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1. Introduction. It is well known that the Euler numbers and polynomials
can be defined by the following definitions.

DEFINITION 1.1 (see [1]). The Euler numbers Ey are defined by the following
expansion:

2e! )
SECht=e2t+1 => =tk Jtl=m. (1.1)

In [6, page 5], the Euler numbers are defined by

2et/? t w (“1)"En (t\*"
et 1 _SeChE_EOW(E) y |t|S7T. (12)

DEFINITION 1.2 (see [1, 6]). The Euler polynomials Ey(x) for x € R are de-
fined by

th, |t <. (1.3)

2ext _ i Ex(x)
et +1 - k!

Let N denote the set of all positive integers. It can also be shown that the
polynomials E;(t), i € N, are uniquely determined by the following two prop-
erties:

Ei{(t) =iE;1(t), Eo(t)=1,

. (1.4)
Ei(t-i- 1) +Ei(t) =2t

Euler polynomials are related to the Bernoulli numbers. For information
about Bernoulli numbers and polynomials, we refer to [1, 2, 3, 5, 6].

In this note, we give some generalizations of the concepts of Euler numbers
and Euler polynomials and research their basic properties. In fact, motivations
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and ideas of this note and other articles, see, for example, [2, 3, 4], originate
essentially from [5].

2. Generalizations of Euler numbers and polynomials. In this section, we
give two definitions, the generalized Euler number and the generalized Euler
polynomial, which generalize the concepts of Euler number and Euler polyno-
mial.

DEFINITION 2.1. For positive numbers a, b, and c, the generalized Euler
numbers Ex(a,b,c) are defined by

2ct _ iEk(a,b,C)tk

priar T &k

(2.1)

DEFINITION 2.2. For any given positive numbers a, b, and ¢ and x € R, the
generalized Euler polynomials Ey(x;a,b,c) are defined by

tk. (2.2)

Taking a = 1 and b = ¢ = e, then Definitions 1.1 and 1.2 can be deduced from
Definitions 2.1 and 2.2, respectively. Thus, Definitions 2.1 and 2.2 generalize
the concepts of Euler numbers and polynomials.

3. Some properties of the generalized Euler numbers. In this section, we
study some basic properties of the generalized Euler numbers defined in
Definition 2.1.

THEOREM 3.1. For positive numbers a, b, and ¢ and real number x € R,

Eo(a,b,c) =1,  Ex(l,e,e) =Ex,  Ex(1,eY?e*) = Ex(x), (3.1)
ok 3 K Inc-2Ina
E(a,b,c) = 24(Inb~Ina)* B (5o =), (3.2)
k
Ex(a,b,c) = > (IJ<> (Inb-Ina)’(Inc —Ina—Inb)*JE;. (3.3)

j=0

PROOF. The formulas in (3.1) follow from Definitions 1.1, 1.2, and 2.1 easily.
By Definitions 1.2 and 2.1 and direct computation, we have

2ct 2exp((Inc-2Ina)/2(Inb-Ina)-2t(Inb—-1Ina))
b2t + g2t exp (2t(Inb —Ina)) +1
Inc-2Ilna \t*
2(lnb—lna))7

(3.4)

)

= X2 nb-tna) e

Then, formula (3.2) follows.
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Substituting Ey (x) = 35,277 (¥) (x —1/2)*JE; into the formula (3.2) yields
formula (3.3). The proof of the classical result for Ey (x) follows from the more
general proof that will be given for (4.1). |

THEOREM 3.2. Fork € N,

Ex(a,b,c) = —% i ( ) (2Inb —1Inc)* 7+ 2lna—1Inc)* JEj(a,b,c), (3.5)
) Ex(a,b,c) = Ex(b,a,c), (3.6)
Ex(a®,b%,c%) = o*Ex(a,b,c). (3.7)

PROOF. By Definition 2.1, direct calculation yields

A ()]

1 tk[< b a2>k} ot
=S —|(m= ln— > —Ex(a,b,c) (3.8)
2 oK c c o k!
) k —J -J
1 p2\ ki a2\ ki tk
2;{)(2 (mT) "+ () }Eﬂ“”“))m-

Equating coefficients of t¥ in (3.8) gives us

i (’;) [(lnbcz) (1 iz)k J}EA,-(a,b,c) = 0. (3.9)

Jj=0
Formula (3.5) follows.
The other formulas follow from Definition 2.1 and formula (3.2). |

REMARK 3.3. For positive numbers a, b, and ¢, we have

Ey(a,b,c) =1,

Ei(a,b,c) =Inc—Ina—Inb,

E>(a,b,c) = (Inc-2Ina)(Inc-2Inb),

Es(a,b,c) = [(Inc—lna—Inb)?>-3(nb—-1na)’](dnc —Ina—1Inb).

(3.10)

Since it is well known and easily established that the Ej are integers, E; = 0
if j is odd, and E;(0) = 0 if j is positive and even, it follows from (3.3) and
(3.2) that Ex(a,b,c) is an integer polynomial in Ina, Inb, and Inc which is
homogeneous of degree k and which is divisible by Inc —Ina —Inb if k is odd,
and divisible by (Inc —2Ina)(Inc —2Inb) if k is even and positive.
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4. Some properties of the generalized Euler polynomials. In this section,
we investigate properties of the generalized Euler polynomials defined by
Definition 2.2.

THEOREM 4.1. For any given positive numbers a,b, and ¢ and x € R,

k . .
_ < (k) (n¢)k- 1\
Ex(x;a,b,0) —J; (J) o (x-3) Eabo, (@.1)

Ex(x:a,b,c) = Jé (’;) (lnc)kai<1ng>j<x_ %)kijEj(%)’ 4.2)

Ex(x;a,b,c) = i i (k) (é)(l%;kj[lnk]g[ln;_b]fﬁ[x_%]kag,

i=0 =0 \J a
4.3)
Ex(a,b,c) = 2"Ek<%;a,b,c), (4.4)
Ex(x) = Ex(x;1,e,e). (4.5)

PROOF. By Definitions 2.1 and 2.2, we have

2C2xt *

tk
_ k _ t*
bot st *EOZ Er(xia,b,c)

2xt t
2c* 2¢c L ex-Dt

b2t 4 g2t~ p2t 4 g2t

~ ik o ik o (4.6)
= ZEEk(a,b,c) Zk!(Zx—n (Inc)

k=0

S d k i . tk
=22 <j>(1nC)kJ(2x—1)’<JEj(a,b,c) o

Jj=0
Equating the coefficients of t¥/k! in (4.6) yields

k
2kE(x;a,b,0) = > (';) (Inc)*7(2x - 1)*JE;(a,b,c). (4.7)
j=0

Formula (4.1) follows.
The other formulas follow directly from substituting formulas (3.2) and (3.3)
into (4.1) and taking x = 1/2 in (4.1), respectively. O
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THEOREM 4.2. For positive integer 1 <p <k

%Ek(x;a,b,c) = (kl_dp)! (Inc)PEx-p(x;a,b,c), (4.8)
L;(Ek(t;a,b,c)dt = m[}ikﬂ(x;a,b,c) —Exs1(B;a,b,0)]. 4.9)

PrROOF. Differentiating equation (2.2) with respect to x yields
%Ek(x;a,b,c) =k(Inc)Ex_1(x;a,b,c). (4.10)

Using formula (4.10) and by mathematical induction, formula (4.8) follows

Rearranging formula (4.10) produces

Ex(x;a,b,c) = maax]ikﬂ(x a,b,c). 4.11)
Formula (4.9) follows from integration on both sides of formula (4.11) |
THEOREM 4.3. For positive numbers a, b, and c and x € R
k
(4.12)

Ex(x+1;a,b,c) = > (k) (nc)*JE;(x;a,b,c),
j=0

Ex(x+1;a,b,c) = 2x*(Inc)¥

+ z ( ) [(Inc)*~7 — (Inb)*7 - (Ina)*~ JEj(x;a,b,c),
(4.13)

(4.14)

Ex(x+1;a,b,c) = Ex (X;E,E,C>-
c’c

PROOF. From Definition 2.2 and straightforward calculation, we have

k hd k
Ek(X'a,b,c)} [Z 7 (Inc) }

~

>

k=0

£[£0)

DXt . 2C(x+1)t * tk
bf+atlc = iral — zEEk(x+1,a,b,c).

=~

2c*t [
bt +at

tk
(lnc)k JE;(x;a,b, C)] L (4.15)

Il
HMS
u[\/_]w

Therefore, from equating the coefficients of t*/k! in (4.15), formula (4.12) fol

lows.
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Similarly, we obtain

2C(X+l)t ® tk Cxt

t
= > —E(x+1; =2c* 4+
birat - 2K k(x+liab,c) =2¢+ s

(ct—bt—at)

k=0
St S k k Ky £
+ Z —'Ek(x a,b,c) (Inc)*—=(Inb)* - (Ina)*)—
k!
k=0 k=0
= Z [Zxk(lnc)k
k=0
ko (k , , - tk
+> (J) [nc)* — (Inb)* - (lna)kl]E‘,‘(x;a,b,c)} o
Jj=0 ’
(4.16)
By equating coefficients of t¥/k!, we obtain formula (4.13).
Since
(x+1)t xt
Z Ek(x+1 ab,c) = 2;f+at N (b/c)%i (a/c)
= (4.17)

-2 % )

by equating coefficients, we obtain formula (4.14). The proof is complete. O

COROLLARY 4.4. The following formulas are valid for positive numbers a,
b, and c and real number x:

Er(x+1) +E(x) = 2x*, (4.18)
£ (k
Ex(x+1)= > ( ,)Ej(x), (4.19)
=0 \J
Ex(x+1:1,b,b) + Fx(x:1,b,b) = 2x*(nb)¥, (4.20)
k
Ex(x+1;1,b,b) = > (’J‘,)Ej(x;l,b,b)(lnb)kf, (4.21)
j=0
i (I;)Ej(x;l,b,b)(lnb)kf+2Ek(x;1,h,b) = 2x*(Inb)k, (4.22)
JXHE(t' podt - — S ( Vanokigabe. @23
. klt;a,p,c = (k+1)lnc J nc jlx;a,p,c). .

Jj=0
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THEOREM 4.5. For positive numbers a,b,c > 0, x € R, and nonnegative in-
teger k,

Ex(1-x:a,b,c) = (- 1)kEk<x,2,%, ) (4.24)
Ek(l—x;a,b,c):E< %% ) (4.25)

PROOF. From Definition 2.2 and easy computation, we have

* t b 2C(17X)t 2Ct_cfxt 2C7xt
ha 1— — —
2 kB XA = e = et T (i) () !
S (4.26)
t c c
= f(fl)"Ek(x;f,f,C).
o K! a’'b
Equating coefficients of t¥ above leads to formula (4.24).
By the same procedure, we can establish formula (4.25). O

THEOREM 4.6. For positive numbers a,b,c > 0, nonnegative natural number
k, and x,y € R,

k
Ex(x+vy;a,b,c) = z< )(lnckfyk JE;(x;a,b,c),

r (4.27)

Ex(x+vy;a,b,c) = Z ( )(lnc)k Ix*JEj(v;a,b,c).

PROOF. These two formulas can be deduced from the following calculation
and considering symmetry of x and y:

co 2C(x+y)t DXt . vt
E + b =
% KX+ yid,bie) = = i a

(3

0
o k tk
=> {Z (lnc)k Iyk=JEj(x;a,D, c)]y.

>\~|N

® sk
Ec(x;a,b, c)] [Z %(lnc)k k} (4.28)

k=0 [ j=0
The proof is complete. O

THEOREM 4.7. For natural numbers k and m and positive number b,

Z(— ik = Z(IIb)k[(—l)mEk(m+1;1,lo,b)—Ek(l;l,lo,b)]. (4.29)
=1
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PROOF. Rearranging formula (4.20) gives us

1
k_ L ) .
X = S inpyk EkX + 115, D) + Ee(x;1,b,b) .

Replacing x by £ € N and summing up ¥ from 1 to m yields

m 1 m
DD = o S (=D [Ec(£+1;1,b,b) + Ex (4;1,b,b)]
=1 Z(IHb)k€:

= mn—l)mlfk(m+l;l,b,b)—Ek(l;l,b,b)]_

The proof is complete.

REMARK 4.8. Finally, we give several concrete formulas as follows:

Eo(x;a,b,c) =1,
Ei(x;a,b,c) = (x—%)lnc+ %(lnc—lna—lnb),

2
E>(x;a,b,c) = <x— %) (Inc)? + (x— %) (Inc—=Inb-Ina)lnc

+ %(lnc—Zlna)(lnc—Zlnb).

(4.30)

(4.31)

(4.32)
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