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Using a t-norm T , we introduce the notions of T-fuzzy subalgebras and T-fuzzy H-ideals
in BCI-algebras and investigate some of their properties.

1. Introduction

The notion of BCI-algebras was introduced by Iséki [3] which is a generalization of BCK-
algebras [2]. This notion is originated from two different ways: one of the motivations is
based on set theory, another motivation is from classical and nonclassical propositional
calculi.

Zadeh [8] introduced the notion of fuzzy sets. Many researchers have applied this con-
cept to mathematical branches, such as semigroup, loop, group, ring, semiring, field, near
ring, vector spaces, topological spaces, functional analysis, automation. Jun et al. [4, 5]
introduced the notions of fuzzy subalgebras and fuzzy ideals of BCK-algebras with re-
spect to a t-norm T , and studied some of their properties. In this paper, we obtain some
related results of T-fuzzy subalgebras and T-fuzzy H-ideals in BCI-algebras.

2. Preliminaries

In this section, we review some definitions that will be used in the sequel.

Definition 2.1. An algebra (X ;∗,0) of type (2, 0) is called a BCI-algebra if, for all x, y,z ∈
X , the following axioms hold.

(1) ((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0.
(2) (x∗ (x∗ y))∗ y = 0.
(3) x∗ x = 0.
(4) x∗ y = 0 and y∗ x = 0⇒ x = y.
In BCI-algebras, the following hold.
(5) (x∗ 0)= x.
(6) (x∗ y)∗ z = (x∗ z)∗ y.
(7) 0∗ (y∗ x)= (0∗ y)∗ (0∗ x).
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Definition 2.2. Let S be a nonempty subset of a BCI-algebra X , then S is called a subalgebra
of X if x∗ y ∈ S for all x, y ∈ S.

Definition 2.3. A subset A of a BCI-algebra (X ;∗,0) is called an ideal of X if for any
x, y ∈ X , the following conditions hold.

(i) 0∈ A.
(ii) x∗ y and y ∈A imply that x ∈A.

Definition 2.4 [6]. A subset A of a BCI-algebra (X ;∗,0) is called an H-ideal of X if for
any x, y,z ∈ X , the following conditions hold.

(a) 0∈A.
(b) (x∗ (y∗ z)) and y ∈ A⇒ x∗ z ∈A.

Definition 2.5. A mapping f : X → Y of BCI-algebras is called a homomorphism if f (x∗
y)= f (x)∗ f (y) for all x, y ∈ X .

Note that if f is a homomorphism of BCI-algebras, then f (0)=0́.

Definition 2.6. Let X be a nonempty set. A fuzzy (sub)set µ of the set X is a mapping
µ : X → [0,1]. The complement of a fuzzy set µ of a set X is denoted by µ and defined by
µ(x)= 1−µ(x), for all x ∈ X .

Definition 2.7 [1]. A triangular norm (t-norm) is a function T : [0,1]× [0,1]→ [0,1] that
satisfies the following conditions.

(T1) T(x,1)= x.
(T2) T(x, y)= T(y,x).
(T3) T(x,T(y,z))= T(T(x, y),z).
(T4) T(x, y)≤ T(x,z) whenever y ≤ z, for all x, y,z ∈ [0,1].

A simple example of such defined t-norm is a function T(x, y)=min(x, y). In a gen-
eral case, T(x, y)≤min(x, y) and T(x,0)= 0 for all x, y ∈ [0,1].

3. T-fuzzy subalgebras

In what follows, let X denote a BCI-algebra unless otherwise specified.

Definition 3.1. A fuzzy set µ in X is called a subalgebra of X with respect to a t-norm T
(briefly, a T-fuzzy subalgebra of X) if µ(x∗ y)≥ T(µ(x),µ(y)) for all x, y ∈ X .

Example 3.2. Let X := {0,1,2} be a BCI-algebra with the following Cayley table:

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Define a fuzzy set µ : X → [0,1] by µ(0) = 0.81 and µ(x) = 0.25 for all x �= 0 and let
Tm : [0,1]× [0,1]→ [0,1] be a function defined by Tm(x, y)=max(x+ y− 1,0) which is
a t-norm for all x, y ∈ [0,1]. Then Tm is a t-norm [7]. By routine calculations, it is easy
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to check that µ satisfies µ(x∗ y)≥ Tm(µ(x),µ(y)) for all x, y ∈ X . Hence, µ is a Tm-fuzzy
subalgebra of X .

Theorem 3.3. Let µ be a T-fuzzy subalgebra of X and α∈ [0,1].
(i) If α= 1, then U(µ;α) is either empty or a subalgebra of X .

(ii) If T =min, then U(µ;α) is either empty or a subalgebra of X .
(iii) µ(0)≥ µ(x) for all x ∈ X .

Proof. (i) Assume that α = 1. If x, y ∈ U(µ;1), then µ(x) ≥ 1 and µ(y) ≥ 1. It follows
from Definitions 2.7 and 3.1 that µ(x∗ y) ≥ T(µ(x),µ(y))≥ T(1,1) = 1 so that x∗ y ∈
U(µ;1), that is, U(µ;1) is a subalgebra of X .

(ii) Assume that T = min and let x, y ∈ U(µ;α). Then, µ(x ∗ y) ≥ T(µ(x),µ(y)) =
min(µ(x),µ(y))≥min(α,α)= α, and so x∗ y ∈U(µ;α).

Hence U(µ;α) is a subalgebra of X .
(iii) Since x ∗ x = 0 for all x ∈ X , we have µ(0) = µ(x ∗ x) ≥ T(µ(x),µ(x))

=min(µ(x),µ(x))= µ(x). This completes the proof. �

Theorem 3.4. Let µ be a T-fuzzy subalgebra of X . If there is a sequence {xn} in X such that
limn→∞T(µ(xn),µ(xn))= 1, then µ(0)= 1.

Proof. Let x ∈ X , then µ(0)= µ(x∗ x)≥ T(µ(x),µ(x)). Hence µ(0)≥ T(µ(xn),µ(xn)) for
any n ∈ N. Since 1 ≥ µ(0) ≥ limn→∞T(µ(xn),µ(xn)) = 1, it follows that µ(0) = 1. This
completes the proof. �

Definition 3.5. Let λ and µ be T-fuzzy subalgebras of X . Then direct product of T-fuzzy
subalgebras is defined by (λ×µ)(x, y)= T(λ(x),µ(y)), for all x, y ∈ X .

Theorem 3.6. If µ1 and µ2 are T-fuzzy subalgebras of X , then µ = µ1 × µ2 is a T-fuzzy
subalgebra of X ×X .

Proof. For any (x1,x2) and (y1, y2)∈ X ×X , we have

µ
((
x1,x2

)∗ (y1, y2
))= µ

(
x1∗ y1,x2∗ y2

)
= (µ1×µ2

)(
x1∗ y1,x2∗ y2

)
= T

(
µ1
(
x1∗ y1

)
,µ2
(
x2∗ y2

))
≥ T

(
T
(
µ1
(
x1
)
,µ1
(
y1
))

,T
(
µ2
(
x2
)
,µ2
(
y2)
))

= T
(
T
(
µ1
(
x1
)
,µ2
(
x2
))

,T
(
µ1
(
y1
)
,µ2
(
y2
)))

= T
((
µ1×µ2

)(
x1,x2

)
,
(
µ1×µ2

)(
y1, y2

))
= T

(
µ
(
x1,x2

)
,µ
(
y1, y2

))
.

(3.1)

Hence, µ= µ1×µ2 is a T-fuzzy subalgebra of X ×X . �

Definition 3.7. Let f be a mapping on X . If v is a fuzzy set in f (X), then fuzzy set µ= v ◦ f
(i.e., (v ◦ f )(x)= v( f (x))) in X is called preimage of v under f .

Theorem 3.8. An epimorphism preimage of a T-fuzzy subalgebra of X is a T-fuzzy subal-
gebra.
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Proof. Let f : X → Y be an epimorphism of BCI-algebras, let v be a T-fuzzy subalgebra
of Y , and let µ be the preimage of v under f . Then for any x, y ∈ X , we have

µ(x∗ y)= (v ◦ f )(x∗ y)

= v
(
f (x∗ y)

)= v
(
f (x)∗ f (y)

)
≥ T

(
v( f (x)

)
,v
(
f (y)

))
= T

(
(v ◦ f )(x),(v ◦ f )(y)

)
= T

(
µ(x),µ(y)

)
.

(3.2)

Hence, µ is a fuzzy subalgebra of X with respect to a t-norm T . �
Definition 3.9. If µ is a fuzzy set in a subalgebra X and f is a mapping defined on X , the
fuzzy set µ f in f (X) defined by

µ f (y)= Sup
x∈ f −1(y)

µ(x) ∀y ∈ f (X) (3.3)

is called the image of µ under f .

Definition 3.10. A fuzzy set µ in X has the Sup property if for any subset A ⊆ X , there
exists a0 ∈A such that µ(a0)= Supa∈A µ(a).

Theorem 3.11. An epimorphism image of a fuzzy subalgebra with Sup property is a fuzzy
subalgebra.

Proof. Let f : X → Y be an epimorphism of X and let µ be a fuzzy subalgebra of X with
Sup property. Let f (x), f (y)∈ f (X) and let x0, y0 ∈ f −1( f (x)) be such that

µ
(
x0
)= Sup

t∈ f −1( f (x))
µ(t),

µ
(
y0
)= Sup

t∈ f −1( f (y))
µ(t),

(3.4)

respectively. Then,

µ f
(
f (x)∗ f (y)

)= Sup
z∈ f −1( f (x)∗ f (y))

µ(z)

≥min
{
µ
(
x0
)
,µ
(
y0
)}

=min

{
Sup

t∈ f −1( f (x))
µ(t), Sup

t∈ f −1( f (y))
µ(t)

}

=min
{
µ f
(
f (x)

)
,µ f
(
f (y)

)}
.

(3.5)

Hence µ f is a fuzzy subalgebra of Y . �
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Definition 3.12 [7]. A t-norm T on [0,1] is called a continuous t-norm if T is a continuous
function from [0,1]×[0,1] to [0, 1] with respect to the usual topology. Note that the
function min is a continuous t-norm.

Theorem 3.13. Let T be a continuous t-norm and let f be a homomorphism on X . If µ is a
T-fuzzy subalgebra of X , then µ f is a T-fuzzy subalgebra of f (X).

Proof. Let Z1 = f −1(y1), Z2 = f −1(y2), and Z12 = f −1(y1∗ y2), where y1, y2 ∈ f (X).
Consider the set Z1 ∗Z2 = {x ∈ X | x = z1 ∗ z2 for some z1 ∈ Z1 and z2 ∈ Z2}. If x ∈

Z1∗Z2, then x = x1∗ x2 for some x1 ∈ Z1 and x2 ∈ Z2.
Thus f (x) = f (x1 ∗ x2) = f (x1)∗ f (x2) = y1 ∗ y2, that is, x ∈ f −1(y1 ∗ y2) = Z12.

Hence Z1∗Z2 ⊆ Z12. It follows that

µ f
(
y1∗ y2

)= Sup
x∈ f −1(y1∗y2)

µ(x)

= Sup
Z12

µ(x)≥ Sup
x∈Z1∗Z2

µ(x)

≥ Sup
x1∈Z1,x2∈Z2

µ(x1∗ x2)

≥ Sup
x1∈Z1,x2∈Z2

T
(
µ
(
x1
)
,µ
(
x2
))
.

(3.6)

Since T is continuous, for every ε > 0, there exists a number δ > 0 such that if
Supx1∈Z1

µ(x1)− x∗1 ≤ δ and Supx2∈Z2
µ(x2)− x∗2 ≤ δ, then

T
(

Sup
x1∈Z1

µ
(
x1
)
, Sup
x2∈Z2

µ
(
x2
))−T

(
x∗1 ,x∗2

)≤ ε. (3.7)

Choose z1 ∈ Z1 and z2 ∈ Z2 such that Supx1∈Z1
µ(x1)− µ(z1) ≤ δ and Supx2∈Z2

µ(x2)−
µ(z2) ≤ δ, then T(Supx1∈Z1

µ(x1),Supx2∈Z2
µ(x2)) -T(µ(z1) − µ(z2)) ≤ ε. Consequently,

µ f (y1∗ y2)≥Supx1∈Z1,x2∈Z2
T(µ(x1),µ(x2))≥T(Supx1∈Z1

µ(x1),Supx2∈Z2
µ(x2))=T(µ f (y1),

µ f (y2)), which shows that µ f is a T-fuzzy subalgebra of f (X). �

4. T-fuzzy H-ideals

Definition 4.1. A fuzzy set µ in X is called T-fuzzy ideals of X if
(1) µ(0)≥ µ(x) for all x ∈ X ,
(2) µ(x)≥ T(µ(x∗ y),µ(y)) for all x, y ∈ X .

Definition 4.2. A fuzzy set µ in X is called T-fuzzy H-ideals of X if
(TF1) µ(0)≥ µ(x) for all x ∈ X ,
(TF2) µ(x∗ z)≥ T (µ(x∗ (y∗ z)),µ(y)) for all x, y,z ∈ X .
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Example 4.3. Let X := {0,a,b,c} be a BCI-algebra with the following Cayley table:

∗ 0 a b c

0 0 c 0 a

a a 0 a c

b b c 0 a

c c a c 0

Define a fuzzy set µ : X → [0,1] by µ(0) = t1 and µ(x) = t2 for all x �= 0, where t1 > t2
and let Tm : [0,1]× [0,1]→ [0,1] be a function defined by Tm(x, y) =max(x + y− 1,0)
which is a t-norm for all x, y ∈ [0,1]. By routine calculations, it is easy to check that µ is
a Tm-fuzzy H-ideal of X .

Proposition 4.4. Every T-fuzzy H-ideal in a BCI-algebra X is a T-fuzzy ideal of X .

Proof. For x, y,z ∈ X , we have

µA(x∗ z)≥ T
(
µA
(
x∗ (y∗ z)

)
,µA(y)

)
,

µA(x∗ 0)≥ T
(
µA
(
x∗ (y∗ 0)

)
,µA(y)

)
(putting z = 0)

µA(x)≥ T
(
µA(x∗ y),µA(y)

) (
using (5)

)
,

(4.1)

which completes the proof. �

Proposition 4.5. Every T-fuzzy H-ideal of a BCI-algebra X is a T-fuzzy subalgebra of X .

Proof. For x, y,z ∈ X , we have

µA(x∗ z)≥ T
(
µA
(
x∗ (y∗ z)

)
,µA(y)

)
,

µA(x∗ y)≥ T
(
µA
(
x∗ (y∗ y)

)
,µA(y)

)
(replacing z by y)

µA(x∗ y)≥ T
(
µA(x∗ 0),µA(y)

) (
using (3)

)
µA(x∗ y)≥ T

(
µA(x),µA(y)

) (
using (5)

)
.

(4.2)

This ends the proof. �

Theorem 4.6. If µ is a T-fuzzy H-ideal of X , then each nonempty level subset U(µ;1) is
H-ideal of X .

Proof. Suppose that µ is a T-fuzzy H-ideal of X . Since U(µ,1) is nonempty, there exists
x ∈ U(µ;1). It follows from (TF1) that µ(0)≥ µ(x) ≥ 1, that is, 0 ∈ U(µ;α). Let x, y,z ∈
X be such that x ∗ (y ∗ z) ∈ U(µ;1) and y ∈ U(µ;1). Then µ(x ∗ z) ≥ T(µ(x ∗ (y ∗
z)),µ(y))≥ T(1,1)= 1 so that x∗ z ∈U(µ;1).

Hence U(µ;1)is a H-ideal of X . �
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Theorem 4.7. If λ and µ are T-fuzzy H-ideals of a BCI-algebra X , then λ× µ is a T-fuzzy
H-ideal of X ×X .

Proof. For any (x, y) ∈ X × X , we have (λ× µ)(0,0) = T(λ(0),µ(0)) ≥ T(λ(x),µ(y)) =
(λ×µ)(x, y). Let x = (x1,x2), y = (y1, y2), and z = (z1,z2)∈ X ×X . Then

(λ×µ)(x∗ z)= (λ×µ)
((
x1,x2

)∗ (z1,z2
))

= (λ×µ)
(
x1∗ z1,x2∗ z2

)
= T

(
λ
(
x1∗ z1

)
,µ
(
x2∗ z2

))
≥ T

(
T
(
λ
(
x1∗

(
y1∗ z1

))
,λ
(
y1
))

,T
(
µ
(
x2∗

(
y2∗ z2

))
,µ
(
y2)
))

= T
(
T
(
λ(x1∗

(
y1∗ z1

))
,µ
(
x2∗

(
y2∗ z2

)))
,T
(
λ
(
y1
)
,µ
(
y2
)))

= T
(
(λ×µ)

((
x1∗

(
y1∗ z1

)
,x2∗

(
y2∗ z2

)))
, (λ×µ)

((
y1, y2

)))
= T

(
(λ×µ)

((
x1,x2

)∗ ((y1, y2
)∗ (z1,z2

))
, (λ×µ)

((
y1, y2

))))
= T

(
(λ×µ)

(
x∗ (y∗ z)

)
,
(
λ×µ)(y)

)
.

(4.3)

Hence λ×µ is a T-fuzzy H-ideal of X ×X . �

Theorem 4.8. Let f : X → Y be a homomorphism of BCI-algebras. If µ is a T-fuzzy H-ideal
of Y , then µ f is a T-fuzzy H-ideal of X .

Proof. For any x ∈ X , we have µ f (x)= µ( f (x))≤ µ (0́)= µ( f (0))= µ f (0). Thus, µ f (x)≤
µ f (0), for all x ∈ X . Let x, y,z ∈ X . Then

T
(
µ f
(
x∗ (y∗ z)

)
,µ f (y)

)= T
(
µ
(
f
(
x∗ (y∗ z)

))
,µ
(
f (y)

))
= T

(
µ
(
f (x)∗ ( f (y)∗ f (z)

))
,µ
(
f (y)

))
≤ µ
(
f (x)∗ f (z)

)= µ
(
f (x∗ z)

)= µ f
(
x∗ z).

(4.4)

Hence µ f is a T-fuzzy H-ideal of X . �

Theorem 4.9. Let f : X → Y be an epimorphism of BCI-algebras. If µ f is a T-fuzzy H-ideal
of X , then µ is a T-fuzzy H-ideal of Y .

Proof. Let y ∈ Y , there exists x ∈ X such that f (x)= y. Then µ(y)= µ( f (x))= µ f (x)≤
µ f (0) = µ( f (0)) = µ (0́). Let x, y,z ∈ Y . Then there exist a,b,c ∈ X such that f (a) = x,
f (b)= y, and f (c)= z. It follows that

µ(x∗ z)= µ
(
f (a)∗ f (c)

)= µ
(
f (a∗ c)

)= µ f (a∗ c)

≥ T
(
µ f
(
a∗ (b∗ c)

)
,µ f (b)

)
= T

(
µ
(
f
(
a∗ (b∗ c)

))
,µ
(
f (b)

))
= T

(
µ( f (a)∗ ( f (b)∗ f (c)

))
,µ
(
f (b)

))
= T

(
µ
(
x∗ (y∗ z)

)
,µ(y)

)
.

(4.5)

Hence µ is a T-fuzzy H-ideal of Y . �
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Definition 4.10. Let T be a t-norm and let λ and µ be two fuzzy sets in X . Then the T-
product of λ and µ is denoted by [λ · µ]T and defined by [λ · µ]T(x) = T(λ(x),µ(x)), for
all x ∈ X .

Note that
(i) [λ ·µ]T = [µ · λ]T ,

(ii) [λ ·µ]T is a fuzzy set in X .

Theorem 4.11. Let λ and µ be two T-fuzzy H-ideals of X . If a t-norm T∗ dominates T , that
is, if T∗(T(α,γ),T(β,δ))≥ T(T∗(α,β),T∗(γ,δ)) for all α,β,γ,δ ∈ [0,1], then T∗-product
[λ ·µ]∗T is a T-fuzzy H-ideal of X .

Proof. For any x ∈ X , we have [λ ·µ]∗T (0)= T∗(λ(0),µ(0))≥ T∗(λ(x),µ(x))= [λ ·µ]∗T (x).
Let x, y,z ∈ X . Then

[λ ·µ]∗T (x∗ z)= T∗
(
λ(x∗ z),µ(x∗ z)

)
≥ T∗

(
T
(
λ
(
x∗ (y∗ z)

)
,λ(y)

)
,T
(
µ
(
x∗ (y∗ z)

)
,µ(y)

))
≥ T

(
T∗
(
λ
(
x∗ (y∗ z)

)
,µ
(
x∗ (y∗ z)

))
,T∗

(
λ(y),µ(y)

))
= T

(
[λ ·µ]∗T

(
x∗ (y∗ z)

)
, [λ ·µ]∗T (y)

)
.

(4.6)

This proves that [λ ·µ]∗T is a T-fuzzy H-ideal of X . �

Corollary 4.12. The T-product of two T-fuzzy H-ideals of X is a T-fuzzy ideal of the same
BCI-algebra X .

Theorem 4.13. Let T and T∗ be T-norms in which T∗ dominates T . Let f : X → Y be an
epimorphism of BCI-algebras. If λ and µ are T-fuzzy H-ideals of Y , then f −1([λ · µ]∗T ) =
[ f −1(λ), f −1(µ)]∗T .

Proof. For any x ∈ X , we have

[
f −1([λ ·µ]∗T)](x)= [λ ·µ]∗T

(
f (x)

)
= T∗

(
λ
(
f (x)

)
,µ
(
f (x)

))
= T∗

([
f −1(λ)

]
(x),

[
f −1(µ)

]
(x)
)

= [ f −1(λ), f −1(µ)
]∗
T (x).

(4.7)

This completes the proof. �

Corollary 4.14. If f : X → Y is an epimorphism of BCI-algebras, then f −1([λ · µ]T) =
[ f −1(λ), f −1(µ)]T for any T-fuzzy H-ideals λ and µ of Y .
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