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To my teachers

A sequential space (X,T) is called minimal sequential if no sequential topology on X is
strictly weaker than T. This paper begins the study of minimal sequential Hausdorff spaces.
Characterizations of minimal sequential Hausdorff spaces are obtained using filter bases, se-
quences, and functions satisfying certain graph conditions. Relationships between this class
of spaces and other classes of spaces, for example, minimal Hausdorff spaces, countably
compact spaces, H-closed spaces, SQ-closed spaces, and subspaces of minimal sequential
spaces, are investigated. While the property of being sequential is not (in general) preserved
by products, some information is provided on the question of when the product of minimal
sequential spaces is minimal sequential.

2000 Mathematics Subject Classification: 54D25, 54D55.

1. Introduction. All hypothesized spaces are Hausdorff topological spaces. If (X, T)
is a space and Q C X, {x € X : some sequence in Q converges to x}, that is, the T-
sequential closure of Q will be denoted by A1(Q). A subset Q C X is T-sequentially
closed if At(Q) = Q, and is T-sequentially open if X — Q is T-sequentially closed. It is
not difficult to show that (1) the collection of T-sequentially open subsets, which we
denote by S7,is atopologyon X, (2) T C St,and (3) Q € St if and only if each sequence in
X which is T-convergent to an element of Q is ultimately in Q. The space (X, T) is called
sequential if T = St. In this case, the phrase “T is sequential” is often used. It is obvious
that first countable spaces are sequential and it is known that a sequential space might
fail to be first countable [4]. In this paper, a space (X, T) is minimal sequential if T is
sequential and no sequential topology on X is strictly weaker (= smaller) than T. Such
a space will be called minimal Hausdorff (sq). This terminology parallels the following
from [1].

If P is a property of topological spaces, then P(1) will mean a space which is first
countable and has property P, thus a space is Hausdor(f (1) provided it is Hausdorff and
first countable. It is proved in [4] that sequential spaces are characterized as quotients
of first countable (metric) spaces. Hence, the class of minimal Hausdorff (sq) spaces
coincides with the class of spaces which are minimal in the class of quotients of first
countable (metric) spaces. Two proper subclasses of this class of spaces have been
recently investigated in [9].

In Section 2, a number of characterizations of minimal Hausdorff (sq) spaces are es-
tablished in terms of filter bases, sequences, and functions into such spaces satisfying
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certain graph conditions. These characterizations include parallels of those of minimal
Hausdorff spaces by Bourbaki [2] in terms of open filter bases, and of those by Her-
rington and Long [6] in terms of arbitrary filter bases. These characterizations reveal
that a number of spaces which have been the object of study are minimal Hausdorff
(sq@). Indeed, minimal P spaces, where P is either of the properties semimetrizable, sym-
metrizable, neighborhood %, %, weakly first countable, are minimal Hausdorff (sq) (see
[11, 12]). In Section 3, some relationships between the class of minimal Hausdorff (sq)
spaces and other classes of spaces, for example, minimal Hausdorff spaces, countably
compact spaces, H-closed spaces, and SQ-closed spaces in the sense of Thompson [14],
are determined. It is established that minimal Hausdorff sequential spaces, as well as
sequentially compact sequential spaces, are minimal Hausdorff (sq) and that every min-
imal Hausdorff (sq) space is sequentially H-closed. Sequentially H-closed spaces were
studied by Thompson [14] and Espelie et al. [3] under the name of SQ-closed spaces. Ex-
amples are provided to show that a minimal Hausdorff (sq) space need not be H-closed
and that a sequential H-closed space might fail to be minimal Hausdorff (sq). Other
examples are given to distinguish this class of spaces from other classes of spaces. In
Section 3, subspaces and products of minimal Hausdorff (sq) spaces are studied. Par-
allel to the result of Katétov [10] and Stone [13] that a space is compact if and only
if every closed subspace is H-closed, we prove that a space is countably compact if
and only if every closed subspace is SQ-closed. Although the property of a space being
minimal Hausdorff (sq) is not preserved by products, we apply results from [3, 5] to
provide some information on products of such spaces in this section.

2. Characterizations of minimal Hausdorff (sq) spaces. Preliminary to our first the-
orem, we introduce some additional concepts and notations which are utilized through-
out the paper. If (X,T) is a space and Q C X, we use the notation X7 (Q) (7 (x) if
Q = {x}) for the collection of elements of T which contain Q (simply =(Q) when con-
fusion is unlikely); we let Q (Q°) represent the closure (interior) of Q. If Q is a filter
base on a space, adhQ will represent its adherence (adhQ = reo F). If Q is a subset
of a space X, Velicko [15] called {x € X :Q NV *+ @& is satisfied for each V € =(x)} the
0-closure of Q and denoted this set by [Q]o ([x]o if Q = {x}). He called Q 0-closed
if [Q]o = Q and showed that [Q]¢ might fail to be 6-closed. Indeed, a subset Q of a
countable H-closed space can satisfy [Q]} ¢ [Q]'e1+1 for every positive integer n [8].
It is known that [Q]o = Ns(q) V, that for (x,y € X), x € [y]e if and only if y € [x]
[3], and that X is Hausdorff if and only if [x]¢ = {x} for each x € X. The 0-adherence
of a filter base on X denoted by [Q]g is (g[Fle, and Q 6-converges to x denoted by
Q - x, if for each V € Z(x), there is an F € Q satisfying F c V [15]. The notions 0-

cluster point and 0-convergence of nets are similarly defined. If ¥ is a filter on a space
(X,T), the filter base T N % will be called the open part of ¥ and will be denoted by
0(%F), {A € 0(%F) : Aisregular open} will be called the regular-open part of ¥ and can
be denoted by % (%). Recall that an open subset V is regular open if V = V', and a
topological space is semiregular if the regular-open subsets of the space are a base for
its topology. Since it is an elementary fact of General Topology that A°° = A° for any
subset A of a topological space, we see that adhO(%) = adh%® (%) = [Q]p.
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THEOREM 2.1. The following statements are equivalent for a space (X, T):
(i) if xy is a sequence in X with at most one (T — 0)-cluster point, x,, converges;
(ii) if T* C T is a topology on X, then A« (Q) = Ar(Q) is satisfied for each Q C X;
(iii) if T* is a topology on X and T* C T, then each T*-sequentially closed subset of
X is T-sequentially closed;
(iv) if T* is a topology on X and T* C T, then St = Stx;
(V) each countable filter base on X with at most one (T — 0)-adherent point T-con-
verges;
(vi) all topologies on X which are smaller than T have the same convergent sequences
asT;
(vii) if & is a filter on X with a countable base and O(%) has at most one T-adherent
point, then O(%) converges;
(viii) if F is a filter on X with a countable base and R(%F) has at most one T-adherent
point, then R (%) converges.

PROOF. (i)=(ii). Let x € Ar+(Q). Then there is a sequence x, in Q such that x,, g X.
If h is a subnet of x,, and h r z with respect to T, then h s z with respect to T* since

T* c T. Since T* is Hausdorff, it follows that z = x. Hence, x,, has at most one (T — 0)-
cluster point. From (i), x,, - x. S0, x € Ar(Q) and A7+ (Q) C Ar(Q). It follows from
T* c T that A7(Q) C Ar=(Q).

(ii)=(iii)=(iv). The proof is obvious.

(iv)=(v). Let N be the set of positive integers, let Q = {F,, : n € N} be a filter base, and
let v € X such that F,,.1 C Fy, [Q]p C {v}, and suppose Q does not converge. Choose a
Vo € 3r(v) satisfying F,, -V = @. Let x,, be a sequence such that x,, € F,, — V;. Clearly,
Xn 7TL v. Let

T* = (T-37(v))U{V €31 (V) : x, € V ultimately}, (2.1)

let x,y € X - {v}, x # y. Since T is a Hausdorff topology, there exist V € X (x) —
Cr(v)udr(y), WeXr(y)—Er(w)u3r(x)) suchthat VW =J. Let x € X, x = V.
Then x ¢ [F,]o for some n. For such an n, there exist V € Sr(x), W € 31 (F,) such
that VNW = @. Thus, T* is a Hausdorff topology on X and clearly T* c T. Obviously,
T* + T since x5, P v; the range of x,,, call it R(xy,), is T-sequentially closed since the

only T-convergent sequences in R(x;) are those which are ultimately constant. On the
other hand, v € Ar+ (R(xy)) — R(xy). Hence, R(x,) is not T*-sequentially closed and
this contradicts (iv).

(v)=(vi). Let x;,, be a sequence in X and suppose x, g x. Using the same argument
as in the proof of (i)=(ii) above, x is the only possible (T — 6)-adherent point of the
elementary filter generated by x,,. Hence, x,, - X.

(vi)=(). Let x, be a sequence in X with at most one (T — 0)-cluster point. Without
loss of generality, choose v € X such that no cluster point of x,, is in X — {v}. Employ
the same construction as in the proof of (iv)=(v) to get a Hausdorff topology T* on X
such that T* c T, and x,, e v. Then, x, - v in view of (vi).
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(vii)=(v). Let Q be a countable filter base on X, let v € X, and suppose [Q]y C {v}.
Then O(%) = Ug 2(F) for the filter & with base Q and adhO(%) = [Q]y. Hence, O(%) - v,

and consequently Q - V.

(v)=(vii). Let & be a filter on X with countable base Q, v € X, and suppose adhO(%) C
{v}. Then [Q]p c adhO(%), so Q - v and consequently, Z(v) C O(%).

(V)< (viii). We see that adhO(%) = adh®R(F) = [Q]e. O

In view of Theorem 2.1, we have the following theorem.

THEOREM 2.2. The following statements are equivalent for a sequential space (X,T):
() (X,T) is minimal Hausdorff (sq);
(ii) if xy, is a sequence in X with at most one (T — 0 )-cluster point, then x,, converges;
(iii) if T* C T is a topology on X, then A« (Q) = Ar(Q) is satisfied for each Q C X;
(iv) if T* is a topology on X and T* C T, then each T*-sequentially closed subset of
X is T-sequentially closed;
(v) if T* is a topology on X and T* C T, then St = Stx;
(vi) each countable filter base on X with at most one (T — 0)-adherent point T-con-
verges;
(vii) all topologies on X which are smaller than T have the same convergent sequences
asT;
(viii) if & is a filter on X with a countable base and O(%) has at most one T-adherent
point, then 0(%) converges;
(ix) if F is a filter on X with a countable base and R (%) has at most one T -adherent
point, then R (%) converges.

Corollary 2.3 comes easily from equivalence (ix) of Theorem 2.2.
COROLLARY 2.3. A minimal Hausdorf{f (sq) space is semiregular.

In [14], Thompson introduced the class of SQ-closed spaces. A space is SQ-closed if
its continuous image in any Hausdorff space is sequentially closed. In [3], it is proved
that a space is SQ-closed if and only if every countable filter base on the space with at
most one f-adherent point 9-converges.

Corollary 2.4 is immediate in view of this result and equivalence (vi) of Theorem 2.2.

COROLLARY 2.4. A minimal Hausdor(f (sq) space is SQ-closed.

COROLLARY 2.5. A minimal Hausdorf{f (sq) space is H-closed if and only if it is minimal
Hausdorff.

Next we present characterizations of minimal Hausdorff (sq) spaces in terms of
functions into such spaces satisfying certain graph conditions. Let X, Y be spaces
and let f : X — Y. We will say that f has a subclosed (strongly subclosed) graph if
adh(f(Q)) c {f(x)} ([f(Q)]e c {f(x)}) for each x € X and filter base Q on X — {x}
satisfying Q — x. When f has a subclosed (strongly subclosed) graph and {f(x)} is
closed (0-closed) in Y for each x € X, we say that f has a closed (strongly closed)
graph. The notion of strongly closed graph was introduced by Herrington and Long
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in [6], while subclosed and strongly subclosed graphs were introduced by Joseph [7].
The function f is said to be sequentially continuous at x € X if f(x;,) — f(x) for each
sequence x, in X satisfying x, — x, and is said to be sequentially continuous if it
is sequentially continuous at each x € X. If X is a nonempty set, v € X, and Q is a
filter base with empty intersection on X — {v}, X(v,Q) denotes X with the topology
T={QcCcX:v &QorFcQ for some F € Q}. Clearly, X(v,Q) is Hausdorff and is first
countable if Q is countable. Let X, Y, and Z be nonempty sets, f: X - Z,g:Y — Z.
Denote {(x,y) € XxY: f(x) =g} (Ix e X: f(x)=gx)}) by €(f,g,XxY,Z)
(€(f,9,X,2)).

THEOREM 2.6. The following statements are equivalent for a sequential space Z:
(i) Z is minimal Hausdor(f (sq);
(ii) for each space X, each f : X — Z with a strongly closed graph is sequentially
continuous;
(iii) for all spaces X, Y and f : X — Z, g : Y — Z with strongly closed and closed
graphs, respectively, €(f,g,X XY, Z) is a sequentially closed subset of X XY ;
(iv) for each space X and all f,g : X — Z with strongly closed and closed graphs,
respectively, €(f,g,X,Z) is a sequentially closed subset of X;
(v) for each space X and all f,g : X — Z with strongly closed and closed graphs,
respectively, €(f,g,X,Z) = X whenever A(€(f,9,X,7)) = X.

PROOF. (i)=(ii). Let X be a space, let f : X — Z have a strongly closed graph, let
x € X be a point which is not isolated, and let x, be a sequence in X — {x} such that
Xn — Xx. Let Q be the usual base for the elementary filter generated by {x,}. Then
[f(Q)]o = {f(x)}, since Z is minimal Hausdorff (sq), it follows by equivalence (vi)
of Theorem 2.2 that f(Q) — f(x) and the proof that f is sequentially continuous is
complete.

(ii)=(iii). Suppose X, Y are spaces, f: X — Z, g:Y — Z are functions with strongly
closed and closed graphs, respectively, and let (x,,V,) be a sequence in €(f,g,X X
Y,Z) such that (x,,yn) — (x,¥). Then x,, — x, v, — y, and f(xy) — f(x) from (ii).
Hence, g(y,) — f(x) and g(y) = f(x) since g has a closed graph. Therefore, (x,y) €
E(f,9,XxY,Z).

(iii)=>(@iv). Let X be a space and let f,g : X — Z have strongly closed and closed graphs,
respectively. Then €(f,g,X,Z) = m(€(f,g,X X X,Z) ND), where 17 is the projection
of X X X onto X and % is the diagonal of X x X. From (iii), €(f,g,X X X,Z) NP is a
sequentially closed subset of @, and the restriction of 7T to % is a homeomorphism, so
(iv) holds.

(iv)=(v). The proof is obvious.

(v)=(). Suppose Q is a countable filter base on Z and v € Z such that [Q]g C {v}. As-
suming that Q + v, thereis a Vy € =(v) such thatI' = {F -V, : F € Q} is a filter base on
Z such that [T']p € [Q]g. Choose w € Z— {v} and define f,g:Z(v,T) - Z by f(x) =x
for all x, g(v) = w, g(x) = x on Z—{v}. We see that ¢(f,g,Z(v,I),Z) = Z - {v},
while A(€(f,g,Z(v,T),Z)) = Z. To establish that f and g have strongly closed and
closed graphs, respectively, we need to check only at v. If A is a filter base on Z — {v}
and A — v, then [ f(A)]g = [Alo C [Q]p C {v} = {f(v)}, while adh(g(A)) c adhT = &.

O
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3. Relationships between the class of minimal Hausdorff (sq) spaces and the
classes of countably compact spaces, minimal Hausdorff spaces, SQ-closed spaces,
and H-closed spaces. Thompson [14] has proved that every countably compact space
is SQ-closed. Theorem 3.1 parallels the well-known result that a space is compact if and
only if each of its closed subspaces is H-closed [10, 13].

THEOREM 3.1. A space X is countably compact if and only if each closed subspace of
X is SQ-closed.

PRrROOF. If (X,T) is countably compact, then each closed subspace is countably com-
pact, and hence is SQ-closed. Conversely, suppose that each closed subspace of X is
SQ-closed and that A C X is infinite and has no limit points in X. Then A is a closed
subspace of X which is discrete in its relative topology, and is therefore not SQ-closed.

O

We have the following result for minimal Hausdorff (sq) spaces.

THEOREM 3.2. A sequentially compact sequential space is minimal Hausdorf{f (sq).

PROOF. Let (X,T) be a sequentially compact sequential space, let v € X, and let x,,
be asequence in X with no 0-cluster pointin X — {v}.If Vy € 2(v) and x, is frequently in
X —Vjp, then some subsequence of x;, converges to some point in X —V, a contradiction
to the assumption that x;, has no 9-cluster point in X — {v}. Therefore x,, - V. O

COROLLARY 3.3. A countably compact sequential space is minimal Hausdor(f (sq).
PROOF. A countably compact sequential space is sequentially compact. |

COROLLARY 3.4. If each closed subspace of a sequential space (X,T) is SQ-closed,
then X is minimal Hausdorf(f (sq).

In [6], Herrington and Long proved that a Hausdorff space is minimal Hausdorff if
and only if each filter base on the space with at most one 0-adherent point converges.
In view of this result, it is obvious that every sequential minimal Hausdorff space is
minimal Hausdorff (sq). But, as can be seen from the following example, a minimal
Hausdorff (sq) space need not be minimal Hausdorff.

EXAMPLE 3.5. The space [0,Q) of ordinals less than the first uncountable ordinal
endowed with the order topology is not minimal Hausdorff although it is countably
compact and first countable.

Example 3.5 also establishes that a minimal Hausdorff (sq) space need not be H-
closed since the space there is regular and is not compact.

The following example shows that a first countable minimal Hausdorff space need
not be countably compact. The space is the classical example of a countable minimal
Hausdorff space which is not compact.

EXAMPLE 3.6. Let X = {0}UNU{j+1/n:j,neN-{1}} and define V C X to be open
if V satisfies the following properties:
(i) if j € (VAN)—{1}, then j+ 1/n € V ultimately;
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(ii) if 0 € V, then, ultimately, j+1/2n € V for all n;
(iii) if 1 € V, then, ultimately, j+1/(2n+1) € V for all n.

The next example shows that a sequential H-closed space need not be minimal Haus-
dorff (sq).

EXAMPLE 3.7. Let Y ={0}JU(N—-{1})u{j+1/2n:j,n e N-{1}} with the subspace
topology T from X in Example 3.6. Then 0 is the only 0-cluster point of x,, defined by
xn,=n+1, but x, £ 0.

It is well known that both compactness and sequential compactness imply countable
compactness. We have the following implication diagram for the class of sequential
spaces; none of the implications is reversible:

Compact ===——=> Minimal Hausdorff === H-closed

U M M

Countably compact == Minimal Hausdorff (sq) => SQ-closed 3.1)

ﬂ

Sequentially compact.

THEOREM 3.8. Every closed subspace of a sequential space is minimal Hausdor(f (sq)
if and only if the space is sequentially compact.

PROOF. If every closed subspace of a space is minimal Hausdorff (sq), then each
closed subspace is SQ-closed and the space is countably compact from Theorem 3.1.
Since a countably compact sequential space is sequentially compact, the necessity is
established. The sufficiency follows from Theorem 3.2. O

Before moving to some results on products of minimal sequential spaces, we note
that quotients of sequential spaces are sequential [4] and quotients of SQ-closed spaces
are SQ-closed [3]. However, the space in Example 3.7 is a quotient of the space in
Example 3.6 under the partition {{x}:x e N—{1}} U {{0,1}}u{{1/2n,1/(2n+1)}:
n € N—{1}}. Hence, quotients of minimal Hausdorff (sq) spaces might fail to be mini-
mal Hausdorff (sq).

THEOREM 3.9. If X, is a family of spaces such that the product X =I1X,, is sequential,
then each X, is minimal Hausdor{f (sq).

PROOF. From [4], X, is sequential. Now, let y, be a sequence in X, and y € X,
such that the filter base Q defined by F,, = {yvk : k = n} satisfies [Q]o C {y}. Choose
v € X and let v,, be the point in X with u-coordinate y,, and every other coordinate the
same as that of v. Then the point x € X with u-coordinate v and all other coordinates
the same as those of v is the only possible 0-cluster point of the sequence v,. Hence,
vy — x and y, — . O

THEOREM 3.10. If X, is a family of H-closed minimal Hausdorf{f (sq) spaces such that
the product X =I1X,, is sequential, then X is minimal Hausdor({f (sq).
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PROOF. Each X, is H-closed and minimal Hausdorff (sq), and thus minimal Hausdorff
from Corollary 2.5. Hence, X is minimal Hausdorff. a

Theorem 3.11 shows that if a sequence of minimal Hausdorff (sq) spaces has a se-
quential product, the product is minimal Hausdorff (sq).

THEOREM 3.11. If X,, is a sequence of sequential spaces such that the product X =
I1X,, is sequential, then X is minimal Hausdor({f (sq) if and only if each X,, is minimal
Hausdorff (sq).

PROOF
NECESSITY. This follows from Theorem 3.9.

SUFFICIENCY. Let Q be a countable filter base on X and suppose [Q]y C {x}. From
[3], X is SQ-closed and [Q] r x. The projection of the filter base Q is 11 (Q) r T (X).
So, [ (Q)]e C {1 (x)}. Otherwise, z € X defined by 1, (z) =, (x) if n = k, 11 (2) €
[ (Q) 1o — {1TK (X)} satisfies z € [Q]g, z # x. Therefore, T, (Q) — T (x) and Q — x. O

Since the product of a sequence of first countable spaces is first countable, we have
Corollary 3.12.

COROLLARY 3.12. The product T11X,, of a sequence of first countable minimal Haus-
dorff (sq) spaces is minimal Hausdorf{f (sq) if and only if each X, is first countable minimal
Hausdor(f (sq).

Corollary 3.13 comes as a consequence of Theorem 3.11 and a necessary and suffi-
cient condition for the product of two sequential spaces to be sequential, given in [5],
in terms of X and Y as quotients (under the quotient maps @y, @y) of the topological
sums of the convergent sequences (see [4, Proposition 1.12]).

COROLLARY 3.13. The product of spaces X, Y is minimal Hausdorf{f (sq) if and only if
X, Y are sequential and @ x X @y is a quotient map.

PROOF

SUFFICIENCY. If X, Y are minimal Hausdorff (sq) spaces and @x X @y is a quotient
map, then X x Y is minimal Hausdorff (sq) from Theorem 3.11 since, from [5], X XY is
sequential.

NECESSITY. This follows from [5] and Theorem 3.9. O
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