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Let p be a prime. It is shown that an automorphism α of an abelian p-group A lifts
to any abelian p-group of whichA is a homomorphic image if and only ifα=π idA,
with π an invertible p-adic integer. It is also shown that if A is a torsion group or
torsion-free p-divisible group, then idA and − idA are the only automorphisms of
A which possess the lifting property in the category of abelian groups.
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1. Introduction. Every inner automorphism of a group G has the property

that it extends to an automorphism of any group containing G as subgroup.

Schupp [4] showed that this extension property characterizes inner automor-

phisms in the category of groups. Pettet [3] gave an easier proof of Schupp’s

result and proved at the same time that the inner automorphisms of a group

G are also characterized by the lifting property in the category of groups. In

[1], we characterized the automorphisms of abelian p-groups having the ex-

tension property in the category of abelian p-groups, as well as those having

the extension property in the category of all abelian groups.

Let � be a full subcategory of the category of abelian groups. An automor-

phism α of A∈� has the lifting property in � if, for all B ∈� and any epimor-

phism s : B→A, there exists α̃∈Aut(B) such that s◦α̃=α◦s, in other words,

the diagram

B

α̃

s
A

α

B
s

A

(1.1)

commutes. In this note, we show that an automorphism α of a p-group A (with

p being a prime number) has the lifting property in the category of abelian p-

groups if and only if α = π idA, with π an invertible p-adic number. We also

determine the automorphisms of an abelian groupA having the lifting property

in the category of all abelian groups, when A is either torsion or p-divisible

torsion-free. In both cases they are idA and − idA.

We will use the notation introduced in [2].
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2. The lifting property in the category of the p-groups. Let p be a prime

number.

Lemma 2.1. Let α be an automorphism of a p-group A having the lifting

property in the category of abelian p-groups. If C is subgroup of A with α(C)=
C , then the restriction of α to C also has the lifting property in the category of

abelian p-groups.

Proof. Let µ : B→ C → 0 be an exact sequence. It follows from [2, page 108]

that we have a commutative diagram with exact rows:

0 Kerµ i
B

µ

σ

C

j

0

0 Kerµ λ
F

γ
A 0,

(2.1)

where i and j are the canonical injections. It is easy to show that F is again

a p-group, then there exists α̃ ∈ Aut(F) such that γα̃ = αγ. If we put, for

any b ∈ B, α̃(σ(b)) = σ(γ(b)), then γ ∈ Aut(B) and µγ = α0µ, with α0 the

restriction of α to C .

Lemma 2.2. Let A be a torsion group and n ∈ N∗. Then there exists an

abelian group B and an epimorphism µ : B → A such that B[n] ⊆ Kerµ, where

B[n]= {b ∈ B |nb = 0}.
Proof. For a ∈ A, we put Ba = 〈xa〉, where o(xa) = o(a) and µa : Ba → A

is defined by µa(xa)= a. If we put B =⊕a∈ABa and µ : B→A, where µ(xa)=
µa(xa), for all a∈A, then µ is an epimorphism and B[n]⊆ Kerµ.

Theorem 2.3. LetA be an abelianp-group and an automorphismα ofA has

the lifting property in the category of abelian p-groups if and only if α=π idA,

where π is an invertible p-adic number.

Proof. One implication is clear. Assume that α has the lifting property in

the category of abelian p-groups. The proof of the fact that α =π idA goes in

three steps.

Step 1. We suppose that A is reduced. Let x ∈A be such that 〈x〉 is a direct

summand of A. We prove that α(x)∈ 〈x〉.
Put 〈x〉⊕A′ =A and let E(A′) be the injective envelope of A′. We put

A′′ = {y ∈ E(A′) | pny ∈A′}, (2.2)

where o(x) = pn. We consider the group B = 〈x〉⊕A′′; the map s : B → A
defined by

s(mx+y)=mx+pny, (2.3)
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for all m ∈ Z and y ∈ A′′, is an epimorphism. Therefore, there exists α̃ ∈
Aut(B) such that sα̃ = αs. We can write α̃(x) = kx+a′′, with k ∈ Z and a′′ ∈
A′′. Now

sα̃(x)= kx+pna′′ = kx =αs(x)=α(x) (2.4)

because pna′′ = 0, thus α(x) ∈ 〈x〉. Let B be a basic subgroup of A, B =⊕
n≥1Bn, and, for any n ≥ 1, Bn = 0 or Bn is a direct sum of torsion cyclic

groups of order pn. We suppose Bn ≠ 0 for n≥ 1, so Bn =
⊕

i∈I〈xi〉 such that

o(xi)= pn, for all i∈ I, since Bn is a direct summand of A (see [2, page 138]).

Withmi ∈ Z,α(xi)=mixi. Let (i,j)∈ I2 with i≠ j. We can writeA= 〈xi〉
⊕
Ai

withxj ∈Ai. It is easy to see that 〈xi+xj〉
⊕
Ai =A, soα(xi+xj)=m(xi+xj),

hence pn | (mi−mj). Then there is kn ∈ Z such thatα(b)= knb, for all b ∈ Bn.

For (m,n)∈N2 where 1≤m<n, Bm
⊕
Bn is a direct summand of A [2, page

138] and it is easy to see that pm | (kn−km).
Let π be the p-adic number defined by (kn)n≥0 (with k0 = 0 and kn = kn−1

if Bn = 0). Then α(b) = πb, for all b ∈ B. Since A is reduced, it follows that

α=π idA (see [2, page 145]).

Step 2. We suppose that A is divisible. Therefore, A =⊕i∈I Ai with Ai �
Z(p∞), for all i ∈ I (see [2, page 104]). We consider the direct product E =∏
n≥1〈xn〉, where o(xn)= pn, for all n≥ 1. For all n≥ 1, let en ∈ E be defined

by

fm
(
en
)=

0 if m<n,

pm−nxm if m≥n, (2.5)

where fm : E → 〈xm〉 is the canonical projection. Let C be the following sub-

group of E:

C =
(⊕
n≥1

〈
xn
〉)+〈{en |n≥ 1

}〉
. (2.6)

It is easy to see that C/(
⊕

n≥1〈xn〉)� Z(p∞).
We choose i∈ I and ai ∈Ai. We want to show that α(ai)∈Ai. Let j ∈ I with

j ≠ i. We put A′ =⊕k∈I−{j}Ak and we have A = Aj
⊕
A′. Let γ : C → Aj be an

epimorphism. If we suppose that B = C⊕A′ and consider s : B → A which is

defined by s(c+a′) = γ(c)+a′ (c ∈ C , a′ ∈ A′), then s is an epimorphism.

Therefore, there exists α̃ ∈ Aut(B) such that sα̃ = αs. Since A′ is a maximal

divisible subgroup of B, α̃(a′) = a′. Since ai ∈ A′, then α̃(ai) = α(ai) ∈ A′.
Thus for all j ≠ i, α(ai) ∈

⊕
k≠j Ak, and therefore, α(ai) ∈ Ai. Then there is

a p-adic number πi such that α(ai) = πiai, for all ai ∈ Ai (see [2, page 181]).

For each i ∈ I, we put Ai = 〈{yi,n | n ≥ 1}〉 with pyi,1 = 0 and pyi,n+1 = yi,n,

for all n ≥ 1. Let (i,j) ∈ I2 with i ≠ j. If we suppose that zn = yi,n+yj,n and

H = 〈{zn | n ≥ 1}〉, then H � Z(p∞) and Ai
⊕
Aj = Ai

⊕
H. By the preceding
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arguments, there exists a p-adic numberπ such thatα(h)=πh,αh∈H. Then

we deduce that πi =πj =π .

Step 3. We suppose that A is an arbitrary abelian p-group. We can write

A = C⊕D with C reduced and D divisible. We can also suppose that C ≠ 0

and D ≠ 0. We have α(D)=D, and the restriction α1 of α to D has the lifting

property in the category of p-groups, by Lemma 2.1. Then there is a p-adic

number π such that α(d)=πd, for all d∈D.

Let c0 ∈ C with o(c0)= pn0 . we define the map s :A→A by

s(c+d)= c+pn0d, (2.7)

for (c,d) ∈ C×D. Then s is an epimorphism, and therefore, there exists α̃ ∈
Aut(A) such that sα̃=αs. Put α̃(c0)= c1+d1. Then

sα̃
(
c0
)= c1+pn0d1 = c1 =αs

(
c0
)=α(c0

)
, (2.8)

and it follows that α(c0) ∈ C and α(C) = C . We show that α(c) = πc, for all

c ∈ C . To this end, take
⊕

i∈I〈ci〉 as a basic subgroup of C . We choose i ∈ I;
〈ci〉 is a direct summand of C . Put pni = o(ci) and

⊕
Ci = C . Let di ∈D such

that o(di)= pni . We have

A= 〈ci+di〉⊕Ci
⊕

D. (2.9)

Then there exist a group G and an epimorphism η : G → Ci
⊕
D such that

G[pni]⊆ kerη, by Lemma 2.2. We suppose that B = 〈ci+di〉
⊕
G, and we define

µ : B→G by µ(m(ci+di)+g)=m(ci+di)+η(g). Then µ is an epimorphism.

Let α̃∈Aut(B) be such that αµ = µα̃. We have

αµ
(
ci+di

)=α(ci+di)=α(ci)+πdi. (2.10)

We put α̃(ci + di) = k(ci + di)+ g0, then µα̃(ci + di) = k(ci + di) (because

η(g0)= 0). Thus α(ci)+πdi = kci+kdi, so α(ci)=πci, and therefore, α(c)=
πc, for all c ∈ C , by [2, page 145].

3. The lifting property in the category of abelian groups. In this section,

we show that, for a torsion or p-divisible torsion-free group A (p is a prime

number), idA and − idA are the only automorphisms of A having the lifting

property in the category of abelian groups.

Proposition 3.1. LetA be an abelian torsion group. Then an automorphism

α of A has the lifting property in the category of abelian groups if and only if

α= ida or α=− ida.

Proof. One implication is obvious. Assume that α has the lifting property

in the category of abelian groups and consider the exact sequence

E : 0 �→ Z �→Q �→Q/Z �→ 0, (3.1)
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then, by the Cartan-Eilenberg theorem (see [2, page 218]), the sequence

0=Hom(A,Q) �→Hom(A,Q/Z) E∗������������������������������������������������������������→ Ext(A,Z) �→ Ext(A,Q)= 0 (3.2)

is exact, where E∗ is the map associating to ξ ∈ Hom(A,Q/Z) with the class

extension Eξ.

Let E1 : 0 → Z
λ
����→ B µ

������→ A → 0 be an extension of Z by A. Then there exists

σ ∈Aut(Z) such that the following diagram is commutative:

0 Z

σ

λ
B

µ

α̃

A

α

0

0 Z
λ

B
µ

A 0.

(3.3)

If σ = idZ, then E1 ≡ E1α, and if σ = − idZ, then E1 ≡ E1(−α). Therefore, for

all ξ ∈ Hom(A,Q/Z), E∗(ξα−ξ) = 0 or E∗(ξα+ξ) = 0. Thus ξ(α− id) = 0 or

ξ(α+ id)= 0, for all ξ ∈Hom(A,Q/Z).
From the fact that Q/Z is divisible, it follows that α= id or α=− id.

Proposition 3.2. Let p be a prime number and A a p-divisible torsion-free

group. Then an automorphism α of A has the lifting property in the category

of abelian groups if and only if α= ida or α=− ida.

Proof. One implication is obvious. Suppose that α has the required lifting

property, and consider the pure exact sequence

E : 0 �→ Z �→ Jp �→ Jp/Z �→ 0, (3.4)

where Jp is the additive group of p-adic integers. By the theorem of Harrisson

(see [2, page 231]), the sequence

Hom
(
A,Jp

)
�→Hom

(
A,Jp/Z

) E∗������������������������������������������������������������→ Pext(A,Z) �→ Pext
(
A,Jp

)
(3.5)

is exact. Hom(A,jp)= 0 because Jp contains no nonzero p-divisible subgroup

and Pext(A,jp)= 0 because Jp is algebraically compact. Thus E∗ is an isomor-

phism, and, as in the proof of Proposition 3.1, we find that α= id or α=− id.
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