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We study the distribution of Mahler’s measures of reciprocal polynomials with complex co-
efficients and bounded even degree. We discover that the distribution function associated
to Mahler’s measure restricted to monic reciprocal polynomials is a reciprocal (or antirecip-
rocal) Laurent polynomial on [1, o) and identically zero on [0, 1). Moreover, the coefficients
of this Laurent polynomial are rational numbers times a power of 7. We are led to this dis-
covery by the computation of the Mellin transform of the distribution function. This Mellin
transform is an even (or odd) rational function with poles at small integers and residues that
are rational numbers times a power of 7. We also use this Mellin transform to show that
the volume of the set of reciprocal polynomials with complex coefficients, bounded degree,
and Mahler’s measure less than or equal to one is a rational number times a power of 1.

2000 Mathematics Subject Classification: 33E20, 44A05.

1. Introduction. The Mahler’s measure of a polynomial f(x) € C[x] is given by the
expression

u(f) =exp{follog\f(e2””)|dt}. (1.1)

If f(x) has degree M and factors over C as f(x) = wy H%:l (x —Bm), then by Jensen’s
formula,

M
u(f) = lwy| [ ] max{1,|Bm]}. (1.2)

m=1

It is readily apparent that Mahler’s measure is a multiplicative function on C[x]. In
this sense, Mahler’s measure forms a natural height function on C[x]. In this paper, we
study the distribution of values of Mahler’s measure restricted to the set of reciprocal
polynomials with bounded even degree and complex coefficients.

f(x) is said to be reciprocal if it satisfies the condition

fo(%) = f(x). (1.3)

If f(x) isreciprocal and f(x) = Z%:o Wy x™, then it is easily seen that w,, = wy_, for
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m = 0,...,M. The reciprocal condition also imposes a condition on the roots of f(x):
if f(x)=0,then f(x~') =0.If M = 2N, there exists a Laurent polynomial

N
pv(x) =vo+ > Up(x"+x7") (1.4)

n=1

such that f(x) = xNpy(x). We call py(x) the reciprocal Laurent polynomial with coef-
ficient vector v. The collection of reciprocal Laurent polynomials with complex coeffi-
cients forms a graded algebra.

The integral defining Mahler’s measure makes sense for reciprocal Laurent polyno-
mials, and it is easily seen that u(py) = u(f). It is convenient to work with reciprocal
Laurent polynomials since they form an algebra (the set of reciprocal polynomials is not
closed under addition). We define the reciprocal Mahler’s measure to be the function
Hree : CNT1 — R given by

N
Vo+2 > vncos(ZTmt)’dt}. (1.5)

n=1

1
Hree (V) = pi(pv) = exp { L log

If v =(vg,...,v,0,...,0) with v; # 0, then there exist «i,...,xy; not necessarily
distinct nonzero complex roots of py(x). By reordering, if necessary, we may assume
OL+n = &', and we may write

L
xhpy(x) =vp [ | (x — o) (x — 1), (1.6)

n=1
and from Jensen’s formula, we have

L
boee (v) = [vi | [Tmax { o[, ez ] . (1.7

n=1

From this expression, we see that for all v € CN*! and k € C, the reciprocal Mahler’s
measure is
(i) nonnegative: Urec (V) = 0,
(i) homogeneous: prec (kV) = k| pirec (V),
(iii) positive-definite: e (V) = 0 if and only if v = 0.
In addition, prec is continuous as originally proved by Mahler [3].

By properties (i), (ii), and continuity, we find that .. is a symmetric distance function
in the sense of the geometry of numbers (see, for instance, the discussion in [1, Chapter
IV]). urec satisfies all the properties of a vector norm except the triangle inequality. The
“unit ball” is thus not convex. Explicitly,

Vne1 = (Ve e (v) <1} (1.8)
is a symmetric star body. By property (iii), this star body is bounded. We call ¥y, the
degree N star body determined by the reciprocal Mahler’s measure. One of the principal
results presented here is the computation of the volume (Lebesgue measure) of V' y+1.
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We introduce the monic reciprocal Mahler’s measure vy : CV — R defined by

b
Vree (B) = Hrec (l) . (1.9)

Thus vyec(b) is the Mahler’s measure of the monic reciprocal Laurent polynomial

N-1
Po(x) = (xN+xN)+bo+ D bp(x"+x7"). (1.10)

n=1

We denote Lebesgue measure on Borel subsets of CN by A,y and introduce the distribu-
tion function associated with the monic reciprocal Mahler’s measure hy (&) : [0,00) —
[0, 0) given by

hn(E) = Aonib e CV 1 viee(b) < E}. (1.11)

hn (&) encodes statistical information about the distribution of Mahler’s measures of
reciprocal polynomials with complex coefficients and even degree bounded by 2N.

The distribution function hy (&) is increasing and continuous from the right. From
(1.7), we see Vyee(b) = 1 for all b € CV, and thus hy () is identically zero on [0,1). In
fact, hy (1) = 0. To see this, suppose b € CY with viec(b) = 1. Then, from (1.7), pp(x)
has all its roots on the unit circle. Thus, if « is a root of pp(x), then sois & = x~1. We
find that b € RV, and hence the set of b € CN such that vyec(b) = 1 has Aoy-measure O.
Thus hy(1) =0, and hy (&) is continuous at € = 1.

We recall the definition of the Mellin transform. Given a function g : [0, ) — R, the
Mellin transform of g is the function of the complex variable s given by

ag
=
We will give an explicit formula for hy (&) by computing its Mellin transform. We
note that, since hy (&) is identically zero on [0, 1], the integral defining ﬁ;(s) can be
written with domain of integration [1, ).
The integral defining m(s) converges in the half plane R (s) > N. To see this, we use
the following consequence of Jensen'’s inequality:

G(s) = jo E2g(E) (1.12)

H(f) < ||F 0], (1.13)

where || f (x)||2 is the Euclidean norm of the coefficient vector of f'(x). Thus from (1.10),
we have

1/2 1/2
Viee(b) < (24 |bo|*+2| by |*+ - +2|by 1 |?) " <V2(1+ bo|*+ -+ by %)
(1.14)

and hence

{becN:vrec(b)sg}c{becN:(H;b0|2+---+1bN,1|2)”25 } (1.15)
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The latter set is a “slice” of a solid sphere of dimension 2N + 1, and is thus a solid
sphere of dimension 2N with radius less than &/+/2. Thus there exists a constant C
such that

hn(E) = Aon (b € TV viee(b) < E} < CE?N. (1.16)

It follows that

ag

1.17
z (1.17)

I’/l;(S) :L g_ZShN(E)d_; SCJI §2N—25

The latter integral converges if R(s) > N, and hence I/LAN(S) is defined in the half plane
R(s) > N.

We follow the method introduced by Chern and Vaaler in [2] to express the volume
of ¥ n+1 in terms of the Mellin transform of hy (§).

THEOREM 1.1. For each positive integer N,
Aons2 (Vni1) = 2Ry (N + 1), (1.18)

PROOF. The volume of ¥y, is given by

b
Aon2 (Vne1) = J(C AZN{b € CV: Urec (z) < 1}617\2(2)- (1.19)

By the homogeneity of e, we see that

b
AZN{b ecV: Hrec (Z) < 1} = )\ZN{ZC ecV: Hrec (ZZC> < 1}
= |Z|2NA2N{C € CV: Liec (C) < i} (1.20)

1 |z|
- |z|2NhN(i)
|z]

and thus the integral in (1.19) can be written as

1

J |z|2NhN(i)dA2(z) - 2nj r2N+1hN(1)dr. (1.21)
C 4 0 v

The domain of integration in the latter integral is [0,1) since hy(1/7) is identically

zero on [1, ). By the change of variables » = 1/&, we find

Aon+2 (V1) = 217]:0 g 2Ny (8)dE = 2mmhy (N +1). (1.22)
O

If we regard the integral defining I’/L;(S) as a Lebesgue-Stieltjes integral, we may use
integration by parts to write

1 2s

& *hn(8)

hn(s) = — 5

| “Ezanyco. (1.23)
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Since hy (1) =0 and hy () is dominated by CE2V, the first term vanishes when R (s) > N.
After a change of variables, we can write

— 1
() = 5 | Vrec®) 2 dhan b, (1.24)
The latter integral is interesting enough to name
H(5) = | Viee(b) S dday (). (1.25)

The bulk of this paper is committed to the discovery that Hy (s) analytically continues
to a rational function of s.

THEOREM 1.2. For each positive integer N, the function Hy(s) extends by analytic
continuation to an (even or odd) rational function. In particular,

N

2TTS
n=1
COROLLARY 1.3. For each positive integer N,
2NN+L(N +1)N
Aoni2 (Vne1) = ToNiDl (1.27)
PROOF. This follows immediately from Theorems 1.1 and 1.2. |

COROLLARY 1.4. For each positive integer N, hy (§) is a reciprocal or antireciprocal
Laurent polynomial on the domain [1, o) and identically zero on [0,1). Explicitly, ifE > 1,
then

N
hy(E) = 2NN S

n=1

—1)N-nyN
m(?zrw(*lwgzn)- (1.28)

PROOF. E;(s) = Hy(s)/2s is a rational function whose denominator is a product of
distinct linear factors of the form s — n. We use the partial fraction decomposition to
write

% (P p(=n) e
hy(s) =2 (S +5 =), p(n)=Res(hn(s)). (1.29)

s—n s+n
n=1

We compute p(n):

N
—~ T 2TTS
- =—— 1] 1.
(s—m)hn(s) = —— 12z (1.30)

m+n
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and so
n-1 1 N 1
p('l’l) _ .n.N2N—2nN—2 1_[ 1_[
m=1 (nZ _mZ) m=n+1l (nZ _mZ)
_ 7TN2N—2nN—2< n! ) ( (=N (2n)! ) (1.31)
nm-)!2n-1)!) \(N+n)!(N—-n)!
1
— gNoN-1,,N(_1)N-n _
T D N N )
It is clear that p(-n) = (-1)Np(n), and so
N
— 1 (—1)N>
I (s) 7glp(n)(7s_n+ ) (1.32)
A quick calculation shows that, for s > n,
® _ ag 1 1
2s 2n 2ny 25 _
ZL g(E =) £ “sintson (1.33)
And so, by the uniqueness of the Mellin transform, we find that
N
hn(E) = > 2p(n) (E72"+(-1)Ng™) (1.34)
n=1
for € € (1, ). The lemma follows by substituting (1.31) into (1.34). O

We outline the proof of Theorem 1.2. Given « € (C\ {0})", we can create the unique
monic reciprocal Laurent polynomial p,(x) having «q,..., xy, oql,...,(xg,l as roots. We
will use the change of variables &« — a to write Hy(s) as an integral over root vectors
of reciprocal Laurent polynomials, as opposed to coefficient vectors. This change of
variables is useful, since by (1.7), viec(@) is a simple product in the roots of p,(x) (i.e.,
in the coordinates of «). Analysis of the Jacobian of this change of variables will allow
us to write Hy (s) as the determinant of an N X N matrix, the entries of which are Mellin
transforms which evolve to rational functions of s. Theorem 1.2 will follow from the
evaluation of the determinant of this matrix.

Before proceeding to the proof of Theorem 1.2, we present L and V.1 from an-
other perspective. Given the positive integer M, we define the Mahler’s measure function
to be pu: CM*1 — R, where u(u) is the Mahler’s measure of the polynomial with coeffi-
cient vector u. As was shown in [2], u is nonnegative, homogeneous, positive-definite,
and continuous. Thus u is a symmetric distance function and the set

Uprq = fue ™ :p) <1} (1.35)

is a bounded symmetric star body. Let M = 2N and consider the linear map A : CN*! —
C3N+1 defined by A(V) = (Vo, V1., UN=1,UN, UN—1,.-.,V1,V0) L. We define V = A(CN*1)
to be the subspace of reciprocal coefficient vectors. By (1.1), (1.4), and (1.5), we find
Urec (V) = p(A(v)). Thus, the star body formed by the intersection of AU,y41 and V is
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related to the reciprocal star body. Specifically,
Vne1 =AH(VNUonsr). (1.36)

Every bounded symmetric star body uniquely determines a symmetric distance func-
tion [1, Chapter IV.2, Theorem 1]. Thus, armed with y and A, we could “discover” Lyec.
Equation (1.7) can be recovered from the symmetry in the definition of A, so we would
lose no information if we were to define L. in this manner.

The volume of Uy .1 as well as the subspace volume of the star body formed by
intersecting Al with the subspace of real coefficient vectors were investigated in [2].
Thus the computation of the volume of 9y, yields subspace volume information of
another “slice” of Uon 1.

2. A change of variables. Let C* = C\ {0}, and define the map €y : (C)N — CN by
én(x) = a, where

N
xNpa(x) = ]_[ X+ o) (x + o h). (2.1)

Thus the nth coordinate function of €y is given by &, (x,..., Xy, oql,...,(x;,l), where
&, is the nth elementary symmetric function in 2N variables. Let Ey : CN — CN be the
function whose nth coordinate function is e, the nth elementary symmetric function
in N variables. That is, given B € CV, if b = Ey(B), then

N-1
X+Bn =xN+ > bpx". (2.2)

u:|2

It is well known that the (complex) Jacobian of Ey (B) is given by |V (B) |2, where

B1 B> -+ By
V(B) = 1_[ (Bn—Bm) = det B% B% o BJZV (2.3)
l<sm<n<N : . . .
i e L e

is the Vandermonde determinant. We will relate the Jacobian of €y to the Jacobian of Ey.

LEMMA 2.1. For each positive integer N, the Jacobian of € () is given by

1 IV 2112
‘V(a1+—,...,(xN+—) 1 (“”2 ) (2.4)
o o/l I\ o

PROOF. By definition, &, (x1,...,XN,X],...,Xy) is composed of all monomials of de-
gree n in the variables xi,...,Xn, X1,...,Xy- If we impose the relation x,,x;, = 1 for
m=1,...,N, then &, (x1,...,XN,X],...,Xy) is no longer homogeneous. In this situation,
it is easy to see that the monomials of degree n of &, (x1,...,XN,X],---,X}) are exactly
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the monomials which do not contain both x,, and x;, for m = 1,...,N. Hence,

En (X1, ey XN, XD, XN)
/ , . (2.5)
=en(x1+X7,...,Xn +Xy) + (monomials of degree < n).

In general, &, (x1,...,XN,X],...,Xy) has monomials of degree n —2M: those monomials
which contain x,, and x;,,, where m runs over a subset of 1,...,N of cardinality M. By
counting the number of times each monomial of degree n —2M appears, we arrive at
the identity

P PP S T R PYAE S
n Tyeeny N’(X]““’(XN —En 1 0(1!---; N XN
(N—n—Z) ( 1 1 )
+ enp2l X1+ —,..., 0N+ —
1 o1 XN
T A PN VA M ) B o
2 n—-4 1 (Xl,.”, N O(N
e ] =Y
= M n—-2M 1 0(1;---1 N N 3
where [N/2] is the integer part of N/2.
Thus
1 0 0
* 1 --- 0
e =|. . . |ExB), (2.7)
* ok 1
where
T
ﬁ_(O(1+1,...,O(N+1) y (28)
(041 AN

and * represents entries which are not necessarily 0. The Jacobian of Ex(B) = |V (B)|?,
and thus by the chain rule, we arrive at the formula for the Jacobian of €y () given in
the statement of the lemma. |

The Jacobian of €y () is nonzero for A»y-almost all points of (C*)V, and there are
2N N! preimages for Apy-almost all a € CV. Employing the change-of-variables formula,
we find

Hy(s) = | Viecla) #dhox @)

— 1 al —1 -2 (X.El—l 2
= 5NN L(CX)N{EII’HEIXHO(n'l'(Xn |} (a—%) } (2.9)

2
dAzN(O().

1 1
X ‘V(a1+—,...,an+—>
06} Kn
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The latter integral admittedly looks formidable; however, this change of variables is
beneficial since it allows us to exploit the multiplicative nature of Vyec.

3. Hy(s) is a determinant. We first prove a short technical lemma concerning de-
terminants.

LEMMA 3.1. Let N be a positive integer. If I = I(j, k) is an N X N matrix and Sy is the
Nth symmetric group, then

det(I) = Z > sgn(T)sgn(o) HI T(n),0(n)). (3.1)
TESNO'ESN n=1
PROOF.
N N
]‘[ (t(n), o)) = [[I(n,00t (n)). (3.2)
n=1 n=1

Thus we can write (3.1) as

N
= Z > sgn(ooT” ﬂ[(n,UOT_l(n))

TESN geSN

(3.3)
N
=— Z > sgn(o) HI n,o(n)) = > sgn(o) [ [I(n,o(n)),
-reSN ogeSN geSN n=1
which is the familiar formula for det(I). O

Using (2.3), we expand the Vandermonde determinant as a sum over the symmetric
group to find

2

1 N 1 (T(n)*l
’V(cx1+(x—, ,(xn+o(—n) = anstgn(U)rD1 ((xn+(x—n) , (3.4)
which we rewrite as
N 1 on)-1 1 T(n)-1
> > sgn(o)sgn(t) [ ] ((xn+—) (&,ﬁa—n) . (3.5)

oESN TESN n=1
Substituting this expression into (2.9), we can write Hy(s) as
N 2 2
1 e | o1
— max{ |« o5, e
ZNN!J( {}—[1 X{’ n| | |} ( 0(121

on)-1 T(n)-1
x( > > sgn(o)sgn(T) 1_[ (0(n+i> (m&%) )dAzN((X)-

oSN TESN n=1
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Exchanging the sums and the integral, and consolidating the products, we find

1
Hy(s)= > > sgn(0) sgn(T) 55
oSN TESN
al 2
x max { |, |, et}
fico { st 1
2 _ 52 _ o(n)-1 T(n)-1
() () (e 1) e 1) i
O(n (Xn O(n O(n
(3.7)
By an application of Fubini’s theorem, we find
1 N
Hy(s) = > > sgn(o)sgn(t) [ [ $(o(n),T(n)), (3.8)

"oeSNTESN n=1

where $(J,K) is given by

%LX max {|«|, o] }723(()(7 l) (&7 é) ((x+ é)lil (&Jr é)Kil dAZ((X). (3.9)

1 X X | x|?

Applying Lemma 3.1 to (3.8), we find that Hy (s) is the determinant of the N x N matrix
9 =9(J,K).

4. The entries of $ are rational functions of s. We will view $(J,K), not only as an
entry in a matrix, but also as a function of s. We note that A, («x)/|x|? is normalized
Haar measure on C*. Thus $(J,K;s) is invariant under the substitution & — «~!, and
we may write

9(J,K;s) = L\D I(x\’zs((x— é) (&— é) <a+ i)kl <&+ l>K_1 Az () (4.1)

x x | |2

where D is the open unit disk. By setting & = ve'?, we may write $(J,K;s) = fl(],K;r),
where h(J,K;r) is given by

o 0 J-1 0\ K-1
. 1 r el , 1 r e
0 0
Jo (Tel _rei9)<ei9 o )(Tel +rei9) (ei9 = ) a0 (4.2)

for r € [1,), and identically zero on [0,1).
By the change of variables 6 — —0, we see that h(J,K;r) = h(K,J;r). We conclude
that $ is a symmetric matrix whose J,K entry is h(J,K;s).

LEMMA 4.1. $(J,K;s) analytically continues to a rational function. Specifically,

N
2s
IUJK;8) =1 cn(Nen(K) =3, (4.3)

n=1
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where
J-1 J-1
[(JJrn)—(JJrn 1)] ifn<Jandn=J(mod?2),
enl)) = 2 2 (4.4)
1 ifn=J,
0 otherwise.

PrROOF. Without loss of generality, we assume K > J. There is a constant 6 such that
h(J,K;r) <6r/*K on [1, ). Thus the integral defining $(J,K;s) converges in the half
plane R(s) > (J+K)/2.

Writing (re'? +1/ret?)/~! and (v /e'® +e'? /7)X~! as sums with binomial coefficients,
we may rewrite (4.2) as

h(],K 1,. Z Z (J 1) ( k >7]+K2(j+k)2

j=0 k=0 (4.5)

2

XJ— ™ (rz N iz — (g0 +e—2i9))e(‘]—K—Z(jfk))iGdQ_
0 r

The integral appearing in this expression can be readily evaluated:

21
1 . . o

J <,,,.2+72_(6210+97219))8(]7K72(17k))19d9
v

0
2, 1 (K J)
21T<1" +72), k=j > 4.6)
(K-J)
5
(K-J)
>

=4 -2m, k=j+1+

-2, k=j-1+

If J # K(mod2), we see that h(J,K;7) (and hence $(J,K;s)) is identically zero.

The conditions given in (4.6) allow us to eliminate one of the summations in (4.5). We
use the facts that 0 <k < K—1 and 0 < j < J —1 together with the conditions in (4.6)
to find conditions on j. Specifically,

k:j+T:05jsJ—1,

k= J+1+¥:O<J<mm{——2] 1} 4.7)

k:j—1+%:max{15 +1, 0}<JS] 1.

Since K > J, we can write

J- J+K

K+1,0}:6ﬂ<, min{T—Z,J—l}:]—l—éjK, (4.8)

max {
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where 6 jx = 1if J = K and is 0 otherwise. From this information, we may write h(J,K;7)
as

S0 (<557 e (1) (5o

J 1 K-1 ) J-1-6;k J—l K-1 )
- Z ( . ) K-J . Ay ( ) ) K-J . yal-4i—4
o N T+J_1 Jj=0 J T+J+1

(4.9

Using the convention that (¥¢1) = 0 and (¥73!) = 0, we may eliminate §x from the latter
two sums. Reindexing each sum based on the powers of »and simplifying the binomial
coefficients, we find

J/2 J Jr2-1 (J—1 K-1
wann £ () )
l=—J72+41 §—l — -1 I=——J/2 §+l §+l
J )( K-1 ) J/2-1 (]—1)( K-1 )
J K ri— > |J K ri|.
2+1(§— ——1-1 =2 §+l E-}-l—l

(4.10)

Note that in the case that J is odd, these sums run over consecutive odd multiples of
1/2. Reindexing the first and third sum by [ — —[, we may combine the first and second
sums, and the third and fourth sums. We may then write h(J,K;7) as

2 J K (r*+r) - (] )(K )(r +r i) .
=2 §+l §+l =2 §+l §+l_l
(4.11)

Due to the symmetry in the summands, we may reindex the sums using only positive
indices. Let [y = 0 if J and K are even, and o = 1/2 if J and K are odd; then

h(J,K;v) =2m| | J+K - J+K (r2) 4 y2))
2 2

Ji2=1f /J—-1 J-1 K-1 K-1 ul u
*em z:zzo (‘éﬂ)_(;H—l) (12<+l)_(12<+l—1) (™).

(4.12)

We are now in position to compute fl(] ,K;s). There is a correspondence between
the coefficients and powers of » which appear in h(J,K;r) and the poles and residues
of }AL(J ,K;s). As was demonstrated in the proof of Corollary 1.4, the Mellin transform
of r#! + 4! analytically continues to the rational function s/(s? —412). Thus $(J,K;s)
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extends to a rational function:

K-1 K-1
$(J,K;s) =21 J+K_1 -1 J+K
2

+2m J I\ K N eSS 2_412"
= 2+l 2+l 1 2+l 2+l 1) |s2-4l

(4.13)
Reindexing this sum by setting n = 21, we find
K-1 K-1
I$(J,K;s) =211 ]+K_1 - J+K s2_J2
2 2
J-1 J-1 K-1 K-1 P
w2y | [ J+n || J+n K+n|-|K+n 5
|\ —— — 1 ~-1) |s2-n
2 2 2 2
(4.14)

where the sumisovern € {1,3,...,J—2}if J and K are odd, and over n € {2,4,...,] -2}
if J and K are even. If J = K, the leading coefficient is 1. Using (4.4) we may write (4.14)
as in the statement of the lemma. It is easy to verify that expression (4.3) is symmetric
in J and K, giving $(J,K;s) = $(K,J;s) as expected. Additionally, if J # K(mod2), the
expression in (4.3) yields $(/J,K;s) = 0. This proves the lemma. O

We identify $(J,K;s) with the rational function it extends to. When J and K are odd,
$(J,K;s) has poles at =1,=+3,...,=min{J,K}. When J and K are even, $(J,K;s) has
poles at £2,+4,...,+min{J,K}. $(J,K;s) has a zero of multiplicity one at 0.

We are now in position to prove the first part of Theorem 1.2. Hy(s) is the determi-
nant of ¢, and the entries of ¥ extend to rational functions of s. Since the determinant
is a polynomial in the entries of a matrix, Hy(s) itself extends to a rational function
of s. In fact, since the determinant is a homogeneous polynomial in the entries of a
matrix and the entries of $ analytically continue to odd functions, Hy(s) analytically
continues to an even rational function when N is even, and analytically continues to an
odd rational function when N is odd. We also see that Hy (s) has a zero of multiplicity
N at 0.

5. Hy(s) is a simple product. In this section, we express det($) as a simple prod-
uct. The structure of the poles and residues of $(J,K;s) will allow us to find linear
dependence relations on the rows of 4.

Let B, be the N X N matrix whose J,K entry is the integer ¢, (J)c,(K). Then by
Lemma 4.1, we have the matrix equation

N 2TTS
= By———. 1
g n; "z (5.1)
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Define w}, € QN to be the row vector given by w}, = (¢, (K))¥_,. It follows then that the
Jth row vector of B, is given by ¢, (J)w}, and thus every row of B, is a scalar multiple
of w}.

We may find a nonzero vector ¢ € QN such that wL@ =0 for 1 <n <N -1. In fact,
B,y =0for 1 <n <N -1,leading us to the vector equation

2TTS
s2_N2°

N
2
W= Ba 5 = Baw (5.2)

n=1

We see that ($ — By(211s/(s2 = N?)))p = 0, and so det($ — By(21rs/(s2 = N?))) = 0.
From the definition of By and Lemma 4.1, we find

S, $(1,2) .- $(1,N)
oo $(2,1)  9(2,2) .- $(2,N)

27TS

JIN,1) J(N,2) - IINN) =5

Taking determinants and exploiting the multilinearity of the determinant, we obtain
the following:

$(1,1) $(1,2) --- $(1,N) A1) 9,2) - 0
$(2,1) $(2,2) --- $(2,N) $(2,1)  $@2,2) .- 0
det . . . . = det : . :
$(N,1) $(N,2) -+ I(N,N) JIN, 1) I(N,2) s
§2—N?

(5.4)

The left-hand side is Hy (s). By a simple induction argument, we finally arrive at a simple
product formulation of Hy(s):

No2ms
HN(S) = 1_[ m (55)
n=1
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