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STABILITY OF REACTION FRONTS IN THIN DOMAINS
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The paper is devoted to the stability of reaction fronts in thin domains. The influence of
natural convection and of heat losses through the walls of the reactor is studied numerically
and analytically. Critical conditions of stability of stationary solutions are obtained.
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1. Introduction. The stability of reaction fronts is important for many technological
devices and it is interesting from the point of view of nonlinear dynamics (see [6] and
the references therein). It is known that thermal instability can be strongly influenced
by heat loss [1] especially near the extinction limit. In this work, we study the influence
of heat loss and of convection on thermal fronts in thin domains, where we can reduce
the space dimension of the problem and in some cases simplify its analysis.

We consider the system of equations where the reaction-diffusion system is coupled
with the Navier-Stokes equations under the Boussinesq approximation to describe nat-
ural convection which can occur because of the heat produced by the reaction:

%—{ +VVT = KAT +qk(T) P (x),
o +vVa=k(T)p(x),
ot (1.1)
ov 1
E +(WV)v = —EVp+vAv +gB(T-Ty)y,
divv = 0.

Here T is the temperature, & the depth of conversion (or the dimensionless concentra-
tion of the product of the reaction), v = (vy,v,,v;) the velocity of the medium, p the
pressure, k the coefficient of thermal diffusivity, g the adiabatic heat release, p an aver-
age value of density, v the coefficient of kinematic viscosity, g the gravity acceleration,
B the coefficient of thermal expansion, y the unit vector in the z-direction (upward), x,
v, and z the spatial coordinates,

—Ly <X <Ly, —L, <y <Ly, —L,<z<L,, (1.2)

t the time, and T, denotes a characteristic value of the temperature.
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The boundary conditions are

_ .aT_ _ avy_avz_
x*“—“Lx-an* o(T-Tp), vx=0, 8x78x70'
oT oV, 0V
=+[,— = = —= = =
S T T (1.3)
2o 1.:T=Ty =0, z=L.:2L ¢,
0z
z==L,:v,=0, aﬂ:—a”yzo.

0z 0z

Here 0T /0n denotes the derivative in the direction of the outer normal vector. The
boundary conditions at the lateral walls of the reactor correspond to heat loss through
the boundaries. The free-surface boundary conditions for the velocity simplify the anal-
ysis of the problem. It corresponds to the case of the batch reactor. We will also consider
the case where

z=+xL,:v, =17y (1.4)

with a given velocity v at the entrance and the exit of a continuous reactor.
We introduce dimensionless spatial variables xc/k, yc/k, and zc/k, time tc?/k,
velocity v/c, and pressure p/c?p. Here

2
2 _ kok RoTyy gy,

q E (1.5)

is the normal velocity of a condensed phase reaction front [4], where T}, = Tp + g is the
adiabatic temperature. Denoting 6 = (T — Tp)/q and keeping for convenience the same
notations for other variables, we rewrite system (1.1) in the form

%wve=A9+Ze9/<z’1*59)¢>(0<>,
ox _ 7,0/(Z71+50)
5 TvVa=Ze P (), (1.6)
%’Jr(vv)v =—-Vp+PAV+PR(0+06y)y,

divv =0.

Here P is the Prandtl number, P = v/k; R is the frontal Rayleigh number, R = (gBqk?)/
(ve3); 6 = RoTy/E; 09 = (Ty — To) /q; and Z is the Zeldovich number, Z = qE/ROTg. The
boundary conditions remain the same as above.

The contents of the paper are as follows. In the next section, we reduce the spatial
dimension of the problem and introduce the heat loss in the heat equation instead of
the boundary conditions. In Section 3, we formulate the interface problem using the
infinitely narrow reaction zone method. Section 4 is devoted to the analysis of sta-
tionary thermal regimes and their stability. Finally in Section 5, we present numerical
simulations of reaction fronts with and without convection.
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2. Thin domains. Without heat loss (o = 0) and without convection (R = 0) problem
(1.1), (1.3) has a one-dimensional (1D) stationary solution which depends on the z-
variable only. The infinitely narrow reaction zone method (see Section 3) allows us to
find it approximately analytically and then to use this explicit form of the solution to
study its stability. If o # 0, the stationary solution is not one-dimensional any more
and its analytical approximation cannot be found or becomes too complicated to be
used. Therefore, the stability analysis cannot be carried out. To overcome this difficulty
and to study reaction fronts with heat loss, we consider thin domains where the heat
loss can be introduced in the equation instead of the boundary conditions. In this
section, we suppose that the dimensionless domain is thin in the x-direction, that is,
x € 1—€/2,e/2[ with € > 0 a small parameter.

Taking into account the dependence on €, we rewrite system (1.6) in the form

00°¢

35t +VEVO° = A0+ (0°) (), (2.1)
aas € € € €
35t +VVE =@ (0°) P (x€), (2.2)
€
a;; 1+ (VEV)VE = —Vp€ + PAVE + PR(0 + 00)y°, 2.3)
divve =0, (2.4)

with @(0) = Ze?/(Z '+80) We suppose that y € 1-1,,1y[, z € 1-1,1[. The boundary
conditions are as follows (we suppose that the coefficient of heat loss at the boundary
is of the order €):

20¢ V5 Bvs

_ . €. _ * (NE € _ _ _
xfiz. n €d*(0°+1), v$=0, Ix Ix 0, (2.5)
B _00¢ ¢ ovy  0vs
y=tlyig, =00 vy =0, oy oy
- € € .aee
z=-1,:0°=-1, =0, z=1,: =0, (2.6)
0z
ove  0v§
_ . €E _ X _ Yy
z==l,:v5=0, 2 - a2 =0.

We make the usual change of variables x = x/€ in (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6)
and we suppose the following formal expansions for the unknowns:

9€=Go(i,y,z,t>+€91<£,y,z,t)+ ,
€ €
(XE:0(0<§,y,z,t>+e(xl<§,y,z,t>+-- ,

. X 2.7)
ve:vo(f,y,z,t)+ev1(7,y,z,t)+ ,

€ €
pe= v°<%,y,z,t> +ev1(§,y,z,t) SRREE

with vk = (v&, vk, v5), k=0,1,2,....
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Our goal is to prove, at least formally, that v{ = 0, 0°, &%, v9, v?, and p° are inde-

pendent of x and that they satisfy the following systemin (y,z) € 1-1,,l, [ x]1-1;,L;[:
00° ,00° ,00° * (0 0 0 0

5 Ty oy V25 =-20%(0"+1) +A0° +y(0°)p ("), (2.8)

o’ ,ox?  jox0

e g oxT _ 0 0
ot TV ey TV s Ww(0°) (), (2.9)
ovY ovY ov? dp°
Ty 0“"y oYy __©op 0
3t +v, 3y +v; % —ay +PAvy, (2.10)
0 0 0 0
aaitz vg% v§%=—aaiz+PAv2+PR(90+90), 2.11)
with the boundary conditions
00" 0 ov?
Y=gy, =0 w0 5y =0
0
z=-1;:0"=-1, «°=0, aﬁ:o, v =0, (2.12)
0z
20° ov, 0
I

In this section we use the notation A = A, , = 82/9y?% +0°/0z°.

In order to obtain the limit problem, we substitute the above formal expansions in
(2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) and we equate the coefficients of € for any k € Z.
We first remark that the boundary conditions (2.12) are an immediate consequence of
the corresponding boundary conditions from (2.5) and (2.6).

Equating the terms of the order O(e2) in (2.1) and O(e™!) in the first equality of
(2.5), we obtain

0200 00°

ox2 7 ox

Il
I+

N | —

0, (2.13)
which implies that 0° is independent of x.

Equating the terms of the order O (¢7!) in (2.1) and O (¢°) in the first equality of (2.5),
we obtain

0x?
50! (2.14)

)

201 0
0°0 0 (since 00 :0),
X
0

3

Therefore, 0! is independent of x.
Equating the terms of the order O(e~2) in the x-component of (2.3), we obtain

24,0
avxz
0x?

(2.15)
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Using also the condition v,? =0onx ==+1/2, we deduce
vl =0. (2.16)
Equating the terms of the order O(¢~?) in the y-component of (2.3), we obtain

2.,0
0°vy,
0x?

=0. (2.17)

Using also the condition avg/ 0xX =0on x ==+1/2, we deduce that vg is independent
of x.

In the same manner, we obtain that v? is independent of X.

Equating the terms of the order O(€°) in (2.4), we obtain

vy vy vl _
ox 0y 0z

0. (2.18)

Hence, ov./dx is independent of x. Using also vl =0 on x = +1/2, we obtain
vi=0. (2.19)

Equating the terms of the order O(€?) in (2.2), we obtain (2.9) with the help of (2.16)
and (2.19). Taking into account the limit conditions, the function «? is the solution of a
well-posed problem which does not depend on X, which implies that «° is independent
of x.

Equating the terms of the order O(e~!) in the x-component of (2.3), we deduce that
p? is independent of x with the help of (2.16) and (2.19).

Equating the terms of the order O(€°) in (2.1), we obtain

009 0 00° 000° 0262

ot "Vray TV T ekl

+A0°+ Zw(0°) b (). (2.20)

Equating the terms of the order O (¢) in the first equality of (2.5), we obtain

2
%:—U*(90+1), 3'(:%,
0r o (2.21)
5% =0 (0°+1), X=—7.

Integrating (2.20) in X between —1/2 and 1/2 and using the above relations, we ob-
tain (2.8).
Equating the terms of the order O(€°) in (2.3)-y, we obtain

o’ P<32”§

ovd vl v
- >+ v)—= %2 +Avg). (2.22)

_Y 0_"Y —
ot Yoy TV e T T oy

Integrating in X between —1/2 and 1/2 and using 6v§,/65c =0onx = +1/2, we deduce
(2.10). In the same manner we obtain (2.11).
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3. Approximation of infinitely narrow reaction zone. To study the problem ana-
lytically, we reduce it to a singular perturbation problem where the reaction zone is
supposed to be infinitely narrow and the reaction term is neglected outside of it. It is
a well-known approach for combustion problems [4, 6, 7]. We fulfil a formal asymp-
totic analysis with € = Z~1 = Rg Ti,z /qE taken as a small parameter, and obtain a closed
interface problem

(i) when z = C :

ﬁ+vv9:A9—(}(9+1), x=0,
ot
v (3.1)
EHUV)U:pr+PAv+Q(0+90)y, divv = 0;
(ii) when z = C :
Olz—o = Olz+o,
2 2\ 1
I (O R C DI O]
e o Y (3.2)

- 9\ —1
- -2z 1+(%)2+(£>2 nge”(z'l*‘s”dr
40 ox oy —e0 ’

Uy =Vy =1, =0.

() 1. (3
0z) l¢-0 \0z

The boundary conditions are the same as in Section 1. Here 6 = 20* (see Section 2).
The hat over o is omitted below.

Problem (3.1), (3.2) is coupled in the sense that it describes the thermal instability of
the reaction front and the convective instability at the same time. There are different
limiting cases here. For example, if the coefficient of thermal expansion S equals zero
(i.e., R = 0), then this corresponds to a condensed medium since v = 0. Another case is
when we remove the thermal instability by decreasing the Zeldovich number Z. Linear
stability analysis of problem (3.1), (3.2) without heat loss is carried out in [3].

4. Thermal regimes. In this section, we consider a half-infinite continuous plug-flow
reactor with a given velocity v of the medium along the axis of the reactor. We con-
sider the 1D spatial case without hydrodynamics. It is a particular case of the complete
problem (3.1), (3.2), where the width of the reactor is sufficiently small. The temperature
distribution outside of the reaction zone satisfies the equation

00 62_9 00

3" 322 UE—O'(9+1), z>0,z=+C. 4.1)

The jump conditions at the reaction zone z = C are

Olg0 = 0l¢+o,
90| o0 _ 0T
0z l¢-0 0z lz+o h ot’ 4.2)

(%)

2 0
_(%> =22{ € griz g,
C-0 C+0 —00
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The boundary condition is
z=0:0=-1. (4.3)

Moreover, we assume that the temperature is bounded. This problem is studied in [5]
in the case o = 0.

4.1. Stationary solution. In this subsection, we find a stationary solution of problem
(4.1), (4.2), and (4.3). We suppose that the reaction zone is located at z = [. Outside of
it, the dimensionless temperature 0 satisfies the following equation:

0" -v0' —0(0+1)=0. (4.4)

We look for the solution of (4.4) in the form

0(z) =creH1? +cpef22 -1 forO0<z<l|,

4.5
0(z) = c3eH1% + cyet22 -1 for z = I, @.5)
where
v V2
Hi2 = Ei ?"1‘0'. (46)

From the boundary conditions and jump conditions at the interface and from the
boundedness of the solution (c3 = 0), we obtain

c1+cr =0,
crettl 4 cpetel — ekl =
cimettt + coppet?t — cyppetet = v, 4.7)
1 ! 1
ci ettt +coppet?t + cyppett = ;I(Gf),

crettl et —1 = 0y,

where
0l¢ .
1(0f) = 2zJ eT/E D g (4.8)

Solving this system, we find the temperature distribution
I1(0f) +v 2 (
v (pierl = pperet)

1(05) = V% ety _
2vpp

0(z) = > etz —et2z) 1 for0<z<l,

(4.9)
0(z) = 1 forz=>l,
and the system of two equations with respect to the unknown temperature in the reac-
tion zone 0 and the distance to the reaction zone [:

1007) =20 (05 + 1z = v, 1ol = KIZEE (g 1), (4.10)
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In the particular case where o =0, u; = v, and 2 =0,
O =e Ml 1(0f) =02 (4.11)

If I = oo, then 0 = 0 and we obtain the normal velocity of the front propagation v} =
1(0). If § = 0, the integral can be found explicitly, v2 = 2, and we obtain the same
expression for the distance to the reaction zone as in [5]:

- —lln(glnﬂ). (4.12)
v VA u

4.2. Stability. In this subsection, we study stability of the stationary solution 6(z)
(Section 4.1) with respect to 1D thermal perturbation. This means that we consider the
model (4.1), (4.2), and (4.3) assuming that the wave number k of the perturbation

O(x,z,t) = Op(z)eM+@t C(x,t) = eek¥+t (4.13)
equals 0. As above, we will consider the limiting case L = oo, which gives a good approx-
imation of the problem in the bounded reactor if the reaction zone is not very close to
the outlet of the reactor.

We look for the solution in the form

0(z,t) = 0s(z) +0(z,t). (4.14)

Then 0, (z) satisfies the equation

0y —v6,— (0 +w)0 =0. (4.15)
Therefore,
c1e¥1? +cpe¥??, 0<z<l,
Op(z) = (4.16)
c3e¥1? +cue¥??, 1<z,
where
Y1 =v1J2rd, Yo :v¥, d=vV1+4Q+7,
(4.17)
_w 4o
Q= ﬁ, v = ?

Linearizing the jump conditions at the reaction zone, taking into account the bound-
ary condition at z = 0 and the fact that the perturbation is bounded at infinity, and
introducing the notations

E=cvexp(—-y2l), 1 =crexp[(y1—y2)l],
y (4.18)
v,

¢ = ¢, Cy = Cy, l=
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v

FIGURE 4.1. Thermal instability boundary: critical value of Z as a function of
the flow velocity.

we obtain the system of equations
€+€1 +C~2—C~4 =0,

20Q+1D)é+(1+d)E +(1-d) (62— E4) =0,

- . . . (4.19)

2Z1€+(1+d)G+(1—A)Cr —2647, =0,

Grexp(—dl) +cé =0,
with respect to the unknown constants €, ¢, ¢», and 4. Here
o1 1 _ 2K(Ty) 1-d
Zi=14 o (- K@) )T, 2= e A ]
(77) 5 0 (4.20)
I(T¢)-v f
](Tf) - I(Tf)‘i"UZ’ I(Tf)*J;ooK(T)dT

The condition of nontrivial solvability of this system gives the dispersion relation

(27, —1+d) [df (Q+ %) a fexp(fdi))] - 20d+2d(Z1-1).  (421)

In the particular cases where there is no heat loss (o = 0) and where [ — o, this disper-
sion relation coincides with the relations obtained in [1, 5].

At the oscillatory instability boundary, Q = i¢, where ¢ is an unknown frequency.
We can represent (4.21) as two real equations and find [ from one of them and Z as
a function of other parameters from the other one. The critical value of the Zeldovich
number is shown in Figure 4.1.
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5. Numerical simulations. In this section, we use direct numerical simulations to
study problem (1.3), (1.6) in two space dimensions. We consider the stream function-
vorticity formulation of the Navier-Stokes equations and employ an alternative direc-
tion method to solve the finite-difference equations.

We begin with the problem without convection and analyze the convergence of so-
lutions of the two-dimensional (2D) problem to the corresponding solution of the 1D
problem as the width of the domain decreases. After that, we compute the complete
problem with convection to study its influence on the thermal regimes.

5.1. Thermal regimes. In this subsection, we consider the problem without convec-
tion

90 _  , 00 701 _
at—AQ caz+koe (1-o),
ox ox 70
— =—Cc— — 5.1
3 caz+k0e (1-w), (5.1)
x=0,Lx:a—0=—00, z=0:0=0, x=0, z=Lz:@=O.
on 0z
The corresponding 1D problem is
00 0%0 00 70
E—Q*C$+koe (1*0()*59,
ox 0« 20y _
3 caz+koe 1-0o), (5.2)
z=0:0=0, x=0, z=Lz:%=0,
oy

where s = 20 /L. In Section 2, it is shown that the solution of problem (5.1) converges
to the solution of problem (5.2) as 0 — 0 and L, — 0 at any fixed time interval. The
same method allows us to show the convergence of stationary solutions of these two
problems.

We analyze the convergence of the stationary solutions numerically. We recall that
there can exist high-temperature and low-temperature stationary regimes in plug-flow
reactors [2]. If the speed u of the medium is greater than the normal velocity of the
front propagation, the high-temperature regime does not exist.

We vary two parameters o and Ly, keeping all other parameters constant. Let [; be
such that «x(l;) = 0.5 for the stationary solution of problem (5.2). Denote by l(x) the
function such that «x(I(x),x) = 0.5 for the stationary solution of problem (5.1),

lnay = maxl(x),  lmin =minl(x),
1 (5.3)
12 = E(lmax +lmin)| ld = lmax - lmin-

Figure 5.1 shows l; as a function of s and [, as a function of o for L, fixed and as a
function of L, for o fixed. The values [; and I, are compared for the same values of s.

We see that the results for two 2D simulations coincide. It is consistent with the
fact that the 1D problem (5.2) depends on the ratio of these parameters only. So we can
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FIGURE 5.1. Comparison of 1D and 2D simulations. The lower crosses repre-
sent 1D model; the upper crosses and the dashed line represent 2D model.

TABLE 5.1. Comparison of numerical results with different numbers of dis-

cretization points.

Ly o My l»

0.5 0.005 21 4.63
0.4 0.004 21 4.63
0.3 0.003 21 4.63
0.2 0.002 21 4.63
0.1 0.001 21 4.63
0.5 0.005 11 4.79
0.5 0.005 21 4.63
0.5 0.005 31 4.63
0.1 0.001 31 4.59

expect a similar behavior for the 2D problem (5.1). Its solution converges to the solution
of the 1D problem as s decreases. However, the difference between them increases as
s approaches the extinction limit.

We note that I is very small compared with I and Imin (of the order 1073). So
the 2D solution is practically independent of the x-variable. However, for s sufficiently
large, it differs from the 1D solution.

According to the results of Section 2, [ should converge to l; as Ly — 0 and 0 — 0
for s fixed. Table 5.1 shows [, for s = 0.02 and for various L, and o. We see that it has
exactly the same values. This shows a very good convergence as Ly and o decrease,
but to the value different from that of the 1D problem!



88 A. AGOUZAL ET AL.

0.45 ; ; . . . —
0.4} e
0.35t 37 ;
0.3+ - ;
0.25 e 1
0.2} A K .

Amplitude
N

0.15 / . 1
0.11 / , J
0.05 | I ] 1

FIGURE 5.2. Amplitude of periodic oscillations as a function of Z. Lower
crosses: without heat loss; upper crosses: with heat loss in the boundary con-
dition and in the equation; and dashed curves: approximation by the square-
root formula.

The explanation of this paradox is connected with the numerical accuracy. The com-
putations for Ly = 0.5, o = 0.005 and for Ly = 0.1, 0 = 0.001 are done with the same
number m, of discretization points (Table 5.1, Section 1). The space step in the sec-
ond case is 5 times less, the results coincide, and we conclude that the numerical accu-
racy is sufficient. However, this conclusion is wrong. Table 5.1 shows also the results
for L, = 0.5, o = 0.005, and for different numbers of discretization points in the x-
direction (Sections 2 and 3). Increasing m,, we observe that [, approaches l; = 4.50. The
conclusion of this analysis is rather unexpected: decreasing the width of the domain,
we should increase the number of discretization points. If it is fixed, the numerical
solution for the 2D problem does not converge to the numerical solution of the 1D
problem.

If Z exceeds a critical value Z., then the stationary solution loses its stability and
periodic in time regimes appears as a result of a Hopf bifurcation. Figure 5.2 shows the
amplitude of oscillations as a function of Z for the problem without heat loss (lower
curve), for problem (5.1) with heat loss in the boundary conditions, and for problem
(5.2) with heat loss in the equation (upper curve). We see that in agreement with the
linear stability analysis, heat losses destabilize the front (Section 4.2) and that the 1D
problem (5.2) provides a good approximation of the 2D problem (5.1).

5.2. Convection. For the problem without convection (R = 0) and without heat loss
(0 = 0), there can exist a stationary solution independent of x. This means that the
reaction zone is horizontal and the temperature below it is greater than the temperature
above it. Therefore, in the presence of gravity (R > 0), natural convection can appear.
The critical Rayleigh number R. and the amplitude of convection depend on parameters.
Figure 5.3 shows a bifurcation diagram where the amplitude of convection is given as a
function of the width of the domain L.. We note that the bifurcation diagram is typical
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0.4
0.35}

03} PRt
0.25 | / -
0.2} / .

Stream function

015} T
0.1} ’/ /w/

0.05 1 / 4

O I I I I I I I I
955 .96 .965 .97 .975 .98 .985 .99 995 1
Ly

FIGURE 5.3. Maximum of the stream function as a function of the width of
the domain for different Z. Dots: simulations, curves: approximation by the
square-root formula. Lower curve: Z = 7.8, intermediate curve: Z = 7.9, and
upper curve: Z = 8.0.

for a supercritical bifurcation. The maximum of the stream function as a function of L
is well described by the square-root dependence

Wm:a\le*Lfm (5.4)

where the critical value L$, depends on the Zeldovich number and a = 1.7 appears to be
the same for all Z. Increasing Z, we increase the maximal temperature gradient in the
stationary temperature distribution, which is roughly proportional to gZ. This is why
the convection becomes stronger. For a fixed width of the domain, the appearance of
convection is determined by the value of the Rayleigh number. If R exceeds a critical
value, convection appears and its amplitude grows together with R. As above, the critical
value of R decreases with the increase of the Zeldovich number. If Z passes through
the critical value where thermal oscillations appear, the stationary convective regime
loses its stability and oscillating convective solutions are observed.

REFERENCES

[1]  A.P.Aldushin and S. G. Kasparyan, Effect of heat loss on combustion wave stability, Combust.,
Expl. and Shock Waves 17 (1981), no. 2, 74-77.

[2]  A.S.Babadzhanyan, Vit. A. Volpert, V1. A. Volpert, S. P. Davtyan, and I. N. Megrabova, Frontal
regimes of an exothermal reaction with radially symmetric injection of reagents, Com-
bust., Expl. and Shock Waves 24 (1988), no. 6, 711-719.

[3] M. Garbey, A. Taik, and V. Volpert, Linear stability analysis of reaction fronts in liquids, Quart.
Appl. Math. 54 (1996), no. 2, 225-247.

[4] B. V. Novozhilov, The rate of propagation of the front of an exothermic reaction in a con-
densed phase, Dokl. Phys. Chem. 141 (1961), 836-838.

[S] V. Volpert, Stability of combustion in flow, Combust., Expl. and Shock Waves 23 (1987), 32-
324.



90 A. AGOUZAL ET AL.

[6] Ya.B. Zeldovich, G. I Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical
Theory of Combustion and Explosions, Consultants Bureau [Plenum]|, New York, 1985.

[7]  Ya.B. Zeldovich and D. A. Frank-Kamenetsky, The theory of thermal propagation of flames,
Zh. Fiz. Khim. 12 (1938), 100-105 (Russian).

A. Agouzal: Laboratoire de Mathématiques Appliquées, UMR 5585 CNRS, Université de Lyon 1,
69622 Villeurbanne, France
E-mail address: Abdel1atif.Agouzal@univ-Tyonl.fr

S. Boujena: Département de Mathématiques et Informatique, Université Hassan II, B.P 5366
Maarif, Casablanca, Morocco
E-mail address: s .boujena@fsac.ac.ma

1. Ciuperca: Laboratoire de Mathématiques Appliquées, UMR 5585 CNRS, Université de Lyon 1,
69622 Villeurbanne, France
E-mail address: ciuperca@maply.univ-Tyonl. fr

V. Volpert: Laboratoire de Mathématiques Appliquées, UMR 5585 CNRS, Université de Lyon 1,
69622 Villeurbanne, France
E-mail address: volpert@maply.univ-Tyonl.fr


mailto:Abdellatif.Agouzal@univ-lyon1.fr
mailto:s.boujena@fsac.ac.ma
mailto:ciuperca@maply.univ-lyon1.fr
mailto:volpert@maply.univ-lyon1.fr

Advances in Difference Equations

Special Issue on

Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back
to its founder Stefan Hilger (1988), and is a new area of
still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time
scales can build bridges between continuous and discrete
mathematics; moreover, it often revels the reasons for the
discrepancies between two theories.

In recent years, the study of dynamic equations has led
to several important applications, for example, in the study
of insect population models, neural network, heat transfer,
and epidemic models. This special issue will contain new
researches and survey articles on Boundary Value Problems
on Time Scales. In particular, it will focus on the following
topics:

e Existence, uniqueness, and multiplicity of solutions
e Comparison principles

e Variational methods

e Mathematical models

e Biological and medical applications

e Numerical and simulation applications

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ade/guidelines.html. Authors should
follow the Advances in Difference Equations manuscript
format described at the journal site http://www.hindawi
.com/journals/ade/. Articles published in this Special Issue
shall be subject to a reduced Article Processing Charge of
€200 per article. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/
according to the following timetable:

Manuscript Due April 1, 2009

First Round of Reviews | July 1, 2009

Publication Date

October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Andlise Matematica,
Universidade de Santiago de Compostela, 15782 Santiago de
Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Andlise
Matemadtica, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain;
mvictoria.otero@usc.es

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/
http://www.hindawi.com/journals/ade/
http://mts.hindawi.com/
mailto:alberto.cabada@usc.es
mailto:mvictoria.otero@usc.es

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

