IJMMS 2004:15, 755-762
PIL S0161171204310392
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

QUATERNIONIC REPRESENTATION OF THE MOVING FRAME
FOR SURFACES IN EUCLIDEAN THREE-SPACE
AND LAX PAIR

PAUL BRACKEN

Received 5 October 2003 and in revised form 20 October 2003

The moving frame and associated Gauss-Codazzi equations for surfaces in three-space are
introduced. A quaternionic representation is used to identify the Gauss-Weingarten equation
with a particular Lax representation. Several examples are given, such as the case of constant
mean curvature.

2000 Mathematics Subject Classification: 35A99, 53A05.

The study of surfaces in three- and higher-dimensional spaces has seen a resurgence
of interest recently due to various applications of these surfaces to various areas of
mathematical physics, especially to the area of integrable systems [1, 6, 8]. The par-
ticular class of surfaces known as minimal surfaces with constant mean curvature has
many applications to various physical problems. It is the intention here to review and
establish the Gauss-Codazzi equations for surfaces in Euclidean three-space. Next, a
quaternionic representation is introduced for the moving frame of the conformally
parametrized surface. It will be shown how the frame equations can be written using
quaternions by means of an SU(2) matrix. The main new element here is a straightfor-
ward derivation of a Lax pair based on the use of quaternions, and an application of
this result to the generalized Weierstrass representation [2]. Some specific examples
of solutions for the resulting equations are given, and a particular application to the
case of constant mean curvature surfaces under Konopelchenko’s generalization of the
Weierstrass representation is presented [7].

We begin by establishing some general notions with regard to orientable surfaces
in three-dimensional Euclidean space. Under such a parametrization, which is called
conformal, the surface S can be given by a vector-valued function

F = (Fi,F2,F3) : % — R3. (1)

The metric is conformal so that g = e%*idz;dz;, where z; is the local coordinate on the
Riemann surface.

The vectors F, F5 as well as the normal N such that (F;,N) = (F;,N) =0and (N,N) =
1 define a moving frame on the surface. The bracket represents the Euclidean inner
product (a,b) = a,b; + a>b, + azbs. The moving frame satisfies the Gauss-Weingarten
equations

o, =U0, 0:=V0o, o=(F,F:,N), (2)
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and the matrices AU and V" are defined by

Uz 0 Q 0 0 %He”
1
U=1] 0 0 EHe“ , V= 0 Us Q . 3)
—-H -2Qe™ 0 -2Qe™™ 0 0
Moreover, we have the relations
1
QZ(FzzyN)! EHeu:(Fzz'yN)- 4)

The first and second fundamental forms are given by the matrices

(5)

0 )+ He" i(Q-0Q
MI:eu<1 ) H:(Q+Q+ e i(Q-Q) )

0 1 i(Q-Q) —(Q+Q)+He"

The principal curvatures k; and k, are the eigenvalues of the matrix Mj; - M; . The
characteristic polynomial of this matrix is given by

A2 —2He"A—4|Q|?> +H?e** = 0. (6)

This polynomial has the two roots A = He* =2|Q|, and so the principle curvatures are
given by k12 = H=2e *|Q|. Then the mean curvature is given by the average of k;
and the Gaussian curvature is given by their product

K =kik, = H>—4e?%|Q|>. (7)

The Gauss-Codazzi equations, which are the compatibility conditions for (2), are ob-
tained by calculating

WUz =V, +[WU, V] = 0. (8)

Using U, given in (3), the expression in (8) reduces to the following matrix:

1 1
uzz—ZIlee‘”+§H2e” 0 QZ—EHZe“
0 —uzz-—%Hze”+2|Q|2e*” %Hz-e”—QZ . ©)
—HZ’+2€7”QZ —2Q2€7u+Hz 0

Requiring that all of the elements in the matrix given in (9) vanish as required by (8)
gives rise to the following set of equations:
_lZui 2,-u _ __1 u ‘_l_u
uzz+5He 21Q7e ™ =0, Qz—ZHze ; Qz—ZHze . (10)
The first equation in (10) is referred to as the Gauss equation and the last pair as the
Codazzi equations.
There exists a connection between quaternions and surfaces in R3, that is, there
is a quaternionic description of surfaces in R3, which we introduce now. The matrix
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® € SU(2) transforms the quaternionic basis f, f, k into the moving frame Fy, F,, N.
Equations (2) for the moving frame are rewritten using the Lie algebra isomorphism
between so(3) and so(2) in terms of 2 x 2 matrices. The quaternionic representation of
surfaces permits the identification of the Gauss-Weingarten equations of certain sur-
faces with the Lax representations for Painlevé equations. This quaternionic description
will be useful for analytic studies of curves and surfaces in three- and four-dimensional
spaces.

The algebra of quaternions is denoted by H and the multiplicative quaternion group
by Hy = H\ {0} such that the standard basis is written as {1, f, j , IE}, where the elements
in this set satisfy ff =k, fl% =1, and ki = j The Pauli matrices can be identified with
this basis under the following association: o, = if, or=1 f, o3 = ilz, and I = 1. The mul-
tiplication in terms of Pauli matrices is simply matrix multiplication. Then the matrix
® € SU(2) transforms the basis i, f, k into the frame Fy, Fy, N as follows:

Fy=e"?07 1o,  F,=e*?071jd, N=0 ko 11)

These equations imply that by means of the identification

(12)

B =Bol+Bii+PBaj+Bsk— (Bo—ﬁs ~B: +32>,

Bi+B2  Bo+B3
the moving frame (e %/2Fy,e%/2F,, N) of the surface is described by the expression
Ad(®) (i, ],k) = (e™*/*Fy,e"/?Fy,N). (13)

The complex representation for the first derivatives of F will be required to be used
with (2) and can be calculated as follows:

1 , , (0 0
Fo = 5 (Fx—iFy) = —ie"/?p1 (1 o) P,
0 1 )
1 , w2
F; = E(Fx-‘rle) = —je"?®! (0 O) .

The quaternion ¢ satisfies linear differential equations. To obtain these equations, we
introduce the matrices U,V given by

U=0,07', V=0;0"1, (15)
The quantities U, V must satisfy the compatibility condition
Us-V,+[U,V]=0. (16)

Differentiating (14) and using the definition of V in (15), the following second-order
derivatives of F are obtained:

b g1 (0 O\ upgot| (0O
F;; 27/Lz€ P (1 0 b —ie" P 1 0 V|, (17)
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and similarly for the mixed derivative,

.=_i wp2g-1(0 1 oul2g—-1 0 1
F;s, 2u2e (] (0 0 b —je' P 0 0 U | 9. (18)

By differentiating ®®~! = I with respect to Z, we obtain an expression for the derivative
of !, namely, ®;! = —-®'®,®~!. This is used to obtain the results in (17) and (18).
The second derivatives of F can also be obtained in terms of other quantities from the
equations for o in (2) using the matrices in (3). The following results will be required
in due course:

F..=u.F.+QN, Fs, = %e“HN, N, =—HF,—2¢ “QF:. (19)

Moreover, let the matrices U and V defined in (15) above have matrix elements:
Ui Up Vir V2
U= , V= , (20)
<U21 Uzz) <V21 sz)
where U and V are traceless matrices such that Uy; + Uy = 0 and V41 + Voo = 0. The en-
tries of the matrices in (20) can be determined by using the Gauss-Weingarten equations
(2) and the compatibility conditions.
In fact, we can work out F; in terms of the V;; which appear in V in (20) and then

equate the result to the quantity (e*/2)HN as dictated by (19) to give the elements of
the matrix V explicitly:

0 0 0 0\ (Viz O\] _ up, (1 O
S [ Rt R G A

Equating the corresponding elements of the resulting matrices on both sides of this
equation, we obtain that

—uz =2V —2Va, Vo= %e”/ZH, Viz = —%e”/ZH- (22)

When the matrix V is traceless, we must have Vi1 = —u;/4 = —V5,. Using the compati-
bility condition Fs, = F.:, we also have

0 u; U U2 0 Un _ou 1 0
(0 0)+2[(0 o)(o Uzlﬂ_EH(o —1)' @3

This result produces the following set of conditions which give U;; to be 2U»; = e“H,
Uz +2Uz» —2U7; =0, and —2U»; = —e"H. These results imply that

1 1
Un = 3 U= Uz = §€MH- (24)

To obtain an equation which contains F.,, we begin by differentiating the expression
for F; in (14) with respect to z to obtain

b a1 (0 0o ueg 1 (0 O\ upg-1 (0 O
F.. 2e u,o (1 0 d—ie'' D] 1 0 b —ie" P 1 0<I>Z. (25)
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From the Gauss-Weingarten equations (19), the equation for F. yields

”anl(o O)«b«blU(O 0)<I>+¢>1<0 O>U<1>

2 1 0 1 0 1 0
(26)
0 0 1 0
_ -1 “u/2g-1
u,d (1 0)¢’+e QP (0 _1><I>.
In terms of the required unknown matrix elements, (26) implies that
— -u/2 1 —_
Upp =—e°Q, U11*U22+§Mz =Ugz, (27)
and therefore,
-u/2 1
Uz = —e7°Q, U =-Up1 = —gUe (28)

The results which have been obtained here in the form of (22), (24), and (28) can be
summarized in the form of the following theorem.

THEOREM 1. Under the isomorphism Y = —iZileaoyx - (X1,X2,X3) in Euclidean
three-space, the moving frame F,, Fs, N of the conformally parametrized surface is
described by F., Fs given by (14), where ® € SU(2) satisfies (15) and the matrices U and
V are given in the form

1 1

%uz —eu2Q - us —Ee”/zH
U= 1 1 , V= 1 . (29)
Ee”/zH —ZMZ e*”/zQ Zui

The quantity ®, which can be considered to be H-valued, satisfies the pair of equations
d, =UP, d; =V, (30)

which are an equivalent form of the equations in (15).

As an example, it is possible to exhibit solutions to the set of equations in (30). We
consider the choice H =1/2,Q = —A/4,and Q = —1/4A. Then u = 0 is a global solution
of the Gauss-Codazzi equations when |A|2 = 1, defined on the whole plane and referred
to as the vacuum solution. The deformed equations corresponding to (30) for this state
are

1
0 % o -3

Py = 1 D), by : = 1 D). (31)
3 0 T

Under the initial condition &, (0,0) = 1, these equations can be solved explicitly.
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THEOREM 2. The following ®, satisfies (31) when A = u?:

Cosh<%(uz—u’lz‘)) usinhG(uz—u’li))
P, = 1 1 . 32)
uflsinh<g(uzfu*12)) cosh(i(uzflflz))

THEOREM 3. The following ®, satisfies (31) when A = —u?:

COSG(uzw‘lz)) —usin(%(uzw—lf))
) = ) 1 . (33)
u*sin(ﬂuzﬂrlz)) cos(i(uzﬂl*lz_))

As another important example, consider the case of constant mean curvature sur-
faces which can be generated by means of solutions of the generalized Weierstrass
representation. It has been shown recently in [3, 5] that surfaces with constant mean
curvature can be generated by calculating explicit solutions for the following system
of nonlinear Dirac type equations:

oY1 =pWo,  OYr=-pyn,

_ _ _ _ (34)
oY1 =pyo, oYz = —pyn,

where p = |@1]%+|y2|? and the equations in (34) have been normalized so that H = 1/2.
There exists a conserved current for system (34) which is given by

J =201 —P10y,. (35)
Using the generalized system (34), it is easy to show that
oJ=0J =0. (36)
The Gaussian curvature K of the surface can be calculated from

K= —%85(11110). (37)

The coordinate functions of the surface are found by substituting explicit solutions of
(34) and evaluating the following integrals:

Xi+ixz =21 | (§fdz’ - gz,
g (38)
X;—iXp = 2iJ (p3dz’ —y2dz),
Y

X3=-2 J (lj_ll Wodz +yn (Ilzdzl).
Y
The integrals are then evaluated and on account of system (34), the right-hand sides

of (38) do not depend on the choice of contour y in C. The functions X;(z,Z) are then
treated as the coordinates of a surface immersed into R3.
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Moreover, it is straightforward to show that system (34) is equivalent to the system
of equations

oolnp =~ - p?, o] =0j=0. (39)

The equations in (39) are the corresponding Gauss-Codazzi equations, which essentially
correspond to the compatibility conditions for (3) if we identify u = Inp? and make
some other reparametrizations [4].

With respect to the generalized Weierstrass system (34), the linear problem (3) can
be rewritten in terms of ; and y; as follows. Differentiating p = |@112 + |2 |?, we
have modulo (34),

6p:w16([11+q'123([12. (40)

Using the definition of the current J in (35), we can solve for the derivatives 0¢; and
0. Using these with (34), we obtain that the set of derivatives satisfies

_ VAN 0
ol = p
2 (il) _ ( np p) @1) a(il) - ( ] ) (il) (1)
2 p 0 2 2 ) olnp 2

The compatibility conditions for (41) should coincide with (39). Theorem 1 can be ap-
plied to this case by taking H = 1/2, Q = J and identifying u = Inp?. Then the matrices
U and V are given by

o _J _op _p
u=|% Pl v=| P 42)
r _op J o

These are the matrices which would appear in (30) and which satisfy (16).

As a final point, we would like to show that the classic Enneper surface for which
H = 0 can be produced as a solution to system (34). In this instance, since the right-
hand side of system (34) is proportional to H, it reduces to the simple linear system
dy; =0 and dy» = 0, since H cannot be scaled out in this case. These equations have
the general solutions y; = f(2) and @, = g(z). Consider this specific case of system
(34) where the particular solution y; = az and y, = b, with a, b € R is taken. Using
these solutions in (38) and integrating, the coordinates of the following Enneper-type
surface is obtained:

2 v
92,2 £ 2.3
X1—2auv—3av +2a2'
2
Xo =2a’uv® - §a2u3 + ZLaZ’ (43)

We have taken b = 1/(2a) and substituted z = u + iv after integration to obtain the
equations in (43). By rescaling the coordinates (u,v) — (u/2a?,v/2a?) and then X;,



762 PAUL BRACKEN

the standard classic form of Enneper’s surface is obtained. It is usually written in the
following form:

. 3 3
X:(v—%+u2v,u—%+uv2, uz—v2>. (44)

It is known that a surface has constant mean curvature of zero in R3 if and only if its
parametrized coordinate functions satisfy Laplace’s equation. In this case, it is easy
to verify that the results in both (43) and (44) do satisfy Laplace’s equation, namely,
Xuu +Xov = 0 as required. By taking solutions of the form @, = @z +b, @, = cz+d, with
a,b,c,d € Cin (38), the coordinate expressions of the more generalized Enneper-type
surfaces can be calculated.
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