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We establish the various relationships that exist among the integral transform % gF, the
convolution product (F * G) «, and the first variation 6 F for a class of functionals defined on
K[0,T], the space of complex-valued continuous functions on [0, T] which vanish at zero.
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1. Introduction and definitions. In a unifying paper [10], Lee defined an integral
transform %, of analytic functionals on an abstract Wiener space. For certain values
of the parameters & and f and for certain classes of functionals, the Fourier-Wiener
transform [2], the Fourier-Feynman transform [3], and the Gauss transform are special
cases of his integral transform %, . In [5], Chang et al. established an interesting re-
lationship between the integral transform and the convolution product for functionals
on an abstract Wiener space. In this paper, we study the relationships that exist among
the integral transform, the convolution product, and the first variation [1, 4, 9, 11].

Let Cy[0,T] denote one-parameter Wiener space, that is, the space of all real-valued
continuous functions x(t) on [0, T] with x(0) = 0. Let .t denote the class of all Wiener
measurable subsets of Cy[0,T] and let m denote Wiener measure. Then (Cy[0, T], M,
m) is a complete measure space and we denote the Wiener integral of a Wiener inte-
grable functional F by

J F(x)m(dx). (1.1)
Col0,T]

Let K = K[0,T] be the space of complex-valued continuous functions defined on
[0, T] which vanish at t = 0. Let & and S be nonzero complex numbers. Next we state
the definitions of the integral transform % gF, the convolution product (F * G), and
the first variation 6 F for functionals defined on K.

DEFINITION 1.1. Let F be a functional defined on K. Then the integral transform
FopF of F is defined by

Fop(F) () = FopF(y) = L [

F(ax+By)m(dx), y €K, (1.2)
0[0,T]

if it exists [5, 8, 10].
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DEFINITION 1.2. Let F and G be functionals defined on K. Then the convolution
product (F % G) of F and G is defined by

(F%G)a() ELO[OVT]F<J/\+/§X)G(3/?/;(X>m(dx), y ek, (1.3)

if it exists [5, 7, 13, 14].
DEFINITION 1.3. Let F be a functional defined on K and let w € K. Then the first
variation 0F of F is defined by

d
6F(y|w)E§F(y+tw)\t=o, v €K, (1.4)

if it exists [1, 4, 11].

Let {61,0>,...} be a complete orthonormal set of real-valued functions in L,[0, T].
Furthermore, assume that each 6; is of bounded variation on [0, T']. Also let Var(6;,[0,
T1) denote the total variation of 0; on [0,T]. Then for each y € K and j € {1,2,...},
the Riemann-Stieltjes integral (0;,y) = fOT 0;(t)dy(t) exists. Furthermore,

T
140, | = —jo y(t)de,«t)\ <Cillylle 15)

with
Cj=10;(T)| +Var(0,,[0,T1). (1.6)

Next we describe the class of functionals that we work with in this paper. Let Ej be
the space of all functionals F : K — C of the form

F()=f({01,5)s-.,{On,)) (1.7)

for some positive integer n, where f(A1,...,A,) is an entire function of the n complex
variables Aq,...,A, of exponential type; that is to say,

|f(7\1,...,2\n)\SAFexp{BFZ|/\j|]> (18)

Jj=1

for some positive constants Ar and Br.
To simplify the expressions, we use the following notations. For i = (u1,...,u,) € R"
and A = (Aq,...,A,) € C", we write

n n

([ = Zu => u;l, 1Al =z dii = du - - - dun,
j=1 —
B = (1.9)

f(oai+ ((xu1+BA1,...,o<un+BAn),

f((é!y>) =f(<91;y>,: <0n1y>)
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Hence (1.7) and (1.8) can be expressed alternatively as
F(y)=f((0,), |fQ)] = Arexp (BelAl}, (1.10)

respectively. In addition, we use the notation
Fj(y) = £;(16,7)), (1.11)

where fj(A) = (3/0A;) f(A1,...,An) for j=1,...,n.

In Section 2, we show that if F and G are elements of Ey, then FypF(-), (F*G)a(+),
OF(-|w),and 6F(y|-) are also elements of Ey. In Section 3, we examine all relationships
involving exactly two of the three concepts of “integral transform,” “convolution prod-
uct,” and “first variation,” while in Section 4, we examine all relationships involving all
three of these concepts where each concept is used exactly once. For related work, see
[2,5,7,9,10, 11, 13, 14] and for a detailed survey of previous work, see [12].

REMARK 1.4. For any F € Ey and any G € Ej, we can always express F by (1.7) and
G by

G(x) =g((01,x),...,{On, X)) (1.12)

using the same positive integer n, where f and g are entire functions of exponential
type. For example, if F € Ej is of the form

F(x)=7r({01,x),(02,x)), (1.13)
and G € Ej is of the form
G(x) =5((01,x),(03,x),{04,x)), (1.14)

where ¥ (A1,A2) and s(A1,A3,A4) are entire functions of exponential type, then we can
express F and G by (1.7) and (1.12) with n = 4 by choosing f(A1,A2,A3,A4) =7 (A1,A»)
and g(A1,A2,A3,A4) = s(A1,A3,A4). In addition, the positive constants Ar, Br, Ag, and
B remain fixed. Thus throughout this paper, we will always assume that F and G belong
to Ey and are given by (1.7) and (1.12), respectively.

REMARK 1.5. We considered various other classes of functionals before deciding to
work exclusively with the class Ey throughout this paper. One very natural class we
considered was L, (C) = L,(Cy[0,T]), the space of all complex-valued functionals F
satisfying

J |F(x)|*m(dx) < o. (1.15)
Col0,T]

However in [8], Kim and Skoug showed that L, (C) is not invariant under the action of
the integral transform operator. In fact, they showed that for every § € C with |B| > 1,
there exists a functional F € L, (C) (the functional F depends on f) with F g (F) ¢ L»(C)
even though o + 82 = 1.
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Another class of functionals we considered was
A={FeLy(C):Fnp(F) € L(C) VY nonzero &, € C}. (1.16)

But for F € A, the first variation 6F of F may not exist; in fact, one needs some kind of
a smoothness condition on F to even define SF.

As we will see in Section 2, Eq is a very natural class of functionals in which to study
the relationships that exist among the integral transform, the convolution product, and
the first variation because for F and G in Eg, F4g(F) and (F * G) « exist and belong to
Ey for all nonzero complex numbers « and 3, while 6F (v |w) exists and belongs to Ey
for all ¥ and w in K. In addition, E, is a very rich class of functionals. Note that if
Ey is given by (1.7), then the entire function f(A1,...,A,) is bounded if and only if it
is a constant function. Thus many of the functionals in Ey are unbounded, while for
example, all of the functionals considered in [11] are bounded.

The so-called “tame functionals,” that is, functionals of the form

Gx)=g(x(t1),....,.x(tm)), O<ty<-- <ty <T 1.17)

as well as functionals of the form (1.7), played a major role in the development of
Wiener space integration theory. But functionals of the form (1.17) are in E, provided
g(A1,...,Ap) is an entire function of exponential growth. Included of course are all
polynomials of m complex variables Aq,...,A,, for all positive integers m, as well as
such polynomials in x(t;),...,x(t,,) multiplied by functionals like exp{zyil ajx;(t)},
and so forth.

2. The integral transform, the convolution product, and the first variation of func-
tionals in Ey. In our first theorem, we show that if F is an element of Ej, then the
integral transform of F exists and is an element of Ej.

THEOREM 2.1. Let F € Ey be given by (1.7). Then the integral transform % gF exists,
belongs to Ey, and is given by the formula

FosF () = h((0,7)) (2.1)

for v € K, where
h(X) = (2mm) "2 JW £ (o + BX) exp { -2 \|a||2}da. (2.2)
PROOF. For each y € K, using a well-known Wiener integration theorem, we obtain

FopF () = L oy F(0x)+ B0, ) m(dx)

ol0,
_ —n2 - 5 L) (2.3)
(2m) 2 [ e+ B0, exp | 3 i) i
=h((6,y)),
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where h is given by (2.2). By [6, Theorem 3.15], h(X) is an entire function. Moreover, by
inequality (1.8), we have

[R@)| < @m)2 | Apexp | Brlai+ BRI 5 il | dui
RM

. (2.4)
< Ag, yrexp {By, 4r|Al},
where
2 n
A%,BF (FJ exp{ +Bp|0(u|}du) R ) (2.5)
and By gF = Br|Bl. Hence F gF € Ey. d

In our next theorem, we show that the convolution product of functionals from Ej is
an element of Ej.

THEOREM 2.2. Let F,G € Ey be given by (1.7) and (1.12) with corresponding entire
functions f and g. Then the convolution (F x G) 4 exists, belongs to Ey, and is given by
the formula

(F*G)a(y) =k((6,»)) (2.6)

for v € K, where

k() = <2n>"/2jwf(“f‘;ﬁ)g(";‘_2m) el -Jlaltfai. @2

PROOF. For each y € K, using a well-known Wiener integration theorem, we obtain

(F%G)aly) = J(CO[OVT]F<y+O(X)G(y_ax>m(dx)

V2 V2
_ <é,y>+«x<é,x>> (<é,y>a<é,x>) 4
JCO[O,T]f< \/§ g \/7 midx) (2.8)
. (0,y)+oii) ((0,y)—oui 1)
_ n/2 = 2
- 2m) L@j( o )g( s )exp{ Sl e
=k((0,7)),
where k is given by (2.7). By [6, Theorem 3.15], k(X) is an entire function and
> —nJ2 Br+Bg ,, =~ . _l =12 .
k)| = @m [ aragep | 2O Hlod ) - gl taa
= A(FxG)o €XD {Brxcra AL},
where Brs6), = (Br +Bg)/+/2 and
2 n
A(F*G)D(:AFAG(\/—J exp{ +B(F*G)[x|(xu|}du> < 00, (2.10)

Hence (F * G) € Ey. O
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In Theorem 2.3, we fix w € K and consider 6F(y|w) as a function of 7y, while in
Theorem 2.4, we fix y € K and consider 6F(y|w) as a function of w

THEOREM 2.3. Let F € Ey be given by (1.7) and let w € K. Then

SF(ylw) =p((6,»)) 2.11)
for v € K, where

p() :Z 0;,w) f;(X).

(2.12)
Furthermore, as a function of v € K, 6F(y|w) is an element of Ey
PROOF. For y €K,
P . .
SF(ylw) = = f({0,3) +£(0,w)) [,

n . (2.13)
= > {0;,w)fi((6,y)) =p((6,)),

j=1

where p is given by (2.12). Since f(X) is an entire function, f (A) and so p(X) are entire
functions. By the Cauchy integral formula, we have

Fi(AL oAy, Ay) = LLE . lf(M,...,C,...,?\n)

- ac. (2.14)
2mri (T-A))° ¢
By inequality (1.8), for any € with |[C —A;| = 1, we have

F(AL.., T Ay -
<Apexp (Br(|Ar| +-- -+ [T+ + [Ax])}
(T-2))° ' o (2.15)
SAFeXp{BF|X|+BF}.
Hence
| fi(X)| < Ape®r exp {Br|Al} (2.16)
and so
lp(N)] < Z [(0;,w) | | fi(X) | < Asr(1w) exp {Bsr(-juw) |Al} (2.17)
where
Asr(w) = ApeP [wlle D Cj < 0 (2.18)
j=1

with C; given by (1.6) and Bsr(.|w) = Br.



INTEGRAL TRANSFORMS, CONVOLUTION PRODUCTS, ... 585

THEOREM 2.4. Lety € K and let F € Ey be given by (1.7). Then

SF(y|w) =q((6,w)) (2.19)
for w € K, where
aX) = > Aif((0,)). (2.20)
j=1

Furthermore, as a function of w, F (y|w) is an element of Ej.

PROOF. Equations (2.19) and (2.20) are immediate from the first part of the proof of
Theorem 2.3. Clearly q(X) is an entire function. Next, using (2.16) we obtain

la) | = X 1A;fi((6,5) |
j=1
< ArePexp (Brl[(0,) [+ + [0 Y N 1)
j=1
< ApePrexp {Bp||y|lo[C1+ - - - +Cn]}"3IXI

= Asr(y|) €XP {Bsr(y1 AL},

where Bsg(y).) = 1 and
Asr(y|.) = ApePr exp {Bpl|yllw[C1+ - - - + Cnl}. (2.22)
Hence, as a function of w, 6 F(y|w) € Ey. d

We finish this section with some observations which we use later in this paper. First
of all, (1.2) implies that

FosF (55 ) = Fopr 2P ) (2.23)

for all v € K. Next, a direct calculation using (1.4), (1.2), (2.11), and (2.23) shows that
Y| w B <
0FupF (25| ) = 8%y aF (VW) = Lo 3 (050 Fup oFi(y) (224)
NN : V2 & :

for all v and w in K. Finally, by similar calculations, we obtain that

- Y\ V2
$a,ﬁ(5F(|W))(ﬁ) = Féd“a’B/ﬁF(y|W) (2.25)
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for all ¥ and w in K, and for all y € K,

(FapF) j (V) = BFup(Fj) () = BFapFi(¥). (2.26)

3. Relationships involving two concepts. In this section, we establish all of the
various relationships involving exactly two of the three concepts of integral transform,
convolution product, and first variation for functionals belonging to Ey. The seven dis-
tinct relationships, as well as alternative expressions for some of them, are given by
(3.1), (3.2), (3.4), (3.7), (3.9), (3.11), and (3.13).

In view of Theorem 2.1 through Theorem 2.4, all of the functionals that occur in this
section are elements of Ey. For example, let F and G be any functionals in Ey. Then
by Theorem 2.2, the functional (F * G) belongs to Ey, and hence by Theorem 2.1, the
functional F g (F * G)« also belongs to Ey. By similar arguments, all of the functionals
that arise in (3.1) through (3.14) and (3.16) through (3.20) exist and belong to Ej.

Our first formula (3.1) is useful because it permits one to calculate Fyg(F * G)«
without ever actually calculating (F * G) .

FORMULA 3.1. The integral transform of the convolution product of functionals
from Ej is given by the formula

o — Y \a Y\_a o
Foop (F 5 G)ar() = wa,BF(ﬁ)m,BG(ﬁ) = Foop) TF D) Fap2Gy) (D)

for all y in K.
PROOF. Formula 3.1 is a special case of [5, Theorem 3.1]. O

FORMULA 3.2. The convolution product of the integral transform of functionals
from Ej is given by the formula

(@“,BF*GJPD‘,BG)“(J/)
_ ~3n/2 B Bo .
= (2m) wa(tx \/—<9 Y)Y+ = Nk )
12 212 4|1 &l2
g<a§ ﬁ(@y}i%ﬁ)exp{lu” +||1;H + 5] }dﬁdfds’

(3.2)

for all y in K.

PrOOF. Using (1.3) and (1.2), we see that

(ga,BF*@o{,BG)o((y)
V+ax Y —ox
[ (7 (2
JC‘O[O,T] B V2 xB V2 m(dx)

= JCO[O’T] I:JCO[O,T] F((le + B(y\;_;(x))m(dm)}
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. |:—[CO[O,T] ¢ ((xzz + B(y_\/;(X))m(dzz)}m(dx)

g(O((@Zz) + ﬁ@,y) - %—3<§,X>)m(dx)m(d21)M(d22)-
(3.3)

Formula (3.2) now follows upon evaluating the above Wiener integrals. |

FOrRMULA 3.3. The integral transform with respect to the first argument of the vari-
ation is given by the formula

Fap(OF(-lw))(y) = Ewaﬁﬂww =Z (0j,w)FupFi(y) (3.4)

for all y and w in K.

PROOF. By applying Theorem 2.1 to expression (2.11), we obtain
. ~ 1, . .
Fot (SF (1)) () = <2n>*"/2j p o+ B16,) exp | - 5 [l | dui

= (2m) "/ZZ (QJ,w)J fi(oxti+ (o, y))exp{ ||11H2}d11
j=1
(3.5)

On the other hand, by applying Theorem 2.3 to expression (2.1) and then using (2.2),
we obtain

L 5T g F(yw) = = S (0,,w)h;((6,7))
B B =
%Z (0;,w) 2y [ f (e + B, y)exp] - Sl du
b=
= (2m)~"/? i (0; w)J filoai+ (o y))exp{—lllﬁ\lz}dﬁ
= Jr R J ’ 2 )
(3.6)
O

and so (3.4) is established.

FORMULA 3.4. The Integral transform with respect to the second argument of the
variation is given by the formula

Fap(6F(v|))(w) = BSF(y|w) (3.7)

for all ¥ and w in K.



588 BONG JIN KIM ET AL.

PROOF. By applying Theorem 2.1 to expression (2.19), we obtain

Foup (BF(Y1) (w) = ) ™2 | a(ocii+B(0,w)) exp | - il | did

= (27r) "2 Z Jw (oxu; +B(9j,w))fj((é,y))exp{—%Ilﬁllz}dﬁ

n
Z (0,,w) f;({6,)) = BSF (v |w).
(3.8)
|
FORMULA 3.5. The first variation of the convolution product of functionals from E

is given by the formula

<9$§w>[(FJ*G)a(yH(F*Gj)a(J’)] (3.9)

M=

OF*G)u(ylw) =

1

~.
I

for all y and w in K.
PROOF. By applying Theorem 2.3 to (2.6) and then using (2.7), we obtain
S (F % G) (vlw)

<9le>

FJ*G)a(y)+(F*Gj)0((y)]'

R
(3.10)
O

FORMULA 3.6. The convolution product, with respect to the first argument of the
variation, of the variation of functionals from Ej is given by the formula

(SF(-lw) % 5G(-| = 2. 2.(0;,w){(01,w) (Fj % G1) o (») (3.11)
j=1l=1

for all ¥ and w in K.

PROOF. Applying the additive distribution properties of the convolution product to
the expressions

SF(ylw) = > (0;,w)F;(»),  3G(yIw) = (0,w)Gi(¥) (3.12)
i =1

yields (3.11) as desired. O
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FORMULA 3.7. The convolution product, with respect to the second argument of the

variation, of the variation of functionals from Ej is given by the fromula

(6F<y|->*5c<y\->)a<w>:%5F<y|w>5c<y|w> 2 S E ()G (9)
j=1

for all y and w in K.

PROOF. Upon applying Theorem 2.2 to the expressions
n
SF(ylw) = Z (0,w)f;((6,3),  §G(yIw) = Z (0, w)g1((0,w)),

and using the fact that

1 mmn? if j=1,

) Lzl gq —

J ujulexp{—zl\ull }duf
R™ 0 if j #1,

we obtain

(SF(y1) % 6G(¥]+)) (W)

e {iwﬂxmj( yﬂ

j=1

[i O, w ““lgz(w y>)} exp{—%nanZ}m

=1

= —(217) ni2 Z ij (0,9)a1(40,7))

j=1l=1

L (05 w) + o) (0 w0) - ) exp | = 3 i |

-3 ili 0,,w)(01,w) f;(¢6,))9:1((6,7)) —"‘72 S £(46.3))9,((6,3))
j=11=1 Jj=1
;[ij,w)fj (0,y) Mi O, w)ag1(( } %i (V)G (y
j=1 =1 i

= SOF(Iw)SG (v |w) - “7 Z (3)G; ().

(3.13)

(3.14)

(3.15)

(3.16)
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Finally, letting G = F in (3.1), (3.9), (3.11), and (3.13) yields the formulas

Fop(FxF)a(y) = [Fop nFON], (3.17)
S(F*F)a(ylw) =23 (0;,w) (FxFj)o(»), (3.18)

j=1
(OF(+lw) * SF(-|w)) (») = ZZ (0;,w) {01, W) (Fj*F) (), (3.19)
(5F(y|-) % SF(v]-)) 4 (w 5[6F<y|w> "‘72 [F;(»)]? (3.20)

Jj=1

for all ¥ and w in K.

It is interesting to note that the left-hand side of each of the formulas (3.1), (3.2),
(3.4), (3.7), (3.9), (3.11), (3.13), (3.17), (3.18), (3.19), and (3.20) involve exactly two of
the operations of transform, convolution and first variation, while each right-hand side
involves at most one of these three operations.

4. Relationships involving three concepts. In this section, we examine all of the
various relationships involving the integral transform, the convolution product, and
the first variation, where each concept is used exactly once. There are more than six
possibilities since one can take the transform or the convolution with respect to either
the first or the second argument of the variation. However, in view of formula (3.4)
and (3.7), there are some repetitions. To exhaust all possibilities, we need to take the
variation of the expressions in (3.1) and (3.2), the convolution of the expressions in (3.4)
and (3.7), and the transform of the expressions in formulas (3.9), (3.11), and (3.13). It
turns out that there are ten distinct formulas, and these are given by (4.1) through
(4.10) below. We omit the details of the calculations used to obtain (4.1) through (4.10)
because the techniques needed are similar to those used above in Sections 2 and 3.

Again, because of the theorems in Section 2, all of the functionals that arise in this
section are automatically elements of Ey. As usual, F and G in Ej are given by (1.7) and
(1.12), respectively.

FORMULA 4.1. Taking the first variation of the expressions in (3.1) or taking the
transform of the expressions in (3.9) with respect to the first argument of the variation
and then using (2.23) and (2.24) yields the formula

0Fup(F*G)x(¥|w) = BFap0(F*G)x(-lw)(y)

Y y | w
‘“*“"F<f>5""”6<ﬁ‘ﬁ>

F AT . 4.1)
*‘”“’ﬁF(ﬂ) ﬁ)""““G(ﬁ)

= Fop1vzF (¥)6F o5, 2G (¥ W)
+0F oy 2F (VW) F o 2G (V)

for all y and w in K.
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FORMULA 4.2. Taking the first variation of the expressions in (3.2) or replacing F
with %4 gF and G with %, gG in (3.9) yields the formula
6 (FapF * FopG) o (vIw)
B < o o 4.2)
- 7 Z (0;,w)[(FapFj* FapG) (V) + (FapF * FapG)) ()]
for all y and w in K.

FORMULA 4.3. Taking the integral transform of the expressions in (3.9) with re-
spect to the second argument of the variation yields the formula
Fop0(F*G) (¥ )(w) = BO(F*G)u(y|lw)
(4.3)

B n
= <9!w>[(F*G):x(y)+(F*G)o((y)]
ﬂj; ] J J
for all ¥ and w in K.

FORMULA 4.4. Taking the integral transform of the expressionsin (3.11) with respect
to the first argument of the variation and then using (3.1) and (2.25) yields the formula

Foo (SF(-[w) % 5G (-[w)) () = Fuu pOF (- |w>( Fo G (- |w)(

0F o p1v2F (VW) 6F 5 /2G (v W)

5 (4.4)
N
for all ¥ and w in K.

FORMULA 4.5. Taking the integral transform of the expressions in (3.11) with respect
to the second argument of the variation yields the formula

J (6F (- 1Bw + ax) x 6G (- |Bw + xxx)) o () m(dx)
Col0,T]

n (4.5)
= B2(SF(-|1w) % 3G (-|w)) () + 0 > (F; % Gj) o ()
Jj=1

for all ¥ and w in K.

FORMULA 4.6. Taking the integral transform of the expressions in (3.13) with respect
to the first argument of the variation yields the formula

J (OF(By +ax|-)*6G(By +ax|-))(w)m(dx)
Col0,T]
(4.6)

r\)lr—*
u[\/_]=

z 0, w) (0, w)Fup F@)(y)——Zdw (FiG;)(»)
=1 j=1

for all ¥ and w in K.
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FORMULA 4.7. Taking the integral transform of the expressions in (3.13) with respect
to the second argument of the variation yields the formula

2
Fapg(OF(¥|) % 6G(¥]-)) (W) = %5F(y lw)6G(y | w) 4.7)

for all ¥ and w in K.

FORMULA 4.8. Taking the convolution product of the expressions in (3.4) with re-
spect to the first argument of the variation yields the formula

| —

(FapOF (- lw) x FagdG(-|w)) (V) = — (6FapF (- |[w) % 6Fx gG(-1w)) 4 ()

2

=

(4.8)
(0, w) (01, w)(FapFj* FuapGi) ()

M=
M=

11

J 1

for all y and w in K.

FORMULA 4.9. Taking the convolution product of the expressions in (3.4) with re-
spect to the second argument of the variation, or replacing F with %,gF and G with
F«,pG in (3.13) and using (2.26) yields the formula

(6FapF(¥1") % 6F G (¥]+)) ((w)
> n

1 [0
= S0FupF(VIW)0FupG(yIw) — — FoapF) i (V) (FapG) i ()
50F e 5 2};( BF) ;) (FapG), wo)

0(2 2 n
2B > FapFi (V) FapGi(y)
-1

1
= 559*7a,ﬁF(yIW)69?a,ﬁG(yIW)—

for all y and w in K.

FOrRMULA 4.10. Taking the convolution product of the expressions in formula
(3.7) with respect to the second argument of the variation yields the formula

(FapOF () % FapdG (Y1) (W) = B> (SF(¥]-) % 6G (V1)) o (W)

2 st

2 n
p [6F(y|w)6c<yw> _o? Zmy)cj(y)]

(4.10)

for all ¥ and w in K.

For completeness, note that taking the convolution product of the expressions in
(3.7) with respect to the first argument of the variation, does not yield a new formula;
we simply get formula (3.11) again.

Again it is interesting to note that the left-hand side of each of the formulas (4.1),
(4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10) involve all three of the opera-
tions of transform, convolution, and first variation, while each right-hand side involves
at most two. Also note that formulas (3.1), (3.13), (4.4), (4.7), (4.9), and (4.10) are useful
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because they permit one to calculate Fug(F * G)x(y), (OF(¥[-) % 6G(¥]-)) (W), ...,
and (Fug0F (¥1-) * Fog0G(y|-))x(w) without actually having to calculate the con-
volution products on the left-hand sides of formulas (3.1), (3.13), ..., and (4.10). It is
usually harder to calculate convolution products than transforms and first variations.

5. Further results. It is well known, see for example [5, 10], that for all F € Ey, all
v eK,and all a, b, and c in C,

J (J F(aw+bx+cy)m(dw))m(dx)
Colo,11 \ Jcol0,1]

=J F(\/a2+b22+cy)m(dz) (5.1)
Col0,T]

=I (j F(aw+bx+cy)m(dx)>m(dw),
coto,11 \ Jcoro,11
and that
Fop(Fo g F) (V) =F(¥) =Fo p (FapF) () (5.2)
provided BB’ =1 and &+ (B’)? = 0. In particular, for all v € K,

Fop (Fiasp/pF) (V) = F(¥) = Fiasp1/8(FapF) (V) (5.3)

for all nonzero complex numbers « and S.
If in (1.3) we replace & with i/, then (5.3) enables us to express the convolution
product of the transforms of F and G as a transform of the product of F with G.

THEOREM 5.1. Let x and B be nonzero complex numbers and let F and G be func-
tionals from Eqy given by (1.7) and (1.12), respectively. Then for all y € K,

(FoagF * FapG)insp() =@a,B(F(ﬁ)G<ﬁ)>(y)

(5.4)
=Fop2FG) ().
PROOF. let &’ =ix/B and B’ = 1/B. Using (3.1), it follows that the formula
For,p (L *L2) o (V) = Fo pr Ly (%)%gﬁiz(%) (5.5)

holds for all L; and L, in Ey and all y € K. Letting L, = FygF and L, = F4 4G in (5.5)
and then using (5.3) yields the formula

For g (FapF ¥ FopG) o (V) = For g (FopF) (%)%,’B, (FasG) (%)
WEAEY

for all ¥ € K. Next taking the integral transform % g of each side of (5.6) yields formula
(5.4) as desired. O

(5.6)
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THEOREM 5.2. Let &, B, F, and G be as in Theorem 5.1. Then for all y and w inK,

5 (FapF % FoopG) o (v 1) = ﬂ%,g(én-|w>G(->+F(->6G<-|w>)(l). (5.7)

V2 V2
PROOF. Using (5.4) and (2.25), we see that for all v and w in K,

5(FaopF % FapG) o (v 1w) = 6%,;;(F(f)c(ﬁ))(y|w>
= 6% o2 (F(G()) (vIw) (5.8)

-

- %%,ﬁ(mwwm(-) +F()oG(- '“’))(

ol

Next, using (5.4), we obtain the following analogue of Formula 4.8.
THEOREM 5.3. LetF, G, &, and 3 be as in Theorem 5.1. Then for all y and w inK,
(0F apF (- |lw) *5%a,5G(-|w))m/;;(y)
) L o (5.9)
= B> > (0, w) (0, w)F g2 (FiG) ().
1=1j=1
PROOF. Using (3.4), (5.4), Theorem 2.3, and (2.23), we obtain
(0F o gF (-|w) * 6F G (- Iw))ia/[;(y)
= B2 (FopSF (-|w) % Fog8G(-1w))0,5()

ooyl )
. ST . (5.10)
=p J"a,ﬁ(in (Qj,w>Fj<ﬁ):| {z (@M’)Q(ﬁ)}) ()

=1

1=1j=1

for all y and w in K. O

Itis interesting to note that we can obtain analogues of Formulas 4.9 and 4.10 directly
by use of (3.13) and (3.7) rather than using Theorem 5.1 as we did in Theorem 5.3 to
obtain an analogue of Formula 4.8.

THEOREM 5.4. LetF, G, &, and 3 be as in Theorem 5.1. Then for all y and w inK,

(0F apF (V1) % 0F G (V1)) 5 (W)

1 2
= 5 0FapF (¥ W) 3F s G (¥ Iw) + "‘7 S FopFj () FapGi(y),
j=1
(5.11)
(FapOF(¥|) % FapbG (V1)) a5 (W)

BZ

2 n
S OF (0 w)SG(Iw) + 5 3 F ()G, ().

Jj=1
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EXAMPLE 5.5. Next, we briefly discuss the functionals F(x) = Z;L:1<9j, x), G(x) =
exp{F(x)}, H(x) = F(x)exp{F(x)}, M(x) = [F(x)]* = [Z}_,(0;,x)]% and N(x) =
z;‘:l[(ej,x)]z, all of which are elements of Ey. The following formulas follow quite
readily for all v and w in K:

FopF(y) =BF(y), (5.12)
OF(y|w) = F(w), (5.13)
0FxpF(y|w) = BF(w), (5.14)
2

FapG(Y) = exp{% +BF(y)}, (5.15)
0G(y|lw) = F(w)exp {[F(»)}, (5.16)

2
0FapG(yIw) = BF(w)eXp{% +BF(y)}, (5.17)

2
FopH(Y) = [na%ﬁF(y)]exp{% +/3F(y)}, (5.18)
OH(ylw) = [1+F(y)]F(w)exp {F(»)}, (5.19)
2

§FagH(y|w) = BF(w)[mx2+BF(y)+1]exp{%+3F(y)}, (5.20)
FosM(y) =no + [BE(V)]% (5.21)
OM(y|lw) = 2F(w)F(y), (5.22)
8F o gM (v |w) = 2B°F(w)F(y), (5.23)
FoupN(y) =ne + 2N (y), (5.24)
SN(ylw) =2 > (0;,w)(0;,¥) = > N;j(»)F;(w), (5.25)

j=1 j=1
3FupgN(y|w) = B2SN(yIw) = B2 D Nj(¥)Fj(w). (5.26)

j=1

Finally, note that by using the various formulas in Sections 3 and 4 together with the
formulas (5.12) through (5.26), we can immediately write down many additional formu-
las involving the specific functionals F, G, H, M, and N defined above in Example 5.5.
For example, using (3.1), (5.15), and (5.21), we observe that

BZ

2
Foap(M*xG)o(y) = [mx2+7F2(y)]eXp{ﬂ+ B

: EF(”}’ (5.27)

and hence using (5.13), (5.16), and (5.22),

B? ., B no? B
5Fupg(M*G)o(y|w) = [n(x2+—F (y)]—F(w)eXp{—+—F(y)}
2 V2 2 2
) 5.28
+132F(y)F(uJ)exp{LO‘Z B F(y)} o
2 2 )

REMARK 5.6. For o € [0,1), let E; be the space of all functionals F : K — C of the
form (1.7) for some positive integer n, where f(A1,...,A,) is an entire function of the
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n complex variables Aq,...,A; such that

| F(AL.. An) | sAFeXp{BFZ |AJ1“"} (5.29)

Jj=1

for some positive constants Ar and Br. Note that if o = 0, then E, = Ey and for 0 <
01<02<1,E0%Ey, $Eo, £ L2(Co[0,T]).

A careful examination of the proofs of Theorems 2.1, 2.2, 2.3, and 2.4 shows that
the conclusions of all four of these theorems hold for all F and G in E;, 0 < 0 < 1. For
example, to show that the conclusions of Theorem 2.1 hold for E,, let F € E; be given
by (1.7) with f satisfying (5.29). Then proceeding as in the proof of Theorem 2.1, we
obtain that %4 gF is given by (2.1) with h defined by (2.2) satisfying

n
[R(A1,...,An) ] < A%'Bpexp{B%ﬁF STA 1+a} (5.30)
j=1
with
1+o0 "
AgygF = \/_ exp +Bp(2\oq,l\) du| < oo, (5.31)

and with B%ﬁf = Br(2|B1)1*9. Hence F«pF exists and belongs to E,.

SOME POSSIBLE EXTENSIONS. It seems likely that using the functionals in E (or E)
as building blocks, one could show that the results established in this paper hold for
larger classes of functionals.

For example, let {F,,};,_, be a sequence from Ey such that lim,_.. Fp () exists for
all y e K and let F(y) = limy,— Fin (7). Now the condition

|Fi ()| < Aexp (Bl Yo} (5.32)

for all y € K and all m = 1,2,... ensures the existence of the integral transform % gF
since by the dominated convergence theorem,

hm JvaBFm(y) = lim Fp(axx +By)m(dx)

m-=c JCy[0,T]

=J F(ax+ By)m(dx) (5.33)
Col0,T]

= %‘,BF(J/)

for each v € K. Example 5.7 shows that F need not belong to E, for any o € [0,1).

It seems as though finding appropriate conditions to put on the sequences {Fy,};_;
and {Gy}y-; from Ej to ensure the existence of (F x G)« should not be too difficult.
However to proceed further, a major key would be to find appropriate conditions to
put on the functionals {F,,},,_; in order to ensure the existence of 6F.
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EXAMPLE 5.7. Let {0;}% , be a complete orthonormal sequence of functions in L, [0,
T1, each of bounded Varlatlon on [0,T]. Form=1,2,...and y €K, let

9 )
F(3) —exp{ > <2jC } (5.34)
J

with C; given by (1.6). Clearly F,, € Ey for each m =1,2,....
Also for each m = 1,2,... and each y € K,

<1
| Fin () | <exp1IIwaZ—j}<exp{llyloo}- (5.35)

N

But limy, .« Fin (V) = exp{Zf:l((Qj,y)/ZjCj)} = F(y) is not an element of E, (or E,
for 0 < 0 < 1) because it depends upon (6,,,,y) for every m € {1,2,...} and so it cannot
be written in the form (1.7) for any positive integer n; recall that {0; } >, is a complete
orthonormal set of functions in L»[0, T].
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