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Let p be a prime. It is shown that an automorphism « of an abelian p-group A lifts
to any abelian p-group of which A is a homomorphic image if and only if « = id,4,
with 1T an invertible p-adic integer. It is also shown that if A is a torsion group or
torsion-free p-divisible group, then id4 and —id4 are the only automorphisms of
A which possess the lifting property in the category of abelian groups.

2000 Mathematics Subject Classification: 20K30.

1. Introduction. Every inner automorphism of a group G has the property
that it extends to an automorphism of any group containing G as subgroup.
Schupp [4] showed that this extension property characterizes inner automor-
phisms in the category of groups. Pettet [3] gave an easier proof of Schupp’s
result and proved at the same time that the inner automorphisms of a group
G are also characterized by the lifting property in the category of groups. In
[1], we characterized the automorphisms of abelian p-groups having the ex-
tension property in the category of abelian p-groups, as well as those having
the extension property in the category of all abelian groups.

Let ¢ be a full subcategory of the category of abelian groups. An automor-
phism o of A € 6 has the lifting property in € if, for all B € 6 and any epimor-
phism s: B — A, there exists & € Aut(B) such that so & = o s, in other words,
the diagram

B——= A
l& « (1.1)
S

B——A

commutes. In this note, we show that an automorphism « of a p-group A (with
p being a prime number) has the lifting property in the category of abelian p-
groups if and only if & = 1rid4, with 7 an invertible p-adic number. We also
determine the automorphisms of an abelian group A having the lifting property
in the category of all abelian groups, when A is either torsion or p-divisible
torsion-free. In both cases they are id4 and —id 4.

We will use the notation introduced in [2].
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2. The lifting property in the category of the p-groups. Let p be a prime
number.

LEMMA 2.1. Let « be an automorphism of a p-group A having the lifting
property in the category of abelian p-groups. If C is subgroup of A with x(C) =
C, then the restriction of « to C also has the lifting property in the category of
abelian p-groups.

PROOF. Letpu:B — C — 0be an exact sequence. It follows from [2, page 108]
that we have a commutative diagram with exact rows:

I

0 Ker u ‘ B C 0
ol ji (2.1)
0 Keru A F Y A 0,

where i and j are the canonical injections. It is easy to show that F is again
a p-group, then there exists & € Aut(F) such that y& = «y. If we put, for
any b € B, &(o (b)) = o(y(b)), then y € Aut(B) and uy = xou, with « the
restriction of « to C. O

LEMMA 2.2. Let A be a torsion group and n € N*. Then there exists an
abelian group B and an epimorphism u : B — A such that B[n] < Ker u, where
B[n]={beB|nb=0}.

PROOF. For a € A, we put B, = (x,), where o(x;) =o(a) and u, : B, - A
is defined by g (x;) = a. If we put B = @, 4B, and u: B — A, where u(x,) =
Uz (xq), forall a € A, then u is an epimorphism and B[n] < Ker pu. O

THEOREM 2.3. Let A be an abelian p-group and an automorphism « of A has
the lifting property in the category of abelian p-groups if and only if &« = 1rid 4,
where 11 is an invertible p -adic number.

PROOF. One implication is clear. Assume that « has the lifting property in
the category of abelian p-groups. The proof of the fact that o« = 1rid, goes in
three steps.

STEP 1. We suppose that A is reduced. Let x € A be such that (x) is a direct
summand of A. We prove that «(x) € (x).

Put (x) P A’ = A and let E(A’) be the injective envelope of A’. We put

A" ={yeE") |p"yecAl, (2.2)

where o(x) = p™. We consider the group B = (x)@P A”; the map s : B — A
defined by

simx+y)=mx+p"y, (2.3)



AUTOMORPHISMS HAVING THE LIFTING PROPERTY 4513

for all m € Z and y € A”, is an epimorphism. Therefore, there exists & €
Aut(B) such that s& = «s. We can write &(x) =kx+a’’,withk €Z and a”’ €
A" Now

sa(x)=kx+p"a’ =kx = as(x) = x(x) (2.4)

because p"a” = 0, thus x(x) € (x). Let B be a basic subgroup of A, B =
@D,.-1Bn, and, for any n > 1, B, = 0 or B, is a direct sum of torsion cyclic
groups of order p™. We suppose B, = 0 for n > 1, so B, = @;;{(x;) such that
o(x;) = p™, for all i € I, since B, is a direct summand of A (see [2, page 138]).
Withm; € Z, a(x;) = m;x;. Let (i,j) € I with i # j. We can write A = (x;) D A;
with x; € A;. Itis easy to see that (x; +x;) D A; = A, 50 x(x;+x;) = m(x;+x;),
hence p™ | (m; —m;). Then thereis k,, € Z such that «(b) = k,,b, for all b € B,.
For (m,n) € N2 where 1 <m < n, B, @ B, is a direct summand of A [2, page
138] and it is easy to see that p™ | (ky, — k).

Let 7t be the p-adic number defined by (ky)n=0 (With ko = 0 and k,, = k-1
if B,, = 0). Then «(b) = 1th, for all b € B. Since A is reduced, it follows that
« =T1rid4 (See [2, page 145]).

STEP 2. We suppose that A is divisible. Therefore, A = @;; A; with A;
Z(p®), for all i € I (see [2, page 104]). We consider the direct product E =
[Tys1{xn), where o(x;,) = p™, for all n > 1. For all n > 1, let ¢,, € E be defined
by

1

0 if m <n,

S (en) =‘= (2.5)

pMmlxy,, ifm=n,

where f), : E — (X;,) is the canonical projection. Let C be the following sub-
group of E:

C= <@<xn>)+<{en|nzl}>- (2.6)

nx1

It is easy to see that C/ (P, {xn)) = Z(p*™).

We choose i €I and a; € A;. We want to show that «x(a;) € A;. Let j € I with
Jj#i.Weput A" = Pyer;; Ak and we have A= A;PA’. Let y: C — A; be an
epimorphism. If we suppose that B = C@ A’ and consider s : B — A which is
defined by s(c+a’) = y(c)+a’ (c € C,a’ € A’), then s is an epimorphism.
Therefore, there exists & € Aut(B) such that s& = «s. Since A’ is a maximal
divisible subgroup of B, &(a’) = a’. Since a; € A’, then &(a;) = x(a;) € A'.
Thus for all j # i, x(a;) € Dy.;Ak, and therefore, x(a;) € A;. Then there is
a p-adic number 1r; such that «(a;) = m;a;, for all a; € A; (see [2, page 181]).
For each i € I, we put A; = ({¥;, | n > 1}) with py;1 =0 and pYini1 = Vin,
for all n > 1. Let (i,7) € I?> with i # j. If we suppose that z,, = Vi, +¥jn and
H={({zy Imn=1}), then H = Z(p®) and A; D A; = A; D H. By the preceding
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arguments, there exists a p-adic number 7t such that «(h) = th, «h € H. Then
we deduce that m; = m; = TT.

STEP 3. We suppose that A is an arbitrary abelian p-group. We can write
A = C@D with C reduced and D divisible. We can also suppose that C + 0
and D = 0. We have «(D) = D, and the restriction «; of « to D has the lifting
property in the category of p-groups, by Lemma 2.1. Then there is a p-adic
number 11 such that x(d) = rd, for all d € D.

Let ¢p € C with o(cg) = p™0. we define the map s: A — A by

s(c+d) =c+pmd, (2.7)

for (c,d) € CxD. Then s is an epimorphism, and therefore, there exists & €
Aut(A) such that s& = «s. Put &(cg) = ¢; +d;. Then

s&(co) =c1+p™dy =c1 = as(co) = «(co), (2.8)

and it follows that x(cg) € C and «(C) = C. We show that «(c) = 1rc, for all
¢ € C. To this end, take @;<;(c;) as a basic subgroup of C. We choose i € I;
(c;) is a direct summand of C. Put p™ =o0(c;) and @ C; = C. Let d; € D such
that o(d;) = p™i. We have

A=(ci+di) P C:EPD. (2.9)

Then there exist a group G and an epimorphism n : G — C; @ D such that
G[p™i] c kern,by Lemma 2.2. We suppose that B = (c; +d;) @ G, and we define
U:B— Gbypum(ci+d;)+g)=m(ci+d;)+n(g). Then u is an epimorphism.
Let & € Aut(B) be such that ey = p&. We have

O(I.J(Ci-i-di) = O((Ci-l-di) = (X(Ci) +11d;. (2.10)

We put &(c; +d;) = k(¢; +d;) + go, then u&(c; +d;) = k(c; + d;) (because
n(go) = 0). Thus x(c;) +wd; = kc; + kd;, so «x(c;) = 1rc;, and therefore, x(c) =
e, for all ¢ € C, by [2, page 145]. O

3. The lifting property in the category of abelian groups. In this section,
we show that, for a torsion or p-divisible torsion-free group A (p is a prime
number), id4 and —id4 are the only automorphisms of A having the lifting
property in the category of abelian groups.

PROPOSITION 3.1. Let A be an abelian torsion group. Then an automorphism
« of A has the lifting property in the category of abelian groups if and only if
x =id, or @ = —id,.

PROOF. One implication is obvious. Assume that « has the lifting property
in the category of abelian groups and consider the exact sequence

E:0—7Z—Q—Q/Z—0, (3.1)
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then, by the Cartan-Eilenberg theorem (see [2, page 218]), the sequence
0 = Hom(A,Q) — Hom(A,Q/Z) == Ext(A,Z) — Ext(A,Q) =0  (3.2)

is exact, where E, is the map associating to &€ € Hom(A,Q/Z) with the class
extension E&.

LetE;:0—~ 7 A B L A - 0 be an extension of Z by A. Then there exists
o € Aut(Z) such that the following diagram is commutative:

A u

Z B A
U\L &l rxl (3-3)
7—2-B A

u

If o =idy, then E; = E,«, and if o0 = —idy, then E; = E;(—«). Therefore, for
all E e Hom(A,Q/Z), Ex(Ex—&) =0 or Ex(§x+ &) =0. Thus E(x—id) =0 or
E(x+id) =0, for all £E € Hom(A,Q/Z).

From the fact that Q/Z is divisible, it follows that & = id or & = —id. O

PROPOSITION 3.2. Let p be a prime number and A a p-divisible torsion-free
group. Then an automorphism « of A has the lifting property in the category
of abelian groups if and only if x =id, or ¢ = —id,.

PROOF. One implication is obvious. Suppose that « has the required lifting
property, and consider the pure exact sequence

E:0—Z—J,— J,/7 —0, (3.4)

where J, is the additive group of p-adic integers. By the theorem of Harrisson
(see [2, page 231]), the sequence

Hom (A, J,) — Hom (A, J,/Z) L, Pext(A,Z) — Pext (A, Jp) (3.5)

is exact. Hom(A4, j,) = 0 because J, contains no nonzero p-divisible subgroup
and Pext(A, j,) = 0 because J, is algebraically compact. Thus E, is an isomor-
phism, and, as in the proof of Proposition 3.1, we find that & = id or &« = —id.

O
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