(ua}/;z)+p(_x,u,z)+P(x’y’u). (320)

If z =0, then

p(x,y,2) =p(1,1,0) = 1 = p(u,1,0) = p(u, y,2)

3.21
< p(u,y,2) +p(x,u,2) + p(x, y,u). (3:21)

Ifz+# 0and u # 1, then

p(x,y,2z) = p(1,1,z) = 22
<2max{u,z} <p(u,1,2) = p(u,y,2) (3.22)
< p(u,y,2) +p(x,u,2) +p(x, y,u).
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Subcase 3. 1 occurs exactly once among x, , z.
Without loss of generality, we may assume that x = 1. Then y,z € X\ {1}.
We may assume that z < y.

If u =1, then
p(x,9,2) = p(1,9,2) = p(u, y,2) < p(u, y,2) + p(x,u,2) + p(x, y, u). (3.23)
If z=0, then
p(x,9,2) = p(1,9,0) =1 = p(1,u,0) = p(x,u,2), (3.24)
and hence
p(x,y,2) < p(u, y,2) + p(x, 1, 2) + p(x, ys ). (3.25)

Ifu+#1andz# 0, then

p(x,y,2) = p(1,y,z) = 2max{y,z}
=2y < 2max{u, y} < p(1,y,u) (3.26)
=p(x, y,u) < p(u, y,2) + p(x,u,2) + p(x, y, u).

Thus for all x, y,z,u € X, we have

px,y,2) < p(u, y,2) +p(x,u,2) + p(x, y,u). (3.27)

Hence p is a D-metric on X.
We are going to show that (X, p) is complete. Let {x,} be a Cauchy sequence in X.

Case 1. x, = 1 for infinitely many n.
Given i € N, we can choose j, k € N such that k > j >iand x; = x; = 1 so that

0 ifxi = 1,
P(xi’xj:xk) = P(xi’ 1, 1) =11 ifxi =0, (328)
2x; ifx; € X\{0,1}.

Since {x,} is a Cauchy sequence, p(x),x4,%,) — 0 as p,g,r — .

Hence, p(x;,1,1) — 0 as i — . Hence, x, = 0 for only finitely many n. Hence, there
exists N € N such that x,, # 0 for all » > N.

If x, # 1 for infinitely many n, then x,, — 0 in the usual sense as n — c among those n
for which x,, # 1.

For m,n > N, we have

0 ifxm =Xn = 1)
2X lfx = 1>-x ?é 1)

p(Lxmx,) =4 " o " (3.29)
2xn ifx,, = 1,x, #1,

2max {x,,x,} ifxm # L,x, # 1.

Hence, p(1,%m,%,) — 0 as m,n — . Hence, {x,} converges to 1 with respect to p.
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Case 2. x, =1 for only finitely many » and there exists « € X\{1} such that x, = « for
infinitely many n.

Since x, = 1 for only finitely many #, there exists Ny € N such that x, € X\ {1} for
all n > Ny. Hence, p(xi,xj,xx) = |xi — x;| + |[xj — x| + |xx — x;| for all 4, j,k = Ny. Since
X, = « for infinitely many #», given i € N, there exist j, k € N such that k > j >i and
Xj =Xk = .

Hence given an integer i > Ny, there exist j, k € N such that k > j >iand

2|xi—a| = p(xixj,xK). (3.30)

Since {x,} is a Cauchy sequence, p(xiXxj,xk) — 0 as i,j,k — co. Hence, |x; —a| — 0 as
i — oo, Hence for n,m = Ny,

P (%> X @) = | X0 — X | + | X — &t + | — x|
<2|xm—al| +2|x, — ] (3.31)

— 0 asm,n— oo,

Hence {x,} converges to a.

Case 3. For any a € X, x, = « for only finitely many n.

Let ¢ be a positive real number. Choose a positive integer M such that (1/M) < e.

Let Ny =sup{n e N:x, € {1,1/2,1/3,...,1/M}}, where we adopt the convention that
the supremum of the empty subset of R is zero. Since forany k € N, 1/k € X and x,, = 1/k
for only finitely many #, it follows that N, is a nonnegative integer.

Let N = N; + 1. Since X = {0,1,1/2,1/3,...}, it follows that 0 < x,, < 1/M < ¢ for all
n>=N.

Hence {x,} converges to 0 in the usual sense.

For n,m > N, we have

P(Oaxmxm) = |0_le| + |xn_xm| + |‘xm_0|
<2|xn| +2]xm | (3.32)

— 0 asn,m— oo,

Hence {x,} converges to 0 with respect to p. Thus in any case, {x,} is convergent in X
with respect to p. Hence (X, p) is complete.

Evidently, {1/n} converges to both 0 and 1.

If a sequence {x,} in X converges to an element x, € X\1{0,1}, then it can be shown as
in Example 3.1 that xo is a unique limit of {x,}. O

We now give a simple example of a complete D-metric space having a convergent
sequence, which converges to every element of the space.

Example 3.3. Let X = {1/2" : n € N}. Define p : X X X X X — R* as follows:

ifx=y=z,
. . (3.33)
min { max{x, y},max{y,z},max{z,x}} otherwise.

0
px,y,2) = {



S.V.R.Naiduetal. 1977

)

Then (X, p) is a complete D-metric space. Further {1/2"};"_, is a p-Cauchy sequence and
converges with respect to p to x for all x € X.

Proof. We are going to prove that p is a D-metric on X. Clearly p is symmetric in all
the three variables and p(x,y,z) =0 ¢ x = y = z. We note that p(x, y,z) < 1/2 for all
x, ¥,z € X. Let x, y,z € X and at least let two among x, y, z be distinct. We may assume
that x = y = z. Then p(x, y,2) = y.

Letu € X.Whenu = y, p(u, y,2z) = y;and when u < y, p(x, y,u) = y. Hence p(x, y,z) <
p(u,y,2) +p(x,u,z) + p(x, y,u). Hence p is a D-metric on X.

We are going to show that (X, p) is complete. Let {x,} be a Cauchy sequence in X.

Case 1. There exists N € N such that x,, = xy for all n > N.
In this case, evidently {x,} converges to xx.

Case 2. Given N € N, there exist i, j € N such that i >N, j >N, and x; # x;.

Cramm 3.4. x, — 0 .asn — oo in the usual sense.

Suppose not. Then there exists a positive real number € such that x, = € for infinitely
many n € N. Given N € N, we can choose i, j, k € N such thatk > j >i >N, x; > ¢, Xj =&
and xy. # x;j. Then

p(xisxj,xk) = min { max {x;,x;},max {xj,x}, max {xp,x;} } = e. (3.34)

This is a contradiction, since {x,} is a Cauchy sequence.
For m,n € N and x € X, we have
p (%, %, x,) < min{max {x,x,,},max {xm,x,}, max {x,,x}}
< max { X, X, } (3.35)
— 0 asm,n — oo,
Hence {x,} converges to x for any x € X with respect to the D-metric p.
Hence (X, p) is a complete D-metric space. O
Dhage [2] proved the following theorem.
TaEOREM 3.5 (see [2, Theorem 2.1]). Let f be a self-map of a complete and bounded

D-metric space X such that

pUfx fy, fz) <ap(x,y,z) (3.36)
forall x,y,z € X, and some a € [0,1). Then f has a unique fixed point.

Remark 3.6. Example 3.7 shows that the existence part of fixed point of Theorem 3.5 is
false.

Example 3.7. Let (X,p) be as in Example 3.3. Define f : X — X as fx =x/2 for all x €
X. Then p(fx, fy, fz) < (1/2)p(x, y,z) for all x,y,z € X but f has no fixed point in X.
Further for all x € X, {f"x} converges to every element of X, and hence has infinitely
many limits.
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Proof. Letx,y,ze X

Casel. x=y=z.
Then

p(fx.fy,fz) =p(fx fx, fx)=0= %p(x,x,x) = %p(x,y,Z). (3.37)

Case 2. At least two among x, y, z are distinct.
We may assume that x > y > z. Then

p(fx fy, f2) =p<g,%,§> = % = %p(x,y,Z). (3.38)
Thus
p(fx, fy,fz) < %p(x,y,z) vx,y,z € X. (3.39)

Evidently f has no fixed point and for any x € X, { f"x} in X converges to every point of
X. |

The following is a modification of Dhage [2, Theorem 2.1].

Tueorem 3.8. Let (X,p) be a bounded complete D-metric space and let f : X — X be such
that

p(fx, fy,fz) <ap(x,y,2) (3.40)

forall x, y,z € X, and some a € [0,1). Then for any x € X, { f"x} is a D-Cauchy sequence.
If there exists xo € X such that { f"xo} has only a finite number of limits, then f has a unique
fixed point.

We now illustrate Theorem 3.8 using the complete D-metric spaces given in Examples
3.1and 3.2.

Example 3.9. Let (X,p) be as in Example 3.1. Define f: X — X as

{0 ifx=1,
fx=1x (3.41)

3 otherwise.
Then p(fx, fy, fz) < (2/3)p(x,y,z) for all x,y,z € X. Evidently, 0 is the unique fixed
point of f.

Proof. Letx,y,z € X. In view of the symmetry of p, it is enough to consider the following
five cases.

Casel. x=y=z=1.
Then

p(fx, fy,fz) =p(fL, f1,f1)=p(0,0,0) =0 < %p(x,y,z). (3.42)
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Case2. x=y=1andz # 1.
Then

p(fx.fy.fz) =p(f1,f1, fz)

z 2z 2 2 (3.43)
- P<0>0> 5) = ? < g(l) - §P(X,)/az)-
Case3. x=1,y=0andz # 1.
Then
p(fxfy:fz) =p(f1,f0,fz)
z 2z 2 2 (3.44)
—P<O>O: g) - ? < g(]-) - gp(x,)/,z)-
Case4. x=1land0<z<y<l.
Then
p(fxfy.f2) =p(f1. [y, f2)
(02 E) Y 2 (3.45)
_P(0’3’3> =3 = 3Per2)
Case5. z<y<x<l.
Then
_ (XY Z
p(fx.fy.f2) —p(3,3,3)
:‘E—X‘WL‘Z—E T (3.46)
3 3 3 3 3 3
2 2 2
= E(X—Z) < 52(x—z) = 5,0(96)/,2)
Thus p(fx, fy, fz) < (2/3)p(x, y,2) forall x, y,z € X. O

Example 3.10. Let (X, p) be as in Example 3.2. Define f : X — X and g: X — X as follows:

0 ifx=1,
fx= ;—C otherwise.
(3.47)
1 ifxe{0,1},
&= otherwise.
3
It can be verified that
1
P(fX,f)/>fZ) = gp(X,)/:z),
(3.48)

1
plgx.gy,92) < gp(x, ¥,2)

forall x,y,z € X.
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For any x € X\ {0,1}, the sequences { f"x} and {g"x} are the same and converge to 0
and 1 only. While 0 is the fixed point of f, 1 is the fixed point of g in X.

Theorem 3.8 is a corollary of the following theorem.

TaEoREM 3.11. Let (X,p) be a D-metric space, let f be a self-map on X, and let ¢ : R* — R*
be a monotonically increasing map such that ¢"(t) — 0 as n — oo for each t € R*. Suppose
that

p(fxfy. fz) < ¢(p(x,9,2)) (3.49)

for all x,y,z € X and that there exists xo € X such that {p(xo,fixo,ffxo) 11, € {0} UN}
is bounded. Then { f"xy} is a p-Cauchy sequence. Suppose that {f"xo} is convergent and
has only a finite number of limits. Then f has a unique fixed point in X, which is a limit of

{f"x0}.
Proof. Letx, = f"x, foralln e N.
For nonnegative integers r and s, and n € N, we have
P (ks nss) = pF"%o0s [0, f75)
o(p(f" 'x0, f" 'y, " 'x5))  (from (3.49))
o(o(p(f"2x0, f" 2%, f"?x;)))  (from (3.49) and the monotonic

increasing nature of @)

IA

IA

< 9" (p(x0,%7,%5)).
(3.50)

Since {p(x0, fixo, f7x0) : i, j € {0} UN} is bounded, there exists a positive real number M
such that p(xo, fixo, f/x0) < M foralli, j € {0} UN. Hence from inequality (3.50) and the
monotonic increasing nature of @, we have p(xy, Xp1r, Xu4+s) < @"(M). Since ¢"(M) — 0 as
n — oo, from the above inequality, it follows that {x,} is a p-Cauchy sequence.

Suppose now that { f"xp} is convergent and has only a finite number of limits. Let S
denote the set of all limits of { f"x0}. Then S is a nonempty finite subset of X. Since ¢
is a nonnegative real-valued monotonically increasing function on R* and ¢"(t) — 0 as
n — oo, it follows that ¢(t) < t for all f € (0,0) and ¢(0) = 0. Let z € S. Then

p(f" xo, ™" 1x0, f2) < @(p(f"%0, f"%0,2))
<p(f"xo, f"x0,2) (3.51)

— 0 asm,n — oo,

Hence { f"xy} converges to fz also.

Hence, fz € S. Thus f(S) = S. For any positive integer m, we have ["(S) = f"~1(S),
where f0 = I, the identity map on X.

Suppose that my is a positive integer such that f™~!(S) has at least two elements. Let
B=inf{p(x,y,2) : x, y,z€ f™~1(S) and at least two of x, y, z are different}. Since f™~1(S)
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is a finite set having at least two elements, {p(x, y,2) : x,y,z € f™~1(S) and at least two
of x, y,z are different} is a nonempty finite subset of (0, c0). Hence, there exist u,v,z €
fm~1(8) such that at least two of them are distinct and p(u,v,z)= . We have p(fu, fv, fz)
< o(p(u,v,2)) = ¢(B) < f3, since f is a positive real number and ¢(t) < t for all t € (0, ).
Since u,v,z € f™1(S), fu, fv, fz € fm(S) = f™1(S). Hence from the definition of f3,
it follows that fu = fv = fz. Since f™~1(S) is finite, at least two of u,v,z are distinct and
fu= fv= fz it follows that f™(S) is a proper subset of f™~1(S). Since S is finite, from
the above discussion, it follows that f™~1(S) is a singleton for some 1y € N.

Let f~1(S) = {w}. Since f™(S) = f™~1(S), we must have fw = w. O

Remark 3.12. Examples 3.9 and 3.10 illustrate Theorem 3.11.

Remark 3.13. Example 3.7 shows that Dhage and Rhoades [4, Theorem 2] and its corol-
lary are false.

Ahmad et al. [1] proved the following theorem.

TaEOREM 3.14. Let (X,p) be a complete D-metric space. Let f and S be commutative self-
maps on X such that f is injective, S is surjective, and

p(fx, fy,fz) < ap(Sx,Sy,Sz) (3.52)

forall x,y,z € X, and some a € [0,1). Then there exists a unique common fixed point of f
and §.

Remark 3.15. Example 3.7 shows that Theorem 3.14 is false since the map f in the exam-
ple is injective, the identity map I is surjective, f oI =1 o f, and inequality (3.52) is true
forall x, y, zin X with &« = 1/2 and S = I. Theorem 3.14 remains valid if its hypothesis is
strengthened by imposing the additional condition that (X, p) is bounded and that every
p-Cauhy sequence in f(X) is convergent in S(X) and has a unique limit in S(X).

The following is a generalization of the modification of Theorem 3.14 suggested above.

TuEOREM 3.16. Let (X,p) be a bounded complete D-metric space, let f and S be self-maps
onX. Let ¢ : R* — R* be a monotonically increasing map such that ¢"(t) — 0 as n — oo, for
each t € (0,00). Suppose that f and S are partially commuting, f(X) < S(X),

p(fx, fy,fz) < ¢(p(8x,8y,52)) (3.53)

forall x, y, z in X and that every p-Cauchy sequence in f(X) is convergent in S(X) and has
a unique limit in S(X). Then f and S have a unique common fixed point in X.

Proof. Let xy € X. Since f(X) < S(X), there exists a sequence {x,} in X such that fx, =
Sxu41 forn=0,1,2,....

Let y, = fx,. Since ¢ : R* — R* is monotonically increasing on R* and {¢"(¢)} — 0 as
n— oo forall t € (0,00), ¢(t) < t forall t € (0,0). Hence ¢(0+) = 0.
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For positive integers m, n, p, from inequality (3.53), we have

P (V> Y ¥p) = p(f2ns foxm> fXp)
< ¢(p(Sxn,Sxm>Sx,))  (from (3.53)) (3.54)

= (P(P(}’nfl;}’m—l,)/p—l)))

that is, p(¥u, Ym> ¥p) < @(P(Yu-1>Ym-1,yp-1)). Hence for n € N and nonnegative integers
iand j, from the monotonic increasing nature of ¢, we have

P (V> i ynej) = 9" (p(y0, yi> ¥j)).- (3.55)

Let M = sup{p(y0,yi>yj) 1i,j € NU{0}}. Since (X,p) is bounded, M < . Hence from
inequality (3.55), we have

P (Vs Yuvis Ynij) < @" (M) (3.56)

forallme Nandi,j e NuU{0}.

Since ¢"(M) — 0 as n — oo, from the above inequality, it follows that {y,} is a p-
Cauchy sequence. Since {y,} = {fx,} € f(X) and every p-Cauchy sequence in f(X) is
convergent in S(X) and has a unique limit in S(X), there exists a unique element v of S(X)
such that {y,} converges to v. Since v € S(X), there exists u € X such that Su = v.

For positive integers n, m, we have

P (Y ym> fu) = p(f x> foxm, f11)
< ¢(p(Sx1, Sx > Sut)) (3.57)
=9(p(yn-1ym-1,v)).
Since {y,} converges to v and ¢(0+) = 0, from the above inequality, it follows that {y,}
converges to fu also. Since v is the only limit of {y,} in S(X) and fu € f(X) = S(X), we

must have fu = v. Hence fu = Su. Since f and § are partially commuting and fu = Su,

we have f(fu) =S(fu).

On taking x = y = u and z = fu, in inequality (3.53), we obtain

p(fu, fu, f2u) <o(p(fu, fu, f*u)). (3.58)

Since ¢(t) < t for all £ € (0, o0), we must have p( fu, fu, f2u) = 0. Hence f?u = fu. Hence
S(fu) = fu. Thus fuis a common fixed point of f and S.

From inequality (3.53), it is evident that f and S cannot have more than one common
fixed point. O

Remark 3.17. The following example illustrates Theorem 3.16.
Example 3.18. Let X = {0,1,1/2,1/3,...}. Define p : X X X X X — R" as
plx,y,2) =lx—yl+ly—zl+lz—x|, Vx,y,zeX. (3.59)

Then (X,p) is a bounded complete D-metric space in which every convergent sequence
has a unique limit.
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Define f: X — X as f(x) = (1/2)x for all x € X. Then p(fx, fy, fz) < (1/2)p(x, y,2)
for all x, y,z € X. Clearly f has a unique fixed point in X, namely, 0.

ProrosITiON 3.19. Let (X,p) be a D-metric space and let p be sequentially continuous in
one variable. Then every p-convergent sequence in X has a unique limit.

Proof. Let {x,} be a p-convergent sequence in X. Let x, y be limits of {x,}. Since p
is sequentially continuous in one variable, {p(x,,x,x)} converges to p(x,x,x) as well as
p(y,x,x). Since a convergent sequence of real numbers has a unique limit, we must have
p(y,x,x) = p(x,x,x). Hence p(y,x,x) = 0. Hence y = x. Hence every p-convergent se-
quence in X has a unique limit. O

Remark 3.20. Since each of the D-metric spaces given in Examples 3.1, 3.2, and 3.3 con-
tains a convergent sequence with several limits, the D-metric in any of these spaces is
not sequentially continuous even in a single variable. It was observed by Naidu et al. [7]
that a D-metric need not be sequentially continuous even in a single variable even when
D-metric convergence defines a metrizable topology.

Notation 3.21. For a subset E of a D-metric space (X,p), E denotes the set of all x € X
such that there is a sequence in E which converges to x with respect to p.

Dhage et al. [3] proved the following theorem.

TaEOREM 3.22. Let (X,p) be a D-metric space and let f be a self-map on X. Suppose
that there exists an xo € X such that Of(xo) = {xo} U { f"x0 : n € N} is bounded and every
Cauchy sequence in X converges to an element of X. Suppose also that

p(fx, fy, fz) <amax{p(x,y,2),p(x, fx,2)} (3.60)

for x,y,z € Of(x0), for some a € [0,1). Then f has a unique fixed point in X.

Remark 3.23. Example 3.7 shows that Theorem 3.22 is false. It also shows that [3, Corol-
laries 3.2, 3.3, 3.4, and 3.5] of Dhage et al. are false. In proving Theorem 3.22, the authors
tacitly assume that the D-metric is sequentially continuous in two variables. With this
additional assumption, the theorem remains true.

The following two theorems are generalizations of the modification of Theorem 3.22
suggested above.

TuEOREM 3.24. Let (X,p) be a D- metric space, let f be a self-map on X, and let ¢ : R* —
R* be a monotonically increasing map such that ¢(t+) < t for all t € (0, c0). Suppose that
there exists xo € X such that sup{p(xo, fixo, f/x0) :1,j € NU{0}} < +o0 and

p(fx, fy, fz) < p(max {p(x,u,v) : u,v € {x} U {fx} U {y} U {z}}) (3.61)

forall x,y,z € Of(xo). Then {f"xo} is a p-Cauchy sequence. If it converges to an element p
of X and p is sequentially continuous in any two variables, then p is the unique fixed point

of f in Of(xp).
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Proof. Letx, = f"x, foralln e N.
For nonnegative integers r and s, and n € N, from inequality (3.61), we have

p(f"%0, f"%r, fx5)
< @(max {p(f" 'xo, f" xp, " xg) 1 prg € {0,1} U {r} U {s}})
< ¢*(max {p(f" *x0, f" *xi> f"7?x;) 1i,j € {0,1} U {r} U {s}})

(3.62)
(from the monotonic increasing nature of ¢)

< (Pn(maX{P(xO)xi)xj) :iaj € {011} U {T} U {5}})

Since sup{p(xo, f'x0, f/x0) :i,j € NU {0}} < +00, there exists a positive real number M
such that p(xo, fixo, f/x0) < M for all i, j € N U {0}. Hence, p(f"xo, f"x,, f"x5) < ¢"(M)
for all n € N. Since ¢(t+) < t for all t € (0,00), {¢"(¢)} decreases to zero for each t €
R*. Hence, {¢"(M)} decreases to zero. Hence given ¢ > 0, there exists N € N such that
¢"(M) < ¢ for all n = N. Hence, p(f"xo, f"xr, f"x;) <& forall n = N and r,s € NU {0}.
Hence, { f"xy} is a p-Cauchy sequence.

Suppose that { f"x} converges to an element p of X with respect to p. From inequality
(3.61), we have

p(f"x0, f"x0, f )

= ¢(max{P(fn_1x0,u,v) U,V E {f”_lxo} U {f”xo} U {pt}). (3.63)

Since {f"x} is a p-Cauchy sequence and p is sequentially continuous in any two vari-
ables and {f"xy} converges to p, it follows that max{p(f" 'xo,u,v) : u,v € { f" x0} U
{f"x0} U {p}} converges to zero. Hence on taking limits on both sides of inequality (3.63)
as n — oo, we obtain

p(p,p, fp) = ¢(0+). (3.64)
Since ¢(t+) < t for all t € (0,00), we have ¢(0+) = 0. Hence p(p,p,fp) = 0. Hence
fp=p.

Let w € Of(xo) be a fixed point of f. On taking x = y = p and z = w in inequality
(3.61), we have

p(p,psw) < @(max {p(p, p,w),p(p,w,w)}). (3.65)

On taking x = p and y = z = w in inequality (3.61), we have

p(p,w,w) < @(max{p(p, p,w),p(p,w,w)}). (3.66)
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From inequalities (3.65) and (3.66), we have

max {p(p, p,w),p(p,w,w)} < p(max {p(p, p,w),p(p,w,w)}). (3.67)

Since ¢(t) < (t+) <t forall t € (0, 00), we must have

max {p(p, p,w),p(p,w,w)} = 0. (3.68)

Hence w = p. Hence p is the unique fixed point of f in Oy (xo). O

Remark 3.25. For x,y,z € X, let a(x, y,z) = max{p(x,u,v) :u,v € {x} U {fx} U {ylu
{z}}. Since p is symmetric in all the three variables and ¢ is a monotonically increasing
function on R*, inequality (3.61) is equivalent to the inequality

p(fx,fy,f2) < p(min{alx, y,2),a(y,z,x),a(z,x,y)}). (3.69)

THEOREM 3.26. Let (X,p) be a D-metric space, let f be a self-map on X, and let ¢ : R* — R*
be a monotonically increasing map such that ¢(t+) < t for all t € (0, c0). Suppose that there
exists xo € X such that Of(xo) is p-bounded and

p(fx, fy, fz) < p(max {p(u,v,w) :u,v,w e {x} U{fx} U{ytu{fytulzt u{fz}})
(3.70)

forall x,y,z € Of(xo). Then { f"xo} is a p-Cauchy sequence. If it converges to an element p
of X and p is sequentially continuous in any two variables, then p is the unique fixed point

of fin Of(xp).

Proof. Letx, = f"xy foralln € N.

For n € N U {0}, let B, = sup{p(x;,xj,xk) : i, j,k = n}. Clearly 0 < 8, < 8, for all
n € N. Since Of(x) is p-bounded, By < +oo.

For n e N and i, j, k = n, from inequality (3.70), we have

p(xi,xj,x6) = p(fxion, fxjo1, fxk-1)
< g(max {p(u,v,w) : u,v,w € {xi_1} U {x;}
U {xj-1b U {x U e b {xad))

<¢(Bn1) (since ¢ is monotonically increasing).

(3.71)

Hence, B, < ¢(B,-1) foralln € N.
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Hence, f3, < ¢"(fo) for all n € N. Since ¢(t+) < t for all t € (0,00) and fBy is finite,
9" (Bo) —» 0asn — co.

Hence, {f,} converges to zero. Hence, {x,} is a p-Cauchy sequence.

Suppose that {x,} converges to an element p of X and that the D-metric p is sequen-

tially continuous in any two variables.
For n € N, from inequality (3.70), we have

p(xXusxn, ) < @(max{p(u,v,w) :u,v,w € {xy,m1} U {x,} U{ptU{fp}}). (3.72)

Since {x,} is a p-Cauchy sequence, p is sequentially continuous in any two variables and
{x,} converges to an element p of X, it follows that max{p(u,v,w) : u,v,w € {x,_1} U
{xn} U {p} U {fp}} converges to

max {p(p,p, fp)p(p, fp, fP)} (3.73)

On taking limits on both sides of inequality (3.72) as n — o, we obtain

p(p,p, f ) < @((max{p(p,p, fp),p(p, f . fP)}) +). (3.74)

In a similar manner, by taking x = x,,, ¥ = z = p in inequality (3.70) and then taking
limits as n — co, we obtain

p(ps fp, fp) < @((max{p(p,p, fp)p(p, f - fP)}) +). (3.75)

From inequalities (3.74) and (3.75), it follows that

max {p(p,p, fp).p(p> fp, f )}

3.76
< p((max {p(p, s fPp(ps F 2, FPI]) +). (370

Since ¢(t+) < t for all t € (0, c0), we have
max {p(p,p, fp),p(p, f p, fp)} = 0. (3.77)

Hence fp = p. That p is the only fixed point of f in Of(xo) can be proved as in
Theorem 3.24. U

Remark 3.27. Let (X,p) be as in Example 3.18. A sequence {x,} in X converges to an
element x of X with respect to p if and only if {x,} converges to x in the usual sense.
Hence, it is evident that the D-metric p is sequentially continuous in all the three vari-
ables. Hence, Example 3.18 illustrates Theorems 3.24 and 3.26 and the modified version
of Theorem 3.22.

Definition 3.28. f is said to be sequentially continuous at x € X if { fx,} converges to fx
whenever {x,} is a convergent sequence in X with x as a limit. f is said to be sequentially
continuous if it is sequentially continuous at every point of X.
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THEOREM 3.29. Let (X,p) be a D-metric space, let f be a self-map on X, and let ¢ : RY — R*
be a monotonically increasing map such that {¢"(t)},_, converges to zero for all t in R*.
Suppose that there exists xo € X such that Of(xo) is p- bounded and

p(fx, fy,fz) < @(sup {p(u,v,w) : u,v,w € Of(x) U Of(y) U Of(2)}) (3.78)
for all x,y,z € Of(xo). Then { f"xo} is a p-Cauchy sequence. Suppose that { f"xo} is con-

vergent and has a unique limit and that f is sequentially continuous at it. Then f has a fixed
point in Of(xo).

Proof. Forne N, letx, = f"xo.

For n € N U {0}, let 8, = sup{p(x;,xj,xx) : i, j,k = n}. Clearly 0 < 8, < 8, for all
n € N. Since Of(xp) is p-bounded, fy < +oo.

For n € N and integers i, j, k > n, from inequality (3.78), we have

p (i, xx)
< ¢(sup {p(u,v,w) 1 u,v,w € Of (x; —1 ) UOs(xj =1 ) UOs (xx —1)})

< o(sup {p(x,x5,x¢) : 7,5, =n—1}) (since ¢ is monotonically increasing on R*)

= q)(/jn—l)-
(3.79)

Hence, 8, < ¢(B,-1). Hence, B, < ¢"(Bo). Since {¢"(t)},-, converges to zero for all t in
R*, it follows that {f,} converges to zero. Hence, {x,} is a p-Cauchy sequence.

Suppose that {x,} is convergent and has a unique limit, say, z in X and that f is se-
quentially continuous at z.

Since { f"xo} converges to zand f is sequentially continuous at z, { f(f"xy)} converges
to fz. Hence, fzis a limit of {x,}.

Since z is the only limit of {x,}, we must have fz = z. O

Remark 3.30. 1f (X,p) is a D-metric space, f is a self-map on X, ¢ : R* — R* is con-
tinuous at 0, and ¢(0) = 0 and p(fx, fy, fz) < ¢(p(x,y,2)) for all x,y,z € X, then f is
sequentially continuous.

Remark 3.31. Example 3.18 illustrates Theorem 3.29 also.
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