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If B is a summability matrix, then the submethod Bλ is the matrix obtained by deleting a set
of rows from the matrix B. Comparisons between Euler-Knopp submethods and the Borel
summability method are made. Also, an equivalence result for convolution submethods is
established. This result will necessarily apply to the submethods of the Euler-Knopp, Taylor,
Meyer-König, and Borel matrix summability methods.
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1. Introduction and notation. Let E be an infinite subset ofN∪{0} and consider E as

the range of a strictly increasing sequence of nonnegative integers, say E := {λ(n)}∞n=0.

If B := (bn,k) is a summability matrix, then the submethod Bλ is the matrix whose nkth

entry is Bλ[n,k] := bλ(n),k. Thus, for a given sequence x, the Bλ-transform of x is the

sequence Bλx with

(
Bλx

)
n = (Bx)λ(n) :=

∞∑
k=0

bλ(n),kxk. (1.1)

Since Bλ is a row submatrix of B, it is regular (i.e., limit preserving) whenever B is regular.

Row submatrices have appeared throughout the literature [5, 6, 8, 12], but they were

first studied as a class unto themselves by Goffman and Petersen [7], and later by Steele

[14]. The class of Cesàro submethods has been studied by Armitage and Maddox [1] and

Osikiewicz [11].

Let A and B be two summability matrices. If every sequence which is A-summable

is also B-summable to the same limit, then B includes A, denoted by A ⊆ B. Also, B is

called a triangle if bn,k = 0 for all k > n and bn,n ≠ 0 for all n. The following lemma

extends [1, Theorem 1].

Lemma 1.1. Let B be a summability matrix and let E := {λ(n)} and F := {ρ(n)} be

infinite subsets of N∪{0}.
(1) If F \E is finite, then Bλ ⊆ Bρ .

(2) If B is a triangle and Bλ ⊆ Bρ , then F \E is finite.

(3) If B is a triangle, then Bλ is equivalent to Bρ if and only if the symmetric difference

E�F is finite.

In particular, B ⊆ Bλ for any λ.

Proof. Assume F \E is finite and let x be a sequence that is Bλ-summable to L.

Then there exists an N such that {ρ(n) : n ≥ N} ⊆ E. That is, {ρ(n) : n ≥ N} is a
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subsequence of {λ(n)}. Since limn(Bλx)n = limn(Bx)λ(n) = L, we have limn(Bρx)n =
limn(Bx)ρ(n) = L.

Now assume B is a triangle, and hence invertible, and F \E is infinite. Let F \E :=
{ρ(n(j))}∞j=0 with ρ(n(j)) < ρ(n(j+1)). Consider the sequence y defined by

yk :=

(−1)j, if k= ρ(n(j)) for some j,

0, otherwise,
(1.2)

and let x be the sequence B−1y . Then, for every n,

(
Bλx

)
n = (Bx)λ(n) =

(
B
(
B−1y

))
λ(n) =yλ(n) = 0. (1.3)

Hence, limn(Bλx)n = 0. However, for every j,

(
Bρx

)
n(j) = (Bx)ρ(n(j)) =

(
B
(
B−1y

))
ρ(n(j)) =yρ(n(j)) = (−1)j. (1.4)

Thus x is not Bρ-summable. Therefore Bρ does not include Bλ, which completes the

contrapositive of assertion (2). Lastly, assertion (3) follows from (1) and (2) since E�F :=
(E \F)∪(F \E).

To show the reason for the necessity of B being a triangle in assertion (2) of Lemma

1.1, consider the matrix B whose nkth entry is

B[n,k] :=



0, if n even and k≠
n
2
,

1, if n even and k= n
2
,

0, if n odd and n≠ k,

1, if n odd and n= k.

(1.5)

Then if λ(n) := 2n and ρ(n) := 2n+1, F \E is infinite and Bλ ⊆ Bρ .

2. Inclusion results for Euler-Knopp submethods. For r ∈ C \ {0,1}, the Euler-

Knopp method of order r is given by the matrix Er whose nkth entry is

Er [n,k] :=


(
n
k

)
rk(1−r)n−k, if k≤n,

0, if k >n.

(2.1)

For the case r = 1, E1 is the identity matrix, and E0 is the matrix whose nkth entry is

E0[n,k] :=
1, if k= 0, n= 0,1,2, . . . ,

0, otherwise.
(2.2)

It is well known that Er is regular if and only if 0< r ≤ 1 (see [4]).
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Let E := {λ(n)} be an infinite subset of N∪{0} and r ∈ C\{0,1}. The submethod Er,λ
is the matrix whose nkth entry is

Er,λ[n,k] :=


(
λ(n)
k

)
rk(1−r)λ(n)−k, if k≤ λ(n),

0, if k > λ(n).

(2.3)

Then Er,λ is regular if and only if Er is regular.

By a direct application of Lemma 1.1, we have the following inclusion result for the

Er,λ methods.

Lemma 2.1. Let E := {λ(n)} and F := {ρ(n)} be infinite subsets of N∪{0} and r ≠ 0.

(1) The method Er,λ ⊆ Er,ρ if and only if F \E is finite.

(2) The method Er,λ is equivalent to Er,ρ if and only if the symmetric difference E�F
is finite.

We now examine the relationship between Er,λ and the Borel summability method.

Recall that a sequence x is Borel summable to L if

lim
t→∞

e−t
∞∑
k=0

xk
tk

k!
= L. (2.4)

Theorem 2.2. Let E := {λ(n)} be an infinite subset of N∪{0} and r > 0. Then the

Borel summability method includes Er,λ if and only if S := (N∪{0})\E is finite.

Proof. If S is finite, then by Lemma 2.1, Er and Er,λ are equivalent. But the Borel

summability method includes Er for r > 0 (see [4]). Hence, it also includes Er,λ. If S is

infinite, then it may be written as a strictly increasing sequence of nonnegative integers,

say S := {ρ(m)}∞m=0. If Mn :=max0≤k≤n |Er [n,k]|, consider the sequence y defined by

yn :=

(
ρ(m)!

)2(ρ(m)+1
)
Mρ(m), if n= ρ(m),

0, otherwise,
(2.5)

and let x be the sequence E−1
r y ; that is, y = Erx and

lim
n→∞

(
Er,λx

)
n = lim

n→∞
(
Erx

)
λ(n) = lim

n→∞yλ(n) = 0. (2.6)

Hence, x is Er,λ-summable to 0. Now observe that for a given n,

∣∣yn∣∣= ∣∣(Erx)n∣∣≤ n∑
k=0

∣∣Er [n,k]∣∣∣∣xk∣∣≤Mn

n∑
k=0

∣∣xk∣∣. (2.7)
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Thus, for n= ρ(m), we have

(
ρ(m)!

)1/ρ(m) =
 1
ρ(m)!

· 1
ρ(m)+1

·
∣∣yρ(m)∣∣
Mρ(m)

1/ρ(m)

≤
 1
ρ(m)!

· 1
ρ(m)+1

ρ(m)∑
k=0

∣∣xk∣∣
1/ρ(m)

.

(2.8)

Since limsupm(ρ(m)!)1/ρ(m) =∞,

limsup
m→∞

 1
ρ(m)!

· 1
ρ(m)+1

ρ(m)∑
k=0

∣∣xk∣∣
1/ρ(m)

=∞, (2.9)

and it follows that limsupn(|xn|/n!)1/n = ∞. Thus,
∑∞
k=0(xk/k!)tk diverges for all

nonzero t and hence x is not Borel summable.

Theorem 2.3. There exists a sequence which is Borel summable but not Er,λ-sum-

mable for any λ and r > 0.

Proof. Let r > 0 and consider the sequence x defined by

xn :=n
(
− 1
r

)(
1− 2

r

)n−1

. (2.10)

Then it can be shown that (Er,λx)n = (−1)λ(n)λ(n). Hence x is not Er,λ-summable for

any λ. However,

e−t
∞∑
k=0

xk
tk

k!
= e−t

∞∑
k=1

[
k
(
− 1
r

)(
1− 2

r

)k−1
]
tk

k!

=
(
− 1
r

)
e−t

∞∑
k=1

(
1− 2

r

)k−1 tk

(k−1)!

=
(
− 1
r

)
te−t

∞∑
k=0

(
1− 2

r

)k tk
k!

=
(
− 1
r

)
te−te(1−2/r)t

=
(
− 1
r

)
te−(2/r)t.

(2.11)

Since r > 0,

lim
t→∞

e−t
∞∑
k=0

xk
tk

k!
= lim
t→∞

(
− 1
r

)
te−(2/r)t = 0, (2.12)

and hence x is Borel summable to 0.
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3. Convolution methods. Let p and q be sequences of real numbers with pk ≥ 0,

qk ≥ 0,
∑∞
k=0pk = 1, and

∑∞
k=0qk = 1. The convolution summability method is given by

the matrix C∗ := (cn,k) whose nkth entry is

cn,k :=


qk, if n= 0,
k∑
j=0

cn−1,jpk−j, if n≥ 1.
(3.1)

It is clear that C∗ is a nonnegative matrix such that for every n,
∑∞
k=0 cn,k = 1. Some

classical summability matrices are examples of the matrix C∗. If 0 ≤ r ≤ 1, p := {1−
r ,r ,0,0, . . .}, and q := {1,0,0, . . .}, then C∗ is the Euler-Knopp method of order r . If

0≤ r < 1,p := {0,(1−r),(1−r)r ,(1−r)r 2, . . .}, and q := {(1−r),(1−r)r ,(1−r)r 2, . . .},
then C∗ is the Taylor method of order r , denoted by Tr . If 0 < r < 1 and p := q :=
{(1−r),(1−r)r ,(1−r)r 2, . . .}, then C∗ is the Meyer-König method of order r , denoted

by Sr . If p := q := {1/k!e}, then C∗ is the Borel matrix method B∗. Similar forms of the

convolution method are known by different names, such as the random-walk method

and Sonnenschein method. (Further information on all of these methods may be found

in [3, 4, 13].)

If C∗ is the convolution method formed from the sequences p and q, then let

µ :=
∞∑
j=0

jpj, ν :=
∞∑
j=0

jqj. (3.2)

We note here that for the remainder of this work, p and q are nonnegative sequences

whose sums are 1, and µ and ν represent the sums in (3.2). Also, cn,k := 0 whenever

k < 0.

We next present some preliminary results concerning the convolution method.

Lemma 3.1. The convolution method C∗ is regular if and only if p0 < 1.

Proof. See [9].

Lemma 3.2. If µ <∞ and ν <∞, then for every n,

∞∑
k=0

kcn,k =nµ+ν. (3.3)

Proof. Note that for n = 0, the result holds. So assume the result holds for some

integer n> 0. Then

∞∑
k=0

kcn+1,k =
∞∑
k=0

k

 k∑
j=0

cn,jpk−j

= ∞∑
j=0

cn,j
∞∑
k=j
kpk−j

=
∞∑
j=0

cn,j

 ∞∑
i=0

ipi+j
∞∑
i=0

pi

= ∞∑
j=0

µcn,j+
∞∑
j=0

jcn,j = (n+1)µ+ν.
(3.4)

By induction, the result follows.
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Lemma 3.3. LetC∗ be the convolution method formed from the sequencesp and q and

D∗ := (dn,k) the convolution method formed from the sequences p and q̃ := {1,0,0, . . .}.
Then for nonnegative integers n, k, and j,

cn+j,k =
k∑
i=0

cn,k−idj,i. (3.5)

The proof of this lemma is a straightforward induction argument left to the reader.

Lemma 3.4. Let C∗ be the convolution method formed from the sequences p and q.

If µ <∞, ν <∞, 0<
∑∞
j=0(j−µ)2pj , and

∑∞
j=0 j3pj <∞, then

∞∑
k=0

∣∣cn,k+1−cn,k
∣∣=O( 1√

n

)
. (3.6)

Proof. Let D∗ := (dn,k) be the convolution method formed from the sequences p
and q̃ := {1,0,0, . . .}. We first prove that the result holds for D∗.

Let φ(t) := (√2πet2/2)−1 and xn,k := (k−nµ)/σ√n, where σ 2 := ∑∞
j=0(j −µ)2pj .

Then

√
n

∞∑
k=0

∣∣dn,k+1−dn,k
∣∣≤√n ∞∑

k=0

∣∣∣∣dn,k+1− 1
σ
√
n
φ
(
xn,k+1

)∣∣∣∣
+√n

∞∑
k=0

∣∣∣∣ 1
σ
√
n
φ
(
xn,k+1

)− 1
σ
√
n
φ
(
xn,k

)∣∣∣∣
+√n

∞∑
k=0

∣∣∣∣ 1
σ
√
n
φ
(
xn,k

)−dn,k∣∣∣∣.
(3.7)

The first and the third terms on the right-hand side of the inequality are bounded by a

result of Bikjalis and Jasjunas [2]. For the middle term, the mean value theorem yields

√
n

∞∑
k=0

∣∣∣∣ 1
σ
√
n
φ
(
xn,k+1

)− 1
σ
√
n
φ
(
xn,k

)∣∣∣∣= 1
σ

∞∑
k=0

∣∣φ′(ξn,k)∣∣(xn,k+1−xn,k
)

<
K
σ

∫
R

∣∣φ′(t)∣∣dt <∞, (3.8)

where ξn,k ∈ (xn,k,xn,k+1) and K > 0 is some constant. Thus, the result holds for the

convolution method D∗. Then, by Lemma 3.3,

∞∑
k=0

∣∣cn,k+1−cn,k
∣∣= ∞∑

k=0

∣∣∣∣∣∣
k+1∑
i=0

qk+1−idn,i−
k∑
i=0

qk−idn,i

∣∣∣∣∣∣
=

∞∑
k=0

∣∣∣∣∣∣qk+1dn,0+
k+1∑
i=1

qk+1−idn,i−
k∑
i=0

qk−idn,i

∣∣∣∣∣∣
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≤ pn0
∞∑
k=0

qk+1+
∞∑
k=0

k∑
i=0

qk−i
∣∣dn,i+1−dn,i

∣∣
≤ pn0 +

∞∑
i=0

∣∣dn,i+1−dn,i
∣∣ ∞∑
k=i
qk−i

= pn0 +
∞∑
i=0

∣∣dn,i+1−dn,i
∣∣=O( 1√

n

)
.

(3.9)

4. Equivalence results for convolution submethods. Let E := {λ(n)} be an infinite

subset of N∪{0}. The convolution submethod C∗λ is the matrix whose nkth entry is

C∗λ [n,k] := C∗[λ(n),k]. (4.1)

Lemma 4.1. The convolution submethod C∗λ is regular if and only if p0 < 1.

Proof. If p0 < 1, then C∗ is regular and hence C∗λ is also regular. Conversely, if C∗λ
is regular and p0 = 1, then C∗λ [n,k]= qk for all n and k. Since

∑∞
k=0qk = 1, there exists

a k̂ such that qk̂ ≠ 0. Then limnC∗λ [n,k̂]= qk̂ ≠ 0, which contradicts the regularity ofC∗λ .

The following theorem compares C∗λ with C∗ for bounded sequences.

Theorem 4.2. Let C∗ be the convolution method formed from the sequences p and q
with µ <∞, ν <∞, 0<

∑∞
j=0(j−µ)2pj , and

∑∞
j=0 j3pj <∞. Let E := {λ(n)} be an infinite

subset of N∪{0}. If

lim
n→∞

λ(n+1)−λ(n)√
λ(n)

= 0, (4.2)

then C∗ and C∗λ are equivalent for bounded sequences.

Proof. By Lemma 1.1, C∗ ⊆ C∗λ for any λ. So assume limn(λ(n+1)−λ(n))/√λ(n)=
0 and let x be a bounded sequence that is C∗λ -summable to L. Consider the set S :=
{ρ(n)} := (N∪{0})\E. If S is finite, then Lemma 1.1 shows that C∗λ and C∗ are equiva-

lent for all sequences. So assume S is infinite. Then there exists anN such that forn≥N,

ρ(n) > λ(0). Since E and S are disjoint, for n≥N, there exists an integer m such that

λ(m) < ρ(n) < λ(m+1). We write ρ(n) := λ(m)+j, where 0 < j < λ(m+1)−λ(m).
Then, for n≥N,

∣∣(C∗ρ x)n−(C∗λ x)m∣∣=
∣∣∣∣∣∣
∞∑
k=0

cρ(n),kxk−
∞∑
k=0

cλ(m),kxk

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∑
k=0

cλ(m)+j,kxk−
∞∑
k=0

cλ(m),kxk

∣∣∣∣∣∣.
(4.3)
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By Lemma 3.3, this becomes

∣∣(C∗ρ x)n−(C∗λ x)m∣∣=
∣∣∣∣∣∣
∞∑
k=0

 ∞∑
i=0

cλ(m),k−idj,i

xk− ∞∑
k=0

cλ(m),kxk

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∑
k=0

xk

 ∞∑
i=0

cλ(m),k−idj,i

−
 ∞∑
i=0

cλ(m),kdj,i

∣∣∣∣∣∣
≤ ‖x‖∞

∞∑
k=0

∞∑
i=0

dj,i
∣∣cλ(m),k−i−cλ(m),k∣∣

= ‖x‖∞
∞∑
i=0

dj,i
∞∑
k=0

∣∣∣∣∣∣
i−1∑
l=0

cλ(m),k−l−cλ(m),k−l−1

∣∣∣∣∣∣
≤ ‖x‖∞

∞∑
i=0

dj,i
∞∑
k=0

i−1∑
l=0

∣∣cλ(m),k−l−cλ(m),k−l−1

∣∣
= ‖x‖∞√

λ(m)

∞∑
i=0

dj,i
i−1∑
l=0

√
λ(m)

∞∑
k=0

∣∣cλ(m),k−l−cλ(m),k−l−1

∣∣.

(4.4)

By Lemma 3.4, there exists an M > 0 such that

√
λ(m)

∞∑
k=0

∣∣cλ(m),k−l−cλ(m),k−l−1

∣∣<M. (4.5)

Then, by Lemma 3.2,

∣∣(C∗ρ x)n−(C∗λ x)m∣∣≤ ‖x‖∞√
λ(m)

∞∑
i=0

dj,i
i−1∑
l=0

M = ‖x‖∞M√
λ(m)

∞∑
i=0

idj,i ≤ ‖x‖∞M√
λ(m)

·jµ. (4.6)

Since 0< j < λ(m+1)−λ(m),
∣∣(C∗ρ x)n−(C∗λ x)m∣∣< ‖x‖∞Mµ · λ(m+1)−λ(m)√

λ(m)
= o(1). (4.7)

Thus,

0≤ ∣∣(C∗ρ x)n−L∣∣≤ ∣∣(C∗ρ x)n−(C∗λ x)m∣∣+∣∣(C∗λ x)m−L∣∣= o(1)+o(1)= o(1). (4.8)

Therefore, the sequence C∗x may be partitioned into two disjoint subsequences,

namely (C∗λ x)n = (C∗x)λ(n) and (C∗ρ x)n = (C∗x)ρ(n), each having the common limit L.

Thus, x must be C∗-summable to L, and hence C∗ and C∗λ are equivalent for bounded

sequences.

The following theorem is a well-known result due to Meyer-König (see [10, Theo-

rem 25]).

Theorem 4.3. The methods Er (0 < r < 1), Sr (0 < r < 1), Tr (0 < r < 1), and the

Borel method are equivalent for bounded sequences.
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Since the Euler-Knopp methods of order 0 < r < 1, Taylor methods of order 0 <
r < 1, Meyer-König methods of order 0 < r < 1, and the Borel matrix method all have

generating sequences satisfying the conditions in Theorem 4.2, the following corollary

is immediate.

Corollary 4.4. Let E := {λ(n)} be an infinite subset of N∪{0} and 0 < r < 1. If λ
satisfies condition (4.6), then Er,λ, Er , Tr,λ, Tr , Sr,λ, Sr , B∗λ , B∗, and the Borel method are

all equivalent for bounded sequences.

The next theorem presents an equivalence relationship between the C∗λ submethods.

Theorem 4.5. Let C∗ be the convolution method formed from the sequences p and

q with µ < ∞, ν < ∞, 0 <
∑∞
j=0(j − µ)2pj , and

∑∞
j=0 j3pj < ∞. Let E := {λ(n)} and

F := {ρ(n)} be infinite subsets of N∪{0}. If

lim
n→∞

ρ(n)−λ(n)√
λ(n)

= 0, (4.9)

then C∗λ and C∗ρ are equivalent for bounded sequences.

Proof. Letx be a bounded sequence and consider the sequencesM(n) :=max{λ(n),
ρ(n)} and m(n) := min{λ(n),ρ(n)}. We write M(n) :=m(n)+ j, where j := M(n)−
m(n). For n≥ 1, we have

∣∣(C∗ρ x)n−(C∗λ x)n∣∣=
∣∣∣∣∣∣
∞∑
k=0

cρ(n),kxk−
∞∑
k=0

cλ(n),kxk

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∑
k=0

cM(n),kxk−
∞∑
k=0

cm(n),kxk

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∑
k=0

cm(n)+j,kxk−
∞∑
k=0

cm(n),kxk

∣∣∣∣∣∣.
(4.10)

Then, as in the proof of Theorem 4.2, we have

∣∣(C∗ρ x)n−(C∗λ x)n∣∣≤O(1) j√
m(n)

=O(1)M(n)−m(n)√
m(n)

=O(1)
√
λ(n)
m(n)

∣∣ρ(n)−λ(n)∣∣√
λ(n)

=O(1)·O(1)·o(1)= o(1).

(4.11)

Then if x is C∗λ -summable to L,

0≤ ∣∣(C∗ρ x)n−L∣∣≤ ∣∣(C∗ρ x)n−(C∗λ x)n∣∣+∣∣(C∗λ x)n−L∣∣
= o(1)+o(1)= o(1). (4.12)



64 J. A. OSIKIEWICZ AND M. K. KHAN

Similarly, if x is C∗ρ -summable to L, then

0≤ ∣∣(C∗λ x)n−L∣∣≤ ∣∣(C∗ρ x)n−(C∗λ x)n∣∣+∣∣(C∗ρ x)n−L∣∣
= o(1)+o(1)= o(1). (4.13)

Thus, C∗λ and C∗ρ are equivalent for bounded sequences.
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