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Let v be a finite, finitely subadditive outer measure on P (X). Define p(E) = v(X) —
v(E") for E C X. The measurable sets S, and S, and the set S = {E ¢ X/V(E) =
p(E)} are investigated in general, and in the presence of regularity or modularity
assumptions on v. This is also done for vO(E) = inf{v(M)/E c M € S,}. Gen-
eral properties of v are derived when v is weakly submodular. Applications and
numerous examples are given.
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1. Introduction. Let X be an arbitrary nonempty set and v a finite, finitely
subadditive outer measure on P(X). p denotes the set function defined by
p(E) = v(X)—-vVv(E'), E C X. We investigate conditions for p to be an inner
measure. This entails the notion of weak submodularity for v, and we fully
investigate the interplay between regularity, submodularity of v, and measur-
ability of sets with respect to v. Such matters were first considered in [5],
and, in this paper, we extend and improve upon the results. We also analyze a
large number of examples. This can be done quickly in the light of our general
results. In particular, we consider applications to well-known lattice derived
outer measures.

We also apply our general results to the case of the finite, finitely subadditive
outer measure vO(E) = inf{v(M)/E c M € S,}, E ¢ X, where S, is the usual
v-measurable sets. While this case is well known for v, a countably subadditive
outer measure, it is not well known when v is only finitely subadditive. Again,
a start was made in [5], but we improve on these results and give much shorter
proofs for known results.

We begin with a brief summary of the terminology and notation and some
basic facts that will be used throughout the paper. We then consider the con-
cepts of regularity, modularity, and condition (2.3) (see below) for an outer
measure v and establish their relationships. Next, examples are given, and
then some interesting inequalities are established with applications. Finally,
v0 and the measurable sets S, and S0 are considered with further examples
presented.
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2. Background and notations. Throughout this section and the rest of the
paper, v will designate a finite-valued, finitely subadditive outer measure de-
fined on the power set P(X) of a nonempty set X. p will designate the as-
sociated set function p(E) = v(X) — v(E'), where E C X, and the prime will
designate complement. Clearly, p(E) < v(E), for all E C X. p, in general, is not
an inner measure (see Example 4.2). Furthermore, we let

S={EcX/p(E)=v(E)} (2.1)

and S,, S, denote the v-measurable and p-measurable sets, respectively, where,
in general, if A is a nonnegative real-valued set function on P (X) with A(¢) =0,
then we denote

SAa={ECX/A(G)=A(GNE)+A(GNE") VG C X}. (2.2)

It is well known that S, is an algebra and A restricted to S, is a finitely additive
measure.

Again, let v be a finite, finitely subadditive outer measure, then v is regular
if, for any E C X, there existsan M € S, such that EC M and v(E) = v(M).If v
is just 0-1 valued, then, clearly, v is regular. If v is regular, then E € S, if and
only if

v(X) =v(E)+V(E") (2.3)

(see [6]). Hence, we say that v satisfies condition (2.3) if and only if E € S,
whenever v(X) = v(E) + v(E'). Therefore, we can say that any regular outer
measure satisfies condition (2.3). The converse is false (see [6] and Section 4).
We also apply this to p.

We can express these matters in terms of the above sets, S, and S,. Clearly,
Sy and S, are contained in S, while S = S, if and only if condition (2.3) is
satisfied for v, and S = S, if and only if condition (2.3) is satisfied by p. We
note, for example, that if v satisfies condition (2.3), then S = S, is an algebra.
However, this is not true in general (see Section 4).

DEFINITION 2.1. Let € be a collection of subsets of X such that ¢ is a lattice,
and let A be a set function defined on ¢ such that

AMEUF)+A(ENF) < A(E) +A(F) (2.4)

for all E,F € ¢, then A is submodular on €. If the reverse inequality holds, then
A is called supermodular on €. It is called modular on € if we have equality.
If ¢ = P(X), we usually leave off the words “on P(X),” and simply say, for
example, submodular.
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Next, let 6 be a covering class of X such that ¢p € 6, and let T be a finite,
nonnegative set function defined on 6 with 1(¢) = 0. Then, as well known,

A(E) —inf{ZT(Ei)/EC (JE;, for all E; e‘@} (2.5)
i=1

i=1
is a finite and finitely subadditive outer measure on P (X).

The following result (see [5]) is extremely useful especially for applications.

THEOREM 2.2. Let6, T, and A be as above. Then,
(a) if € is closed under finite unions and if T is finitely subadditive on 6,
then

A(E) =inf{A(C)/E c C €%}, whereE C X; (2.6)

if, in addition, T is monotone, then A = T on ¢;
(b) if € is a lattice and if T is submodular on 6, then

A(E) =inf{A(C)/E c C €} 2.7)

is submodular on P (X).

Finally, let £ be a lattice of subsets of X such that ¢, X € £. /i(¥) denotes the
algebra generated by &, and M (£) denotes the set of all nontrivial, nonnegative,
finitely additive measures on #(¥). Mg (¥) denotes the set of all those u €
M(%) which are $-regular. M(&£), Mg (%), and other subsets of M(&£) have
been extensively studied in the literature; we cite just a few recent papers
[1, 4, 7,8,9,10].

In Theorem 2.2, take ¢ = &', the complementary lattice to &, and T = u €
M (). Then, writing u’ for A, we have the following theorem.

THEOREM 2.3. Ifu e M(£), then
W (E) =inf {u(£)/EcL', L €%}, (2.8)

for E C X, is a finite and finitely subadditive outer measure on P(X) and ' is
submodular on P (X). Also,

p(E) =p' (X) - (E') = u(X) -’ (E') =sup{u(L)/LCE, Le ¥}  (2.9)

which has been denoted in the literature by u;(E).
We now proceed to extend and improve results in [5].
3. Modularity results. We again stress the fact that the finitely subadditive

outer measure v is always assumed to be finite valued. If this is not the case,
then p(E) = v(X) —v(E'), for E C X, need not be defined. We have noted that
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p need not be an inner measure (see Example 4.2). In order to see when p is
an inner measure, we introduce the following definition.

DEFINITION 3.1. Let v be a finite and finitely subadditive outer measure.
Then v is weakly submodular if the submodular law

V(EUF)+V(ENF) <v(E)+Vv(F), 3.1)
E,F c X, holds when EUF = X.
We now have the following theorem.
THEOREM 3.2. p is an inner measure if and only if v is weakly submodular.

PROOF. Suppose that v is a weakly submodular outer measure; all we must
show is that

p(EUF) = p(E)+p(F) (3.2)
if ENF = ¢. Now, since ENF = ¢, E' UF’ = X. Therefore,
V(E'UF' )+ Vv(E'NF") <v(E")+V(F). (3.3)
Hence,
V(X)-VE'UF)+v(X)-Vv(E' NF) 2v(X)-v(E)+v(X)-Vv(F'). (3.4)
That is,
p(EVUF) = p(E) +p(F). (3.5)
The proof of the converse is just as simple. |
We noted in Section 2 that the set
S={EcX/p(E)=v(E)} (3.6)

is not in general an algebra (see Example 4.4). However, we have the following
theorem.

THEOREM 3.3. If v is a finite, finitely subadditive outer measure and if v is
submodular, then S is an algebra and v, restricted to S, is a finitely additive
measure.

PROOF. If E € S, then, clearly, E’ € S; while if E,F € S, then, by the sub-
modularity of v which is of course equivalent to the supermodularity of p, we
have

p(E)+p(F) <p(EUF)+p(ENF)
<Vv(EUF)+Vv(ENF) 3.7)
<V(E)+V(F)=p(E)+p(F).
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This, together with the fact that p < v, implies that
p(EUF) =v(EUF), p(ENF)=v(ENF). (3.8)
Hence, S is an algebra. The last proof of the theorem follows now directly from
(3.7). O
We recall the following definition from [5].

DEFINITION 3.4. Let v be, as usual, a finite, finitely subadditive outer mea-
sure, and let S, be the v-measurable sets. We define

v0 =inf{v(M)/EcM €S,} (3.9

and say that v is approximately regular if v = V0.

Itis clear from Theorem 2.2 that VY is a finite, finitely subadditive, submodu-
lar outer measure and v° (M) = v(M) for M € S,,. We will consider v° in greater
detail in Section 6.

In Section 2, we have noted that v is regular if each E ¢ X has a measurable
cover M € S,. Clearly, regularity implies approximately regular, and, in the
case of v being a countably subadditive outer measure where S, is a o-algebra,
the two notions coincide. However, this is not the case for finitely subadditive
outer measures (see Section 4). The next theorem follows immediately from
the definitions and the fact that v is a finitely additive measure on S, and
hence modular.

THEOREM 3.5. If v is a finite, finitely subadditive outer measure, then v is
submodular if v is approximately regular.

We now wish to investigate the relationship between modularity and condi-
tion (2.3) introduced in Section 2, and, in doing so, we will extend and improve
results in [5].

THEOREM 3.6. (a) If v is a finite, finitely subadditive outer measure, and if
p(E)=v(X)-Vv(E") forEcCX, (3.10)

then S, = S,.
(b) If v is also submodular on P(X), then S, =S, = S.

PROOF. (a)Let E €S,.Then, v(A) =v(ANE)+Vv(ANnE’) for A c X. Now,

p(ANE) =v(X)—-v(A UE),

p(ANE) =v(X)—v(A UE). (3.11)

Therefore,

P(ANE)+p(ANE’) =2v(X)-v(A"UE")—v(A"UE). (3.12)
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But
V(A'UE) =v((AUE)NE)+V((A'UE)NE') =v(E)+V(A'nE"),
3.13
V(A'UE") =v((AUE)NE)+Vv((A'UE')NE") =v(A'nE)+Vv(E). ( )
Substituting in (3.12), we have
P(ANE)+p(ANE") =2v(X)—Vv(E)-Vv(A'NE")—v(E")—Vv(A'NE)
=v(X)-v((A'NnE)—v(A'nE")
) (3.14)
=v(X)-v(A")
=p(A).

Hence, E € S,, s0 S, C S,. Similarly, S, ¢ S,. Thus, S, =S, CS.

(b) Since v is submodular, p is supermodular and, therefore, S, = S by [5].
We also see from part (a) that v satisfies condition (2.3) if and only if p satisfies
condition (2.3). O

We can summarize some results in the following theorem.

THEOREM 3.7. Let v be a finite, finitely subadditive outer measure. Then, v
regular implies that v is approximately regular implies that v is submodular
implies that v satisfies condition (2.3).

We will see in the examples to follow that none of these implications can be
reversed in general.

We also note that if u is a countably additive measure or an algebra, then
the customary induced Carathéodory outer measure u* is regular, and hence,
if finite, it satisfies condition (2.3). Of course, this is well known [3, 6].

4. Examples. In view of our general results in Sections 2 and 3, many spe-
cific examples become easier to analyze. We first consider the important exam-
ples yu e M(&¥) with v = y’ and p = y; considered in Section 2. Using Theorems
2.3 and 3.7, we have the following theorem.

THEOREM 4.1. Let u € M(¥) and
W (E)=inf{u(L')/ECL', L e %}. 4.1)

Then, u’ is submodular, and the following are equivalent:
(@ EeSy =Sy,
(b) p'(E) = p;(E) where p;(E) = sup{u(L)/L CE, L € £},
(©) p(E)+p'(E") = ' (X).

This result was first proved in [1] in an entirely different manner. It is, as we
see, simply a special case of our more general theorems. It is also of interest
to see when u’ is even more than submodular, namely, approximately regular.
We will look into this in Section 6.
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We now turn to more specific examples in order to show the need for certain
hypotheses in the theorems and in order to show that certain implications
cannot be reversed.

EXAMPLE 4.2. Let X = {1,2,3,...} and define v(¢) =0, v(X) =2, v(E) =1
for all other sets E C X. Clearly, v is an outer measure (countably subadditive),
and p(¢p) =0, p(X) =2,p(E) =1forall E C X. Clearly, S = P(X) is of course an
algebra, and, clearly, S, = {¢,X}. Thus, v and p do not satisfy condition (2.3);
hence v is not submodular and therefore not regular by Theorem 3.7. Also,
even though S is an algebra, v is not a measure on S, which shows the need
for submodularity in Theorem 3.3. Also, by taking any two disjoint nonempty
sets whose union is not X, we see that p here is not an inner measure, so v is
not even weakly submodular. We finally note that, unlike two-valued (0-1) v, a
three-valued v need not be regular.

EXAMPLE 4.3. Again, let X = {1,2,3,...}, and let v(¢) = 0, v(X) = 3/2,
v(E) =1 for all other E C X (see [6]). Then, p(¢p) =0, p(X) =3/2, p(E) =1/2
for all other E. Clearly,

S, =S, =8 =1{¢,X}. 4.2)

However, as easily seen, v is not weakly submodular and, therefore, not sub-
modular; yet, v restricted to S is trivially a measure. Also, condition (2.3) is of
course true for v and p.

EXAMPLE 4.4. Let X = {a,b,c,d} and define v(¢) = 0, v (any singleton) =
1, v (any two-point set) = 1, v (any three-point set) = 2, and v(X) = 2. Then,
p(d) =0, p (singleton) = 0, p (a two-point set) = 1, p (a three-point set) = 1,
and p(X) = 2. Hence,

S = {¢, X, all two-point sets} (4.3)

is not an algebra; therefore, v and p do not satisfy (2.3), so v is not submodular,
but p is an inner measure, so v is weakly submodular. Also, here, S, = S, =
{, X}

We have already proved or observed the following implications pertaining
to the finite, finitely subadditive outer measure v

regular = approximately regular = submodular == weakly submodular

|

condition (2.3).
(4.4)

That weakly submodular does not imply submodular is shown in Example 4.4.
That condition (2.3) does not imply submodular is shown in Example 4.3. We
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now give two type examples to show that submodularity does not imply ap-
proximately regular.

EXAMPLE 4.5. Let X = {a,b,c} and define v(¢) = 0, and v (singleton) = 1,
v (any two-point set) = 2, and v(X) = 2. Then, p(¢) = 0, p (singleton) = 0,
p (a two-point set) = 1, and p(X) = 2. Thus, S = {¢, X}. It is also routine to
show that v is submodular, and, hence, v, p satisfy condition (2.3),s0 S, = S, =
S = {¢, X}. However, this implies that v° just assumes the two values 0 or 2.
Consequently, v # v° and v is not approximately regular which is equivalent
to regular when v just assumes a finite number of values.

Next, we consider the following example.

EXAMPLE 4.6. Let X be an uncountable set. Define v(¢) = 0 = v (a finite
set), v (a countable set) = 1, and v (an uncountable set) = 2. Then, p(¢) =
p (a finite set) = 0, p (a countable set) = 0, and p (an uncountable set) =0, 1,
and 2, depending on whether its complement is uncountable, countable, or fi-
nite. v is easily seen to be submodular, and, clearly, S = {¢, X, all finite sets and
their complements}. Thus, S, = S, = S. Hence, v0 just assumes the values 0
and 2; so, v° # v and v is not approximately regular.

Finally, we consider an example for which v is approximately regular but not
regular. Clearly, v must be finitely subadditive but not countably subadditive
for such an example. Before proceeding to the example, we first recall that
if E c X, then a measurable cover of E is a set M € S, such that E ¢ M and
v(M) = v(E). A measurable kernel of a set E C X is a set N € S, such that
N C E and p(N) = p(E). Clearly, E has a measurable cover if and only if £’ has
a measurable kernel.

Next, we note that if o« is an algebra of subsets of X and if u is a finitely
additive measure on «, then

w (E) =inf {u(A)/E C A € s}, (4.5)

for E C X is, by Theorem 2.2, a finitely subadditive outer measure on P(X)
which extends p on o and 4 C Sy-. Also,

(4)°(E) = inf {u" (B)/E C B € Sy} = u' (E) (4.6)

for E C X; so, u is approximately regular.
If X =[0,1] and if S € X, we denote by S the closure of S and by S° the
interior of S.

EXAMPLE 4.7. Let X =[0,1] and let v = ¢, outer Jordan content. Then, p = ¢,
inner Jordan content. Also, let 0 < & < 1, and denote by C, the Cantor set of
measure 1 — «. Although the Cantor set of measure zero is Jordan contentable,
this is not the case for C. Since ¢(Cj) = « while ¢(C,) = 1—-¢c(Cy) =1 since
c(Co) = c(CY =0.
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Itis clear by the above comments that ¢ is approximately regular, and we now
note that it is not regular. We show that C, does not have a contentable cover
or, equivalently, that C; does not have a contentable kernel. Hence, suppose
that there exists S ¢ Cj, S € S¢, and

c(8) =c(8) =c(Cy) = . (4.7)

It readily follows that any open set containing an x € Cj intersects S, so Cj, C S.
Consequently,

[0,11=C, CS, (4.8)
since CY = ¢. Thus,
x=c(§)=¢(S)=c[0,1]=1, (4.9)

a contradiction. Hence, C;, does not have a contentable kernel, and ¢ is not
regular.

5. Further modularity properties. Again, v denotes a finite, finitely sub-
additive outer measure on P(X), and p(E) = v(X) — v(E’") for E C X. In this
section, we prove a number of inequalities which significantly extend those in
[5], and, in the course of proving these inequalities, we also give an alternate
characterization of weakly submodular.

THEOREM 5.1. LetV be a finite and finitely subadditive outer measure. Then,
forE,F C X and ENF = ¢,
(@) p(E)+p(F) <p(EUF) if and only if v is weakly submodular;
(b) p(EUF) < p(E)+Vv(F);
(c) p(E)+Vv(F) <v(EUF) if and only if v is weakly submodular;
(d) V(EUF) <Vv(E)+V(F).

PROOF. (d)is of course true since v is an outer measure. (a) was established
in Theorem 3.2.
We proceed to prove (b). By definition of p we have,

p(EUF) =v(X)-V(E'NnF’), (5.1

but E' = FU(E'NnF’), so Vv(E') < v(F) + v(E' nF"). Thus, v(E') — v(F) <
v(E'n F'), and, by (5.1), we get

p(EUF) <v(X)—Vv(E'")+V(F)=p(E)+Vv(F). (5.2)

Finally we consider (c). Since ENF = ¢, F' = EU (F' nE’). Hence, p(F’) >
p(E)+p(F NnE’") since v is weakly submodular. Now,

p(E) +V(F) =v(X) +p(E) - p(F) < v(X) - p(E'nF')=v(EUF).  (5.3)
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Conversely, suppose that, whenever ANB = ¢,
p(A)+v(B) <v(AUB). (5.4)

Let ENF=¢,s0 F  =EU(F' NE’). Taking A=E and B=F' NnE’, we get

p(E)+V(F' NnE") <v(F'). (5.5)
Therefore,
p(E)+Vv(F'NE") <v(X)-p(F). (5.6)
So,
p(E)+p(F) <v(X)—Vv(F' nE") =p(EUF). (5.7)
Hence, p is an inner measure and v is weakly submodular. O

COROLLARY 5.2. If v is a finite, finitely subadditive, and weakly submodular
outer measure, then, for E,F C X, and ENF = ¢,

p(E)+p(F)<p(EUF)<p(E)+V(F)<Vv(EUF) <Vv(E)+V(F). (5.8)
Corollary 5.2 is a strong extension of a result in [5], where it is only proven

in the case of an approximately regular v. Since, as we noted in Theorem 2.3
fora ue M(£), p’ is submodular, we have the following corollary.

COROLLARY 5.3. Forue M(%£) andE,F C X, ENF = ¢,
pi(E) +pi(F) < i (EUF) < i (E) + ' (F) < /' (EUF) < u'(E) + ' (F).  (5.9)

COROLLARY 5.4. If v is a finite, finitely subadditive, and weakly submodular
outer measure, then, for M € S, and E C X,

p(M)=v(M)=p(MnE)+v(MnE"). (5.10)
PROOF. By (b) and (c) of Theorem 5.1,
p(M)<p(MNE)+v(MNE') <v(M) =p(M), (5.11)

which completes the proof. O

There are clearly many special v, in addition to u’, to which we can apply
the above results. We will indeed consider one of these in Section 6. Further
applications should be clear.
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6. The outer measure v°. As usual, v denotes a finite, finitely subadditive
outer measure on P(X). In Definition 3.4, we defined the finite, finitely subad-
ditive outer measure

vO(E) =inf {v(M)/ECM € S, }. (6.1)
Then,
VO(X)—VUE) =v(X) -V (E) =sup {v(M)/M CcE, M€ S,} (6.2)
since v = v on S, C S, and we denote by vy,
vo(E) =sup{v(M)/M CE, M €S,}. (6.3)
Also, it is clear that
vo<p=<v=<y (6.4)

Clearly, these v° and vy fit the general framework of the previous sections. v°
and vy have been thoroughly investigated in the case where v is a countably
subadditive outer measure (see [2]). They have also been investigated in the
finitely subadditive case in [5]. In the light of our stronger results, we can
improve on the results in [5] and also give considerably shorter proofs and
numerous examples. We now proceed to do this.

The following theorem is proved in [5], and we add the proof for complete-
ness.

THEOREM 6.1. LetV be a finite and finitely subadditive outer measure. Then,
Sy C Syo.

PROOF. LetE € S,, and A C X be arbitrary. For € > 0, there existsan M € S,
such that Ac M and v(M) < v°(A) +&. Now, ANECMNEeS,,and AnE C
MnNE €8S,.Hence,

VIANE)+v2(ANE) < VvIMNE)+v(MNE)=v(M) <v°(A)+¢,  (6.5)

and, therefore, E € S, 0.
Next, we note that, for E C X,

vO%(E) =inf {v*(M)/ECc M € S, }

6.6
<inf {v*(M)/EcM €S,}, 6.0
by Theorem 6.1, and this, in turn,
=inf{v(M)/ECM € S,}
(6.7)

=vO(E);
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so, v%0 < v0, But we always have v > v, Consequently, v% = v9; so, v0 is

approximately regular, and we can use the results of the preceding sections
0

on v-. O

THEOREM 6.2. Let v be a finite, finitely subadditive outer measure. Then,
(@) VY is approximately regular and hence submodular and satisfies condi-
tion (2.3);
(b) Sy =S, CSy0 =5y, =8CS, where§ = {E C X/vo(E) = Vv(E)};
(c) ifE,F C X and ENF = ¢, then

Vo (E) +vo(F) < vo(EUF) < vo(E) + Vv (F) < v9(EUF) < vO(E) +v°(F); (6.8)
(d) forMeS,, andE C X,
vo(M) = vO(M) = vo(MNE)+v?(MNE"). (6.9)

PROOF. (a) Since we have seen that v° is approximately regular, (a) follows
from Theorem 3.7. (b) follows from Theorems 3.6 and 6.1(a), and since

w(E) < p(E) < v(E) < V(E), (6.10)

it follows that E € § implies E € S. |

COROLLARY 6.3. Ifv is a finite, finitely subadditive outer measure that sat-
isfies condition (2.3), then S, = S, = Sy, = Sy0 = S=8.

PROOF. The proof follows immediately from Theorem 6.2(b), and since v
satisfies condition (2.3), S, = S. O

REMARK 6.4. We have shown that S, C S,0 and that S, = S,0 if v satisfies
condition (2.3). It is certainly possible that S, = S, 0 even if condition (2.3) is
not satisfied (see examples below).

We do have, however, the following result.

THEOREM 6.5. LetE € S,0, then E € S, if and only if there exists an M C E,
MeS,, andv(E)=v(M).

PROOF. If the condition holds, then
V(E)=v(EnM)+Vv(EnM') =v(M)+v(EnM"). (6.11)
Hence, v(ENM') =0, so, EnM’ € S,, and, therefore,
E=MU(EnM’) €S,. (6.12)

The converse is of course clear. O

REMARK 6.6. In the case of a countably subadditive measure v which is
finite, the condition in Theorem 6.5 is satisfied, and we always have S, = S, 0.
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However, if v can take on infinite values, then this is no longer the case. As
noted earlier, this is treated in full detail in [2].

COROLLARY 6.7. If v is a finite, finitely subadditive outer measure and if
(a) v just assumes a finite number of values on S, or
(b) Sy is a o-algebra, then S, = S,0.

PROOF. In both cases, it is clear that the condition of Theorem 6.5 is satis-
fied. |

We now consider several examples.

EXAMPLE 6.8. We first consider the general example of a u € M(&). Since
p’ is submodular, we have, by Corollary 6.3, S,/ = S(,/0. Suppose next that
U € Mg(£). This is equivalent to & C S,. Hence,

W' (E) =inf {u(L)/ECL € ¥}
>inf{y' (M)/ECM e Sy} (6.13)

= (u)°(E) = p' (E).

Thus, we have u € Mz (%) that implies that (u')° = u’, that is, u’ is approxi-
mately regular. The converse need not be true since, for any y € M(¥) that
just assumes two values, u’ is regular.

We next consider two specific examples.

EXAMPLE 6.9. Let X,v be as in Example 4.6. We saw that v is submodular.
Hence, by Corollary 6.3, S, = Sy,. This also follows by Corollary 6.7. We also
note that v is just finitely subadditive here.

EXAMPLE 6.10. Let X = {1,2,3,...}; and define v(¢) = 0, v (a finite set) = 0,
v(E) =1 (if E is infinite and E’ is infinite), and v(E) = 2 (if E is infinite and
E' is finite), so, v(X) = 2. Then, p(¢) = 0, p (a finite set) = 0, p(E) = 1 (if
E is infinite and E’ is infinite), and p(E) = 2 (if E is infinite and E’ is finite).
Thus, S = P(X) while S, = {¢,X,E such that E or E’ is finite}. Thus, S + S,;
so, condition (2.3) is not satisfied here but by Corollary 6.7 S, = S,0. Thus,
Sy = S,0 does not imply condition (2.3). We also note that v here is clearly only
finitely subadditive.

Different examples in the case of a finite, finitely subadditive outer measure
of a general type can be found in [5].
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