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We consider principally polarized abelian varieties with quaternionic multiplication over
number fields and we study the field of moduli of their endomorphisms in relation to the
set of rational points on suitable Shimura varieties.
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1. Introduction. Let Q be an algebraic closure of the field Q of rational numbers and
let (A,%)/Q be a nonzero polarized abelian variety. The field of moduli of (A,£)/Q is
the minimal number field k4 ¢ C Q such that (A, %) is isomorphic (over Q) to its Galois
conjugate (A%,%£7), for all o € Gal(Q/ka).

The field of moduli k4 ¢ is an essential arithmetic invariant of the Q-isomorphism
class of (A,%). It is contained in all possible fields of definition of (A,%¥) and, unless
(A,¥) admits a rational model over k, ¢ itself, there is not a unique minimal field of
definition for (A, ). In this regard, we have the following theorem of Shimura.

THEOREM 1.1 (see [19]). A generic principally polarized abelian variety of odd dimen-
sion admits a model over its field of moduli. For a generic principally polarized abelian
variety of even dimension, the field of moduli is not a field of definition.

Let End(A) = Endg(A) denote the ring of endomorphisms of A. It is well known
that End(A) = Z for a generic polarized abelian variety (A,¥). However, from Albert’s
classification of involuting division algebras (see [13]) and the work of Shimura [18],
it is known that there are other rings that can occur as the endomorphism ring of an
abelian variety. Namely, if A/Q is simple, End(A) may be an order in either a totally real
number field F of degree [F: Q] | dim(A), a totally indefinite quaternion algebra B over
a totally real number field F of degree 2[F : Q] | dim(A), a totally definite quaternion
algebra B over a totally real number field F of degree 2[F : Q] | dim(A), or a division
algebra over a CM-field.

We recall that a quaternion algebra B over a totally real field F is called totally indef-
inite if B®g R =~ M (R) X - - - XM (R) and totally definite if B®gR =~ H X - - - X H, where
H = (-1,-1/R) denotes the skew-field of real Hamilton quaternions.

DEFINITION 1.2. Let (A, ¥)/Q be a polarized abelian variety and let S < End(A) be a
subring of End(A). The field of moduli of S is the minimal number field ks = k4 ¢ such
that, for any o € Gal(Q/ks), there is an isomorphism @, /Q: A — A%, @i (£%) = £, of
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polarized abelian varieties that induces commutative diagrams

A—=A°

e L

A——=A°

forany B e S.

We remark that, as a consequence of the very basic definitions, when S = Z, we
have ks = ka . But in the case that End(A) 2 Z, little is known on the chain of Galois
extensions Kgnga) 2 ks 2 ka,g.

The main aim of this paper is to study the field of moduli of totally indefinite quater-
nionic multiplication on an abelian variety. In relation to Shimura’s Theorem 1.1, we
remark that the dimension of an abelian variety whose endomorphism ring contains a
quaternion order is always even.

We state our main result in the next section. As we will show in Section 3, it is a
consequence of the results obtained in [16, 17] on certain modular forgetful morphisms
between certain Shimura varieties, Hilbert modular varieties, and the moduli spaces of
principally polarized abelian varieties.

In Section 4, we specialize our results to abelian surfaces. We use our results together
with those of Mestre [12] and Jordan [11] to compare the field of moduli and field of
definition of the quaternionic multiplication on an abelian surface.

In the appendix, we discuss a question on the arithmetic of quaternion algebras that
naturally arises from our considerations and which is also related to the recent work
by Chinburg and Friedman [3, 4].

A cryptographical application of the results in the appendix has been derived in [9]
by Galbraith and the author.

2. Main result. Let F be a totally real number field F of degree [F: Q] = n and let
Rr denote its ring of integers. We will let F* denote the subgroup of totally positive
elements of F*. For any finite field extension L/F, let R; denote the ring of integers of L
and let Qogq(L) = {€ € Ry, & =1, f odd} denote the set of roots of unity of odd order
in L. We let wogq (L) = |Qoada(L)|. Let B be a totally indefinite quaternion algebra over F
and let O be a maximal order in B.

DEFINITION 2.1. An abelian variety A/k over an algebraically closed field k has
quaternionic multiplication by O if End(A) ~ 0 and dim(A) = 2n.

PROPOSITION 2.2. [15] Let (A,¥) be a principally polarized abelian variety with
quaternionic multiplication by O over Q. Then the discriminant ideal disc(B) of B is
principal and generated by a totally positive element D € F¥.

As in [16, 17] we say that a quaternion algebra B over F of totally positive principal
discriminant disc(B) € F is twisting if B ~ (-D,m/F) for some m € F} supported at
the prime ideals g | D of F. The main result of this paper is the following.
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THEOREM 2.3. Let (A,&) be a principally polarized abelian variety with quaternionic
multiplication by O over Q and letdisc(B) = D for some D € F*. Let Woaq = Wodd (F(/=D)).
(i) If B is not twisting, then
(1) for any totally real quadratic order S C O over Rg, k¢ = ks,
(2) Gal(kg/kg;) is an elementary abelian 2-group of rank at most woqq-
(ii) If B is twisting, then
(1) for any totally real quadratic order S C 0, Gal(kg/ks) is either trivial or of
order two,
(2) Gal(ke/kg,) is an elementary abelian 2-group of rank at most 2wodd.-

As we state more precisely in Section 3, Theorem 2.3 admits several refinements.

3. Proof of Theorem 2.3: Shimura varieties and forgetful maps. Let B be a totally
indefinite quaternion division algebra over a totally real number field F and assume
that disc(B) = (D) for some D € F¥. Let n: B — F denote the reduced norm on B. Let O
be a maximal order in B and fix a quaternion u € 0 satisfying u? + D = 0. Its existence
is guaranteed by Eichler’s theory on optimal embeddings (see [1, 22]) and it generates
a CM-field F(u) =~ F(~/=D) over F embedded in B. We will refer to the pair (O,u) as a
principally polarized order.

Attached to (O,u), a Shimura variety X¢ ,/Q that is associated to the coarse moduli
problem of classifying triplets (A, (,¥) over Q can be considered, where

(i) (A,%) is a principally polarized abelian variety,
(ii) t:0 — End(A) is a monomorphism of rings satisfying «(8)* = «(u~!Bu) for all
B € 0, where * denotes the Rosati involution with respect to <.
Attached to the maximal order O there is also the Atkin-Lehner group

_ Ng=(0)
T OF*0* T

(3.1)

The group W is isomorphic to Z/27Zx 2'. xZ /27, where 2r = #{p | disc(B)} is the
number of ramifying prime ideals of B (cf. [16, 22]).

Let B be the group of invertible quaternions of totally positive reduced norm. The
positive Atkin-Lehner group is W' = Np« (0) /F*0', where 0' = {y € 0, n(y) = 1} denotes
the group of units of 0 of reduced norm 1.

As it was shown in [16], the group W' is a subgroup of the automorphism group
Autqg(Xo,) of the Shimura variety Xo 4.

The group W is an elementary abelian 2-group of rank s for some 2 <s <n+27r —1.

The first inequality holds because there is a natural map W' — W which is an epi-
morphism of groups due to the indefiniteness of B and the norm theorem for maximal
orders (see [16]). The second inequality is a consequence of Dirichlet’s unit theorem
and it is actually an equality if the narrow class number of F is 1, as is the case of
F=Q.

We now introduce the notion of twists of a polarized order (0, u).

DEFINITION 3.1. Let (O,u) be a principally polarized maximal order in a totally in-
definite quaternion algebra B of discriminant disc(B) = (D), D € F}.
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A twist of (0, ) is an element x € 0N+ (0) such that x2+n(x) =0, ux = —xu, and
therefore

B=F+Fu+Fx+Fux = (M)

F (3.2)

If x is a twist of (O,u) and S C O is a subring, x is said to be a twist of (O,u) in S if
X E€S.

We say that (0, u) is twisting if it admits some twist in 0 and that a quaternion algebra
B is twisting if it contains a twisting polarized maximal order. This agrees with our
terminology in the preceding section.

DEFINITION 3.2. A twisting involution w € W! is an Atkin-Lehner involution such
that [w] = [x] € W is represented by a twist x of (O,u). It is a twisting involution in
S c 0 if it can be represented by a twist x € S.

Let Vo(S) denote the subgroup of W' generated by the twisting involutions of (0, 1)
in S and simply write V| for Vy(0).

We remark that, since B is totally indefinite, no x € B* can be a twist of (0, i) because
a necessary condition for B ~ (—D,—n(x)/F) is that n(x) be totally negative. In fact,
twisting involutions w € W1 are always represented by twists x € B* of totally negative
reduced norm.

Note also that a necessary and sufficient condition for B to be twisting is that B ~
(=D, m/F) for some element m € F} supported at the prime ideals g | D (i.e., vy (m) #
0 only if p | D).

For a polarized order (O,u), let R, = F(u) N0 be the order in the CM-field F(u) =
F(~/=D) that optimally embeds in 0. Note that, since yu € 0, R, 2 Rg[/=D]. We let
Q=QRy,) ={§ ERy, &/ =1, f = 1} denote the finite group of roots of unity in Ry
and Qoqqa = {§ € Ry, £f =1, f odd} the subgroup of roots of unity of odd order. Their
respective cardinalities will be denoted by w = w(Ry) and wedgd = Wedd (Ry).

DEFINITION 3.3. The stable group Wy = Uy - V) associated to (O, u) is the subgroup
of W generated by Uy = Np )+ (0)/F* - Q and the group of twisting involutions Vj.

Note that Uy is indeed a subgroup of W! because Q = F(u) n0O™.

The motivation for introducing the Shimura variety X¢ , and the above Atkin-Lehner
groups in this paper is that this introduction gives a modular interpretation of the
field of moduli k¢ of the quaternionic multiplication on A such that k¢ = Q(P) is the
extension over Q generated by the coordinates of the point P = [A, (,¥] on Shimura’s
canonical model X¢,,/Q that represents the Q-isomorphism class of the triplet.

A similar construction holds for the totally real subalgebras of B. Indeed, let L C
B be a totally real quadratic extension of F embedded in B. Then S = Ln 0 is an
order of L over Ry which is optimally embedded in 0. Identifying S with a subring of
the ring of endomorphisms of A, we again have that the field of moduli kg is the ex-
tension Q(P|s) of Q generated by the coordinates of the point Pjs = [A, 5,¥] on the
Hilbert-Blumenthal variety s /Q that solves the coarse moduli problem of classifying
abelian varieties of dimension 2n with multiplication by S.
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Along the same lines, the field of moduli kg, of the central endomorphisms of A is
the extension Q(Pg, ) of Q generated by the coordinates of the point Pg, = [A, t|r;,¥]
on the Hilbert-Blumenthal variety %r/Q which solves the coarse moduli problem of
classifying abelian varieties of dimension 2n with multiplication by R.

The tool for studying the Galois extensions k¢/ks/kg, is provided by the forgetful
modular maps

TTr  Xou T 965 — %,
P~ Pg — Pig;.

(3.3)

It was shown in [16] that the morphisms 17r and 775 have finite fibres. Furthermore,
it was proved in [16] that
(i) there are a birational equivalence bs : X,/ Vo(S) = 15 (Xe,) and a commutative
diagram

TTs : Xou ¥

X % (3.4)

Xou/Vo(S)

where ps : Xo — Xou/Vo(S) is the natural projection,
(i) there are a birational equivalence b : Xg,/Wo = Tr(Xe,) and a commutative
diagram

e 2 Xou ¥

K y 3.5)

Xou!/Wo

where pr: Xou — Xo,u/Wo is the natural projection.

We say that a closed point [A,(,¥] in X, or in any quotient of it is a Heegner point
if End(A) 2 ¢(0). It was also shown in [16] that the morphisms br and bg are biregular
on Xo,,/Wo and X,/ Vo (S), respectively, outside a finite set of Heegner points.

It follows from these facts that the Galois group G = Gal(kq/kg,) of the extension of
fields of moduli k¢ /kg, is naturally embedded in W, such that any o € G acts on a prin-
cipally polarized abelian variety with quaternionic multiplication (A4, t: 0 = Endg(A),%)
by leaving the Q-isomorphism class of 1r (A, (,%) = (A, Ry : R = Endg(A),¥) invari-
ant.

Similarly, Gal(kg/ks) embeds in V(S) for any totally real order S embedded in 0. In
what follows, we will describe the structure of the groups W, and V,(S) attached to a
polarized order (0, u). This will automatically yield Theorem 2.3. In fact, in Propositions
3.4 and 3.8, we will be able to conclude a rather more precise statement than the one
given in Section 2.
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The next proposition shows that the situation is simplified considerably in the non-
twisting case.

PROPOSITION 3.4. Let (A, %) be a principally polarized abelian variety over Q with
quaternionic multiplication by O. Let t : O ~ End(A) be any fixed isomorphism and let
U € 0 be such that u?> + D = 0 for some D € F*, disc(B) = (D), and «(8)* = «(u=1fu) for
all 0.

If (O, u) is a nontwisting polarized order, then ko = ks for any totally real quadratic
order S C O over Rr and Gal(kq/kg;) is an elementary abelian 2-group of rank at most
Wodd-

PROOF. It is clear from Definition 3.2 that the groups of twisting involutions V;(S)
are trivial for any subring S of 0. Since Gal(kq/ks) < Vi (S), this yields the first part
of the proposition. As for the second, since Gal(k¢/kg.) < Wy, we have that the Galois
group Gal(ke/kg;) is contained in Uy < W1, which is a 2-torsion abelian finite group.
Our claim now follows from the following lemma, which holds true for all pairs (O, u).

O

LEMMA 3.5. Let (O,u) be a principally polarized maximal order. Then Uy is an ele-
mentary abelian 2-group of rank woqq.

PROOF. We identify F(u) and F(~/—D) through any fixed isomorphism. As Uy natu-
rally embeds in F(/—D)*/F*Q, we first show that the maximal 2-torsion subgroup H
of F(~/=D)*/F*Q is isomorphic to (Z/27Z)®odd,

If w € F(~/=D)* generates a subgroup of F(/=D)*/F*Q of order 2, then w? = AZ
for some root of unity £ € Q and A € F*. In particular, note that if w € F(/—D)*, then
w? € F* if and only if w € F* UF*/=D. We write H = H/{(~/=D). We then have that, if
€ € Q, there exists at most one subgroup {(w) < H such that w € F(~/=D)*, w? € F*E.
Indeed, if w;,w, € F(~/=D), w? = A;E for some A; € F*, then (w;/w>)?> € F*, and
hence w;/w»> € F* UF*./—D. This shows that [w;] = [w>] € H.

Observe further that, if &¢ € Q is a root of unity of odd order f = 3, then w =
E}fﬂ)/z €F(v/-D)* generates a 2-torsion subgroup of F(~/—D)*/F*Q such that w? =&;.

It thus suffices to show that H = H/(\/ﬁ,{g}fﬂ)/z}f23 odd is trivial. Let w €
F(+/=D)*, w? = AE, and let € be a root of unity of order f = 1. If f is 2 or odd, we
already know that the class [w] € H is trivial. Further, there can exist no & € F(/-D)
of order f = 2N, N > 2, since otherwise §2N71 would be a square root of —1 and we
would have F(/=D) = F(-/—1). This is a contradiction since DRg = @;- - - - - o, ¥ > 0.

Finally, it is also impossible that there exist w € F(~/=D), w2 =AE, & =1, f =2Nf,
with N = 1 and fj = 3 odd. Indeed, in this case, £/0 is a root of unity of order 2V, hence,
by the argument in the previous paragraph, N = 1. Let & = £2 and w’ = £W0+1)/2 g0 that
£’ is a root of unity of order f, and w’? = &. Then (' /w)? = & JAE = E/A = (1/A2)w?.
Hence [w’] = [w?] = 1 € H, which is a contradiction. This shows that H is trivial, and

therefore H = (/—D, {E}f+1)/2}§fggodd>. In order to conclude the lemma, we only need

to observe that both y and E}f 2 p (1) normalize the maximal order O for any odd

f, because their respective reduced norms divide the discriminant D. |
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COROLLARY 3.6. Let (O,u) be a nontwisting polarized order and assume that
F(v/=D) is a CM-field with no purely imaginary roots of unity. Then, for any real qua-
dratic order S over Rp, ko/kg, = ks/kg, is at most a quadratic extension.

If, in addition, kg, admits a real embedding, then k¢ is a totally imaginary quadratic
extension of kg;.

PROOF. The first part follows directly from the above proposition. As for the second,
it follows from a result of Shimura (see [20, Theorem 0]) which asserts that the Shimura
varieties X¢, fail to have real points, and hence the fields k¢ are purely imaginary. O

However, if, on the other hand, (0, ) is twisting, the situation is more subtle and less
homogenous as we now show.

LEMMA 3.7. Let (O,u) be a twisting order in a totally indefinite quaternion algebra
B over F of discriminant disc(B) = (D), D € F¥. Then Uy C Vy is a subgroup of V, and
Vo /Uy = Uy. In particular, Wo = Vo = (Z27)?®odd,

PROOF. Let w € Uy be represented by an element w € Ny« (0) N0 and let v € Vj
be a twisting involution. We know that the class of v in Ng= (0) /F*0* is represented by
a twist x € N« (0) N O that satisfies x> +n(x) = 0 and ux = —xu. Then we claim that
wV €V is again a twisting involution of (0, u). Indeed, first wyx € N+ (0) N0 because
both w and x do. Second, since w € F(u), u(wyx) = pwx = WUX = —wxXH = —(wWX)H,
and finally, we have tr(u(wy)) = pwx + WOxXH = pwX —wWxXU = —trwxu € F, and thus
tr(wy) = 0.

This produces a natural action of Uy on the set of twisting involutions of (0, i) which
is free simply because B is a division algebra. In order to show that it is transitive, let x1,
X2 be two twists. Then w = x1x5 " € F(u) because pw = ux1x;' = —x1ux3' = X1X3 10 =
wu and F(u) is its own commutator subalgebra of B; further w € Np+ (0) because its
reduced norm is supported at the ramifying prime ideals g | disc(B). We remark that,
in the same way, x1X2 € Np(* (0).

We are now in a position to prove the lemma. Let v € V; be a fixed twisting involution.
Then Uy C Vj such that for any w € Uy, we have already shown that wv is again a
twisting involution, and hence (wv)v = w € V because V is a 2-torsion abelian group.
In addition, the above discussion shows that any element of Vj either belongs to Uy or
is a twisting involution, and that there is a noncanonical isomorphism Vy /Uy =~ Uy. O

Observe that in the twisting case, by the above lemma, Uy acts freely and transitively
on the set of twisting involutions of W! with respect to (O, u).

PROPOSITION 3.8. Let (A,%) be a principally polarized abelian variety over Q with
quaternionic multiplication by O. Let ( : O ~ End(A) be any fixed isomorphism and let
u € 0 be such that u?> +D = 0 for some D € F*, disc(B) = (D), and «(B)* = «(u~*Bu) for
all 0.

If (O, ) is a twisting polarized order, let X1, ..., X5, € O be representatives of the twists
of (O, u) up to multiplication by elements in F*. Then,

(i) for any real quadratic order S, S ¢ F(x;) for any i, 1 <i < s,

ko = ks, (3.6)
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(i) for any real quadratic order S C F(x;) N0, 1 <i < so, kg/ks; is (at most) a qua-
dratic extension,
(iii) ke = ks ----- ks

s and Gal(ke/kg;) is an elementary abelian 2-group of rank at
most 2oqq-

PROOF. If S ¢ F(x;) for any i = 1,...,50, then V(S) is trivial, and hence, since
Gal(kg/ks) = Vi(S), Gal(kg/ks) is also trivial. If, on the other hand, S < F(x;) N0, then
Vo(S) = 7 /27 is generated by the twisting involution associated to x;. Again, we deduce
that in this case kq/ks is at most a quadratic extension.

With regard to the last statement, note that Uy = ([u]) is at least of order 2. Thus,
if (O,u) is a twisting polarized order, it follows from Lemma 3.7 that there exist two
noncommuting twists x,x’ € 0. Then Rg[x,Xx’] is a suborder of 6 and, since they both
generate B over Q, the fields of moduli k¢ and kg,[y,y'7 are the same. This shows that

ke c kg - -+ kSSO. The converse inclusion is obvious.
Finally, we deduce that k¢/kg, is a (2,...,2)-extension of degree at most 22Wodd from
Lemma 3.7. O

REMARK 3.9. In the twisting case, the field of moduli of quaternionic multiplication
is already generated by the field of moduli of any maximal real commutative multipli-
cation but for finitely many exceptional cases. This homogeneity does not occur in the
nontwisting case.

In view of Corollaries 3.4 and 3.8, the shape of the fields of moduli of the endo-
morphisms of the polarized abelian variety (A,<¥) differs considerably depending on
whether it gives rise to a twisting polarized order (O, u) or not.

For amaximal order O in a totally indefinite quaternion algebra B of principal reduced
discriminant D € F¥, it is then normal to ask the following questions:

(i) whether there exists u € 0, u? +D = 0, such that (0, u) is twisting,
(ii) if (O,u) is twisting, what is its twisting group V?
Both questions are particular instances of the ones considered in the appendix.

4. Fields of moduli versus fields of definition. In dimension 2, the results of the
previous sections are particularly neat and can be made more complete. Let C/Q be a
smooth irreducible curve of genus 2 and let (J(C),0¢) denote its principally polarized
Jacobian variety. Assume that Endg(J(C)) = 0 is a maximal order in an (indefinite)
quaternion algebra B over Q of reduced discriminant D = py--- - - p2r. Recall that O
is unique up to conjugation or, equivalently by the Skolem-Noether theorem, up to
isomorphism.

Attached to (J(C),0¢) is the polarized order (O, u), where u = c;(0¢) € 0 is a pure
quaternion of reduced norm D. As we have seen, a necessary condition for (0, u) to be
twisting is that B ~ (=D, m/Q) for some m | D. The isomorphism occurs if and only
if for any odd ramified prime p | D, m is not a square mod p if p { m (resp., D/m if
plm).

In the rational case, the Atkin-Lehner and the positive Atkin-Lehner groups coincide
and W =W! = {wy;d | D} = (Z/2Z)?" is generated by elements w, € 0, n(wy) =d | D.
Moreover, Uy = (wp) ~7/27.
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If (O,u) is a nontwisting polarized order, then the field of moduli of quaternionic
multiplication k¢ is at most a quadratic extension over the field of moduli k¢ of the
curve C by Theorem 2.3.

On the other hand, if (O,u) is twisting and B = (-D,m/Q) for m | D, then V, =
{1, W, Wp/m,wp} = (Z/27)?, where we can choose representatives w,, Wp;m, in 0
such that pw,, = —wm,p and pwp;m = —wWp;mu. Note that, up to multiplication by
nonzero rational numbers, w,, and wp,, are the only twists of (0,u). When we spe-
cialize Theorem 2.3 to the case of Jacobian varieties of curves of genus 2, we obtain the
following.

THEOREM 4.1. Let C/Q be a smooth irreducible curve of genus 2 such that
Endg (J(C)) = 0 is a maximal order in a rational indefinite quaternion division algebra
B of reduced discriminant D.

(i) ko/kc is at most a quartic abelian extension.

(i) k¢ = ks for any real quadratic order S ¢ Q(wy) = QM) or Q(wWp/m) =
Q/D/m).

(iii) kz[wn1 and Kzjwp,,,1 are at most quadratic extensions of kc and these are such
that ko = kz{wm1 " Kziwpm1-

In [12], Mestre studied the relation between the field of moduli k¢ = kj(c)e. of a
curve of genus 2 and its possible fields of definition, under the sole hypothesis that the
hyperelliptic involution is the only automorphism on the curve. Mestre constructed an
obstruction H¢ in Bra (k¢ ) for C to be defined over its field of moduli. If K is a number
field, he showed that C admits a model over K if and only if K contains k¢ and H¢ lies
in the kernel of the natural map Br(k¢) — Br(K).

If Aut(C) 2 Z/27, Cardona [2] has recently proved that C always admits a model over
its field of moduli kc.

Assume now, as in the above theorem, that Endg(J(C)) = 0 is a maximal order in a
quaternion division algebra B over Q. Let K be a field of definition of C; note that, since
Endg (J(C)) ® Q = B is division, Aut(C) =~ Z/2Z, and therefore k¢ does not need to be
a possible field of definition of the curve. Having made the choice of a model C/K, we
obtain a minimal (Galois) field extension L/K of K such that End; (J(C)) = 0. This gives
rise to a diagram of Galois extensions

L

/

ke
(4.1)

ke
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The nature of the Galois extensions L/K was studied in [5, 6], while the relation
between the field of moduli k¢ and the possible fields of definition L of the quaternionic
multiplication was investigated by Jordan in [11]. The combination of all these facts
yields the following statement and recovers, in a weakened form, a result proved in [6].

PROPOSITION 4.2. Let C/K be a smooth curve of genus 2 over a number field K and
assume that Endg (J(C)) is a maximal quaternionic order O. Let L/K be the minimal
extension of K over which all endomorphisms of J(C) are defined.

Then Gal(L/K) ~ Gal(k¢/kc) = {1}, Z/27Z or D, = 7|27 X7 /21Z.

PROOF. Assume first that k¢ = K is a field of definition of the curve. Then k¢ = L is
a field of definition of all endomorphisms of J(C) such that if it was not, there would
be infinitely many pairwise different extensions Ly /K such that End;, (J(C)) = 0. This
would contradict Silverberg’s result that such an extension is uniquely determined (see
[21]).

If, on the contrary, Mestre’s obstruction H¢ is nontrivial in Bra (k¢ ), then C admits a
model over any quadratic extension K /k¢ that splits Hc but not over k¢ itself. We then
have that any field of definition L of all endomorphisms of J(C) must be a quadratic
extension of k¢ that strictly contains it. Indeed, by [11], we know that [L : k¢] < 2.
Suppose that L = k¢. Then, L would contain all fields of definition H of C and this is
not possible.

In either case, the possibilities for Gal(L/K) are {1}, Z/2Z, and 7Z/2Z X Z/27Z by
Theorem 2.3. O

REMARK 4.3. The above argument actually yields more than this: it either holds that
ke € K ¢ kg ¢ L is a chain of quadratic extensions or L = k¢ - K. Moreover, the first of
these possibilities only arises when [L : K] = 4 and for the finitely many subextensions
K /kc of k¢ such that He ®. K is trivial.

EXAMPLE 4.4. Let C be the smooth projective curve with hyperelliptic model

Y? = $X(9075X4+3025(3+2\/—3)X3—6875X2+220(—3+2\/—3)X+48). (4.2)

Let A = J(C)/K be the Jacobian variety of C over K = Q(~/=3).

By [10], A is an abelian surface with quaternionic multiplication by a maximal order
in the quaternion algebra of discriminant 6. As it is shown explicitly in [10], there is
an isomorphism between C and the conjugated curve CT over Q. Hence, the field of
moduli k¢ = Q is the field of rational numbers.

In addition, it was shown in [6] that L = Q(+/=3,+/—11) is the minimal field of defini-
tion of the quaternionic endomorphisms of A. By our last proposition and remark, we
must have that L = K - kg with [k : kc] = 2. In addition, by Shimura’s theorem asserting
that such Shimura curves fail to have rational points over real fields, k¢ must be an
imaginary quadratic extension of Q. This shows that k¢ = Q(+/—11) and the picture of
fields of moduli and definition is completed.
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Appendix.

Integral quaternion basis and distance ideals. A quaternion algebra over a field F
is a central simple algebra B over F of rankr(B) = 4. However, there are several classical
and more explicit ways to describe quaternion algebras, which we now review. Indeed,
if L is a quadratic separable algebra over the field F and m € F* is any nonzero element,
then the algebra B = L + Le with e? = m and ef = B¢ for any 8 € L, where o denotes
the nontrivial involution on L, is a quaternion algebra over F. The classical notation for
itis B = (L,m). Conversely, any quaternion algebra over F is of this form (see [22]).

In addition, if char(F) # 2, then

B:(%b):npiwﬁnj, (A.1)

with ij = —ji and i® = a € F, j2 = b € F for any two elements a,b € F*, is again a
quaternion algebra over F and again any quaternion algebra admits such a description.
Note that the constructions are related since B = (a,b/F) = (F(i),b).

On a quaternion algebra B there is a canonical anti-involution 8 —  which is charac-
terized by the fact that, when restricted to any embedded quadratic subalgebra L ¢ B
over F, it coincides with the nontrivial F-automorphism of L. Thus, if B = (L, m), then
B =B1+B2e =pY —BJe. The reduced trace and norm on B are defined by tr(8) = +
and n(B) = BB.

Assume that F is either a global or a local field of char(F) # 2 and let it be the
field of fractions of a Dedekind domain Rr. An order O in a quaternion algebra B is
an Rg-finitely generated subring such that O - F = B. Elements S € O are roots of the
monic polynomial x2 — tr(8)x +n(B), tr(B),n(B) € Rr. We are now able to formulate
the following question.

QUESTION A.1. Let B be a quaternion algebra over a global or local field F, char(F) #
2, and let O be an order in B.
(1) If B~ (a,b/F) for some a,b € Rg, can one find integral elements (,n € 0 such
that ® =a,n?=b,n=-n?
(2) If B~ (L,m) for a quadratic separable algebra over F and m € R, can one find
X € 0 such that x2 = m, x8 = Bx for any B € L?

We note that Question A.1(2) may be considered as a refinement of Question A.1(1).
Indeed, let O be an order in B = (a,b/F) and fix an element i € O such that i? = a.
Then, while Question A.1(1) wonders whether there exist elements t,n € 0 such that
> = a,n® = b, and tn = —nt, Question A.1(2) wonders whether such an integral basis
exists with ¢ = 1.

If B= (a,b/F) =F+Fi+Fj+Fij, let Oy = Rg[i,j]. Obviously, Question A.1(1) is
answered positively whenever y~10y 2 0y for some y € B*. The following proposition
asserts that this is actually a necessary condition. Although it is not stated in this form
in [4], it is due to Chinburg and Friedman and follows from the ideas therein. It is a
consequence of Hilbert’s Theorem 90. Let us agree to say that two orders 0, 0" of B are
of the same typeif 0 = y~10’y for some y € B*.
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PROPOSITION A.2. Let B=F+Fi+Fj+Fij = (a,b/F) with a,b € Rg. Let Oy =
Rpl1,j].

An order O in B contains a basis 1,n € 0, 1> = a, n®> = b, (n = —nt of B if and only if the
type of Oy is contained in the type of O.

PROOF. Assume that there exist (, € 0 satisfying the above relations. By the Skolem-
Noether theorem (see [22]), j and n are conjugated (by, say, « € B*). Thus, by replacing
i by a lix and Oy by o~ 10y, we may assume that j = n € 0. We then need to show
the existence of an element y € F(j) = F(n) such that y 'ty = i.

We have in = —ni, and thus n = —i~!ni. In addition, since (np = —nt, ti"'ni = nt.
Hence, (ti"')n = n(ti~!) and we deduce that ti"! € F(n) is an element of norm
NF(n)/F(li_l) =1.

By Hilbert’s Theorem 90, there exists w € F(n) such that ti”! = w1, that is, t =
w@~i. We need to find an element y € F(n) stated in this form with y 'w@ iy = i.
Since yi = iy, we can choose y = w. |

An order O in B is maximal if it is not properly contained in any other order. It is an
Eichler order if it is the intersection of two maximal orders. The reduced discriminant
ideal of an Eichler order is disc(0) = disc(B) - N for some integral ideal N of F, the level
of 0, coprime to disc(B) (see [1] and [22, page 39]). With this notation, maximal orders
are Eichler orders of level 1.

COROLLARY A.3. Assume that F is a local field and that O is an Eichler order of level
N inB=(a,b/F),a,b € Rg. Then there exist ,n €0, (> = a, n® = b, tn = —nt if and only
if N | 4ab.

PROOF. By |[22, Section 2], there is only one type of Eichler orders of fixed level N in B.
Remark that, if B is division, necessarily N' = 1. Let Oy = R¢[i,j]. Since disc(0y) = 4ab,
as one can check, a necessary and sufficient condition for 0 to contain a conjugate order
of Oy is that N' | 4ab. The corollary follows from Proposition A.2. O

In the global case, the approach to Question A.1(1) can be made more effective un-
der the assumption that B satisfies the Eichler condition. Namely, suppose that some
Archimedean place v of F does not ramify in B, that is, B®r F, ~ M, (F,). Here, we let
F, ~ R or C denote the completion of F at v.

The following theorem of Eichler describes the set 7 (N') of types of Eichler orders of
given level N purely in terms of the arithmetic of F. Let Pic, (F) be the narrow class group
of F of fractional ideals up to principal fractional ideals (a) generated by elements
a € F* such that a > 0 at any real Archimedean place v that ramifies in B, and let
h, (F) = |Pic, (F)I.

DEFINITION A.4. The group P_lcl (F) is the quotient of Pic, (F) by the subgroup gen-
erated by the squares of fractional ideals of F, the prime ideals g that ramify in B, and
the prime ideals g such that N has odd g-valuation.

The group PTC"I(F ) is a 2-torsion finite abelian group. Therefore, if h, (F) is odd, then
P_ICJNr (F) is trivial.



THE FIELD OF MODULI OF QUATERNIONIC MULTIPLICATION ... 2807

PROPOSITION A.5 (see [7, 8] and [22, page 89]). The reduced norm n induces a bijec-
tion of sets

T (N) = Pic) (F). (A.2)

The bijection is not canonical in the sense that it depends on the choice of an Eichler
order O in B. For N = 1, the bijection is described explicitly as follows. For any two
maximal orders 0, O’ of B over Rp, define the distance ideal p(0,0") to be the order
ideal of the finite Rp-module 0/0 NG’ (see [14, page 49]). Alternatively, p(0,0") can also
be defined locally in terms of the local distances between 0 ®g, R F, and 0’ ®g; Rp, in the
Bruhat-Tits tree J, for any (non-Archimedean) prime ideal g of F that does not ramify
in B (see [3]). Finally, p(0,0") is also the Ilevel of the Eichler order O n0’. This notion of
distance proves to be suitable to classify the set of types of maximal orders of B, as the
assignation 0’ — p(0,0") induces the bijection claimed in Proposition A.5.

COROLLARY A.6. Let B = (a,b/F), a,b € Rg, be a quaternion algebra over a global
field F. If B satisfies Eichler’s condition and h, (F) is odd, then, for any Eichler order O in
B, there is an integral basis ,n €0, (> =a, n®> = b, un = —nt of B.

As for Question A.1(2),let B=F+Fi+Fj+Fij=(a,b/F) = (L,b) with a,b € Rr and
L = F(\/a). Choose an order 0 of B. For a given nj € 0, n® = a, we ask whether there exists
X € 0, X2 = b, such that nx = —nx. By Proposition A.2, a necessary condition is that
0o = Rp[i,j] < O up to conjugation by elements of B* and, without loss of generality,
we assume that this is the case. With these notations, we have the following.

DEFINITION A.7. Let 0 2 0’ be two orders in B. Define (0:0’) := {y € B*, y~10gy
c 0}.

Note that N« (0) is a subgroup of finite index of (0:0").

PROPOSITION A.8. Let 0 2 Oy be an order in B and let n € 0, n? = a. Then there exists
X €0, and x2 =b, nx = —xn if and only if n = y~ iy for y € (0« Op).

Let f = [(0:0p) : Np* (0)| be the index of the normalizer group N+ (0) in (0:0p). Let
¢(a) be the finite set of N+ (0)-conjugation classes of elements n € 0 such that n? = a.
Then it follows from the above proposition that Question A.1(2) for (0, n) is answered
in the affirmative for elements n lying on exactly f of the conjugation classes in ¢(a).
Again, the cardinality of €(a) can be computed explicitly in many cases in terms of
class numbers by means of the theory of Eichler optimal embeddings (cf. [22]).
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