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SUR LA CONTINUITE AUTOMATIQUE DES EPIMORPHISMES
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Nous étudions les problemes de continuité automatique dans des algébres de Banach avec in-
volutions. Nous obtenons aussi des nouveoux résultats concernant x-idéals des x-algebres.

Classification 2000 des Sujets Mathématiques: 46J10, 46K05.

1. Préliminaires. La majorité des définitions et des résultats qui sont rappelés ici
se trouvent dans [1]. Les algebres considérées sont supposées sur C, unitaires, non
nécessairement commutatives.

Une involution sur une algébre A est une application » : A — A vérifiant les propriétés
suivantes :

* oAk

(X)) =x, (X+») =x"+y", (X)) =y*x*, (Ax)* =Ax*,

(1.1)
Vx,yeA, VAeC.

Munie de 'involution *, A est dite une x-algébre. Une involution * est dite anisotrope
sipour toutadans Aona:a*a=0=a=0.Unidéal I d'une %-algébre est dit x-idéal
si I* C I (et alors I* = I). Il en résulte alors que tout x-idéal est bilatére. De plus, si
les seuls x-idéaux de A contenu dans I sont (0) et I alors on dit que I est *-minimal.
Remarquons que si I est un x-idéal non nul de A, alors * induit une involution sur A/I,
notée aussi , définie par: (a+1)* = a* +1. Un *-idéal .l est dit x-maximal si les seuls
*-idéaux contenant .l sont A et .l. Une algebre A est dite simple si les seuls idéaux
bilatéres de A sont (0) et A. Dans le cas ou A admet une involution *, on dira que A est
*-simple si les seules x-idéaux de A sont (0) et A.

Remarquons que si A est une algébre simple munie d'une involution x, alors A est
*-simple, mais la réciproque n’est pas vraie en général.

EXEMPLE 1.1. Soit A une algébre simple et A° 'algeébre opposée de A. Considérons
alors l'algebre B = A X A°, munie de I'involution d’échange » définie par : x(x,y) =
(y,x). Alors une simple vérification montre que B est une algebre x-simple mais n’est
pas simple.

Un idéal P de A est x-premier (resp. *-semi-premier) si pour deux *-idéaux I et J
de A tels que IJ < P (resp. I2 < P) alors I < P ou J € P (resp. I < P). En outre, si (0) est
*-premier (resp. *-semi-premier) on dit que A est x-premieére (resp. x-semi-premiere).
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Soit I un idéal minimal a gauche d’'une algebre semi-premiere A, alors il existe un
idempotent minimal e € A tel que I = Ae.

Rappelons que le radical de Jacobson, Rad(A), d'une algebre A est définit comme
étant l'intersection de tous les idéaux a gauche maximaux de A. Si de plus A est une
*-algebre, alors le x-radical de A, noté Rad. (A), est I'intersection de tous les idéaux
*-maximaux de A. En outre, si Rad, (A) = (0) alors A est dite x-semi-simple.

Soit T une application linéaire d’'un espace de Banach X dans un espace de Banach
Y. Alors I'espace séparateur o (T) de T est un sous-espace de Y défini par :

U(T)={erlEl(xn)neX:an»OetT(Xn)my}. (1.2)

Il est bien connu que T est continue si, et seulement si, o (T) = (0) [2]. En outre, '’espace
séparateur d'un épimorphisme d’une algebre de Banach A dans une algebre de Banach
B est un idéal bilatére fermé [2]. De plus, si € est un épimorphisme d'une algeébre de
Banach A sur une algébre de Banach B et si b € 0 (0), alors o € Sp(b) [2, théoréme
6-16].

2. La continuité automatique dans une algébre de Banach *-simple. Nous com-
mencons par donner quelques propositions préliminaires utiles pour la suite.

PROPOSITION 2.1. SoitI un idéal »-minimal d’une x-algébre A. Sil n’est pas minimal
et si J est un idéal inclu strictement dans I, alors I = J& J*, ou J et J* sont des idéaux
minimaux de A. Si de plus I? # 0, alors J et J* sont les seuls idéaux non nuls contenu
strictement dans I.

DEMONSTRATION. Supposons que I n’est pas minimal et soit J un idéal non nul de
A contenu strictement dans I. On a J + J*et J N J* sont deux *-idéaux de A contenus
dans I. Or I est un idéal x-minimal, donc JnJ* = (0) et J +J* = I. Par conséquence,
I=J&J*.Soit Y unidéal nonnul de A tel que Y C J. Un raisonnement analogue montre
que: I =Ya&Y*. De plus, si k € J alors k =y, + 0,00 y; €Y et y, € Y*. Par suite
k—yi=y,eJn]J* =(0),donc k € Y de sorte que J =Y. Par conséquent, J (resp. J*)
est un idéal minimal de A.

Supposons maintenant que I2 = 0 et soit B un idéal non nul de A tel que B C I,
B + J et B = J*. Une simple vérification montre que B est un idéal minimal de A.
Par conséquence BJ = (0), de méme on trouve que B*J = BJ* = B*J* = (0). D'ou
I?=Be@®B*)(JeJ*) = (0), ce qui contredit le fait que I = (0). O

PROPOSITION 2.2. Soient I et I, deux idéaux d’une *-algébre A tels que : A=1, &1,
etl, =1I;. Sil, etI, sont minimaux alors A est une algébre *-simple.

DEMONSTRATION. Ona A? = (L@ L,)(I, @ 1) = @1, 1, & I,I, ®I5. Comme 111, et
I>I; sont inclus dans I; N1 = (0), on en déduit que A2 = [?@I2. Or I? C I; et I3 C I,
le fait que I; et I sont minimaux donne alors I3 = (0) ou I? = I;. Si I? = (0) alors
122 = (0), par suite A2 = (0). Ce qui est impossible puisque A est unitaire. Donc If =1
de sorte que 122 =I,.D’ou A% = A, dans ce cas les seuls *-idéaux de A sont (0) et A. Par
conséquence, A est une algébre x-simple. |
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PROPOSITION 2.3. Pour une x-algébre A, soient les assertions suivantes :
(i) A est x-simple

(ii) A est x-premiere

(iii) A est *-semi-premiere

(iv) A est semi-premiere.

Alors on a (i)= (ii)= (iii)= (iv).

DEMONSTRATION. (i)=(ii) Soient I et J deux x-idéaux de A non nuls, alors IJ est
non nuls, car IJ = A2 = (0). Par conséquent, A est x-premiére.

(ii)=(iii) Evident.

(iii)=(iv) Soit I un idéal a gauche de A tel que I? = (0). Alors (InI*)% = (0), ce qui
implique que INnI* = (0). D’autre part, on a

T+I*) =P +II* +I"T+I*)%* = (I*)? = (I*)" = (0). (2.1)

Par conséquent, I cI+1* = (0). |

PROPOSITION 2.4. Soit A une algébre de Banach simple unitaire d’unité e. Alors tout
épimorphisme d'une algébre de Banach sur A est continu.

DEMONSTRATION. Soit 0 : B — A un épimorphisme d'une algébre de Banach B sur
A et soit e I'unité de A. Le fait que o (0) un idéal de A, entraine alors que o (8) = (0)
ouoc(0)=A.Sio(0)=Aalorsec o(0), par suite 0 € Sp(e) [2, théoreme 6-16], ce qui
est absurde. Donc o (0) = (0), par conséquent 6 est continu. O

THEOREME 2.5. Soient A une algébre de Banach et B une algébre de Banach * -simple.
Alors tout épimorphisme de A dans B est continu.

DEMONSTRATION. Soit 0 : A — B un épimorphisme. Si B est une simple algébre,
d’apres la proposition 2.4, 6 est automatiquement continu. Si B n’est pas simple, alors
B est somme directe de deux sous-algebres simples. En effet, comme B est x-simple
qui n’est pas simple, on peut considérer B comme un idéal x-minimal qui n’est pas
minimal dans lui méme. Donc, pour tout idéal non nul propre J de B,onaB=J&J*,
avec J et J* sont des idéaux minimaux de B (voir proposition 2.1).

Montrons que J est une algebre simple. Soit donc T un idéal non nul de J, alors
T est un idéal de B. En effet, soit b un élément de B et t un élément de T, alors il
existe j et j' deux éléments de J tels que b = j+ j'*, d’ou bt = (j+ j'*)t = jt+ j'*t.
Puisque j'*t € Jn J* = {0}, alors bt = jt € T. Ce qui implique que T est un idéal
de A. D’aprés la minimalité de J, nécessairement T = J, (méme chose pour J*). En
outre, B est semi-premiére (proposition 2.3), alors il existe un idempotent e € B tel que
J =Beet J* =Be*.Donc J (resp. J*) est une sous-algebre unitaire d'unité e (resp. e*).
De plus, on a B/J* =~ J et puisque J* est minimal alors J est un idéal maximal de B.
Un raisonnement analogue montre que J* est aussi un idéal maximal de B. Comme B
est une algebre de Banach, alors J est un idéal fermé [2, lemme 6-3]. Par conséquence,
munie de la norme induite, J (resp. J*) est une algebre de Banach simple. De plus, si Pr;
(resp. Pry) désigne la projection canonique de B sur J, (resp. de B sur J*), alors d’apres
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la proposition précédente Pr; o0 (resp. Pr, o0) est continue. Par suite Pr; o0 +Pry o0 = 0
est continu. 0

COROLLAIRE 2.6. Soit B une algébre de Banach *-simple. Alors B posséde une unique
norme d’algebre de Banach.

DEMONSTRATION. Il suffit d’appliquer le théoréeme précédent a I'identité de B.

REMARQUE 2.7. Si A est une algebre x-simple et si I'involution * est anisotrope,
alors A est simple.

PROPOSITION 2.8. Soient A une x-algébre et M un idéal =-maximal qui n’est pas
maximal de A. Alors il existe un idéal maximal N tel que N+ N* = A et NNnN* = M.

DEMONSTRATION. Puisque A/M est une algeébre *-simple qui n’est pas simple, la
proposition 2.1 assure I'existence d’un idéal propre N de A avec M C N tel que A/M =
(N/M)ys(N/M)*,ouN/Met(N/M)* ~ N*/M sont deux idéaux minimaux et maximaux
alafois de A/M. Par conséquence, N et N* seront deux idéaux maximaux de A vérifiant
N+N*=AetNNN* =M. 0

COROLLAIRE 2.9. Toute algébre x-semi-simple est semi-simple.

DEMONSTRATION. Soit A une algébre x-semi-simple, alors Rad, (A) = (M = 0, ou
(M désigne I'intersection de tous les idéaux *-maximaux de A. Mais M = NNN* par
la proposition 2.8, ou N est un idéal maximal de A. En outre, si N est un idéal maximal
alors N* est aussi un idéal maximal. Donc (. -maximal M 2 (N maximal (N N N*), le fait
que

Rad(A)c () M= () (NnN)c (] M=Rad.(A)=0 (2.2)

M maximal N maximal M x-maximal

donne alors que A est semi-simple. O

PROPOSITION 2.10. Soient A une *-algebre de Banach et M un idéal »-maximal de
A. Alors M est fermé dans A.

DEMONSTRATION. Si M est un idéal maximal, alors M est fermé. Si M n’est pas
maximal, la proposition précédente entraine I’existence d’'un idéal maximal N tel que
NNN* =M. Comme N et N* sont deux ideal fermés, alors M est aussi un idéal fermé.

|

COROLLAIRE 2.11. Soit M un idéal -maximal d’une *-algébre de Banach A. Alors
A/M est une algébre de Banach x -simple.

Les résultats suivants sont des conséquences du corollaire 2.9.

THEOREME 2.12. Soit B une algéebre de Banach x-semi-simple. Alors :
(1) tout épimorphisme d’une algébre de Banach dans B est continu;
(2) toutes les normes complétes sur B sont équivalentes;

(3) 'involution * est automatiquement continue sur B.
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